
Analysis of Peer-to-
Peer Network
Security using

Gnutella

Dimitri DeFigueiredo±, Antonio
Garcia+, and Bill Kramer*

±Department of Computer Science, University of
California at Davis: defigueiredo@ucdavis.edu

+Department of Physics, University of California at
Berkeley: agm@SIMS.Berkeley.EDU

*Department of Computing Sciences, University of
California at Berkeley and the

National Energy Research Scientific Computing
Center, Lawrence Berkeley National Laboratory:

kramer@nersc.gov

Abstract
Peer-to-peer (P2P) networks have emerged
over the past several years as new and
effective ways for distributed resources to
communicate and cooperate. "Peer-to-peer
computing is the sharing of computer
resources and services by direct exchange
between systems. These resources and
services include the exchange of
information, processing cycles, cache
storage, and disk storage for files." P2P
networking has the potential to greatly
expand the usefulness of the network - be it
for sharing music and video, privately
contracting for services or for coordinating
the use of expensive scientific instruments
and computers. Some of the networks, such
as Napster and Gnutella are created in an ad
hoc manner with little or no centralized
control. Other P2P networks such as
computational and data grids are being
designed and implemented in a very
structured manner. P2P networks are
presenting new challenges to computer
security and privacy in a number of ways.

This project will explore the security issues
raised by P2P networks by studying an
example on an extreme point on the design
spectrum: Gnutella [Gnu]. Our primary
focus will be the Gnutella network, which is
the de facto standard for large, loosely
structured, P2P networks. The Grid is a very
large-scale , heterogeneous, formally
structured P2P network that spans many
organizations to make “virtual systems” of
resources. [OGSA] It is quickly becoming
the standard for distributed resource
allocation for high-end computer and
instrumentation systems. This paper
demonstrates that for P2P networks with ad
hoc structure, significant security concerns
persist.

What are Peer-to-peer
Networks
 “Peer-to-peer computing is the sharing of
computer resources and services by direct
exchange between systems. These resources
and services include the exchange of
information, processing cycles, cache
storage, and disk storage for files.”[P2PWG]
A broad definition of P2P includes the client
server mode of computing, as well as
exchange directly amongst clients or
amongst servers. However, P2P now also
is used to describe some new uses of
computers and networking. In particular, it
is becoming more common for systems to
play both the server and client roles
simultaneously. P2P networking now is
being used to present new services and
functions. P2P is more than just the
universal file -sharing model popularized by
Napster. According to the Peer-to-peer
working group, business applications for
P2P computing fall into a handful of
scenarios.

• Collaboration: Geographic
distributed individuals and teams
create and manage real-time and
off-line collaboration areas in a
variety of ways. The goals are

typically increased productivity and
decreased costs.

• Edge services. Edge services move
data closer to the point at which it is
actually consumed acting as a
network caching mechanism. This
helps deliver services and
capabilities more efficiently across
diverse geographic boundaries. A
current example is Akamai for an
enterprise

• Distributed computing and
resources. Using networks and
computers, P2P technology can use
idle CPU power and disk space,
allowing businesses to distribute
large computational tasks and data
across multiple computers. Results
can be shared directly between
participating peers. Prioritized use
of the resources, even if they are not
idle, is possible. Examples here
range from the seti@home to the
Distributed Teragrid.

• Intelligent agents. Provides ways for
computing networks to dynamically
work together using intelligent
agents. Agents reside on peer
computers and communicate various
kinds of information back and forth.
Agents may also initiate tasks on
behalf of other peer systems.

Formally and Loosely
Structured Peer-to-peer
Networks

The most commonly known P2P networks
are those associated with music sharing.
First made popular by Napster, a centrally
managed P2P network, and now represented
by Gnutella and Kazaa, these P2P networks
are designed to be loose structures and
highly dynamic. Gnutella, Kazaa and others
are designed intentionally to have no central
control or authority so they are entirely self-
organizing. The loose federation of
continuing dynamic organization of these
networks presents very challenging security
issues, especially as the network expands.

The focus on decentralization represents a
current trend in P2P systems and many see it
as the stepping-stone to the extended
functionality these systems may provide in
the future. This is one of the main reasons
this work focuses on the Gnutella network,
Gnutella’s distributed non-homogeneous
architecture make it a suitable test bed to
observe how new ideas may affect future
P2P networks. However, to put Gnutella’s
architecture into perspective we must be
aware of what other approaches have been
taken.

The Grid

There are many networks emerging for e-
commerce and scientific efforts that have a
more formal structure. One excellent
example of this type of P2P network is what
is commonly called “the Grid”. Grid
technology is a collection of tools and
services that facilitate the building and
managing of “virtual” systems that integrate
distributed, heterogeneous, multi-
organizational resources on demand. [Grid]
These resources might include the different
computing and data systems operated by a
supercomputer center like NERSC, as well
as a diverse collection of user-controlled
computing and data systems and scientific
instruments. The "Grid" is a research effort
(~10 years in all) whose principle initiators
are Ian Foster (ANL) and Carl Kesselman
(Cal Tech). The initial implementations
centered on Globus and did demonstrations
(1995-96) of single applications running on
geographically distributed, large parallel
machines– essentially co-scheduling CPUs
by human agreement and management. The
concepts and software have evolved
dramatically since and has expanded to
supported large scale data movement,
collaborative work tools, and much more.
There are several "Grids" moving for
experimental to "production" status as other
projects now use grid tools as reliable
infrastructure for their science and

engineering. Examples of production or
near production grids are the NSF Teragrid,
NASA Information Power Grid, DOE
Science Grid, Grids for Physics and the
EuroGrid. There is an organization that is
like the IETF for setting grid standards
called the Global Grid Forum. GGF has
brought corporate and research communities
together to work on Grid implementations.
This effort was given a major critical mass
when IBM, ANL and CalTech jointly
proposed the Open Grid Service
Architecture (OGSA) about 8 months ago.
The joint effort (with about 50 developers)
is aimed at integrating the best features of
Globus (and associated tools) with IBM's
Websphere technology and is turning the
grid effort from one of creating virtual
organizations with resources to one of
creating a distributed service system that is
for “modern enterprise and
interorganizational computing
environments” [OGSA]. The end goal for
industry is to create move to providing “on-
demand computing” services rather than
computing hardware. Sam Palmisano –
CEO of IBM – is quoted as saying grid
computing is the “is the most important
imitative IBM has undertaken since the
Internet”[BW].

Current Grids are mostly based on services
from the Globus and Condor software
packages, and emerging data Grid and Web
based portals. Globus services provide a
standard way to define and submit jobs,
manage the code and data associated with
those jobs, and locate and monitor the
available resources across geographically
and organizationally dispersed sites. They
also provide a consistent set of security
services based on X.509, PKI, or Kerberos
authentication, proxy certificates to carry the
user authentication to remote resources, and
a set of secure communication primitives
based on the IETF GSS-API: secure telnet,
remote shell, and secure ftp are provided by
using these services. Condor-G provides job
management on top of the Globus services,
ensuring that one or more associated jobs

that might run on remote resources execute
once and only once. Both Globus and
Condor services provide for communicating
with remote jobs, etc.

A sophisticated set of Grid data services is
being developed by the NSF GriPhyN and
EU DataGrid projects for managing massive
data sets in support of the global high energy
physics community. Over the next few
years these will provide for cataloging,
querying, accessing, and managing
replication, location, and movement of very
large data sets from a worldwide collection
of data sources. Grid portal work at half a
dozen institutions is defining and building
the Web services and primitives that will
provide all Grid services though the user’s
Web browser. Advanced services that will
provide for brokering, co-scheduling,
advance reservation of CPU capacity,
network bandwidth, and tertiary stored data
availability are currently being developed.
Collaboration services are also being
developed that provide for secure distributed
collaboration group management,
messaging, versioning and authoring, and
the definition and management of “virtual
organizations.” These services are being
integrated with the basic Grid services,
frequently through Web Grid services.

Gnutella

Overview of the protocol and
architecture

The Gnutella protocol is a peer-to-peer
(P2P) overlay network designed for resource
sharing across the global Internet. The
network is built completely at the
application layer, and nodes interact via
client programs running on their local
machines, irrespective of the underlying
physical network. As originally conceived,
connectivity, routing, and resource searching
are handled in a wholly distributed way,
with every node nominally equal to every

other (recent upgrades changed this
slightly). Any differences in a node’s ability
stem solely from their own computational,
memory, or network bandwidth relative to
other nodes.

The Gnutella protocol was originally a very
simple protocol, completely specified in a
sparse 6-page document [GNU]. The
protocol eventually grew in complexity as
the popularity and function exceeded its
very simple initial design. Currently,
Gnutella developers refer to the original
protocol (with minor modifications) as
version 0.4, and the next generation
protocol, which has absorbed a slew of new
features and even wholesale protocol
additions, as version 0.6

The sections that follow briefly describe
Gnutella in its original incarnation, followed
by a description of the relevant parts of the
later version. They are necessarily brief but
more detail can be found at [Gnu] and
[GDF].

Gnutella v0.4 Protocol

The Gnutella protocol consists of five types
of messages: ping, pong, query, query hit
(the reply to a query message), and push. A
ping message is used to discover new nodes
on the network. A pong message is sent as a
reply to a ping and provides information
about a network node, including IP address,
port number, and number of files shared. A
query message is used to search for files
shared by other nodes on the network. It
contains a query string and a minimum
requested link speed. A query-hit message
contains a list of one or more files which
match a given query, the size of each file,
and the link speed of the responding node
Push is used to upload a file to clients
behind a firewall who cannot download files
themselves.

A node initiates a connection to another via
a two-way handshake:

A →B: GNUTELLA CONNECT/ 0.4
B→ A: GNUTELLA OK

A and B then exchange Gnutella protocol
messages. Each protocol message contains a
23-byte descriptor of the form {id, type,
TTL, hops, payload length}. The first field is
a 16-byte descriptor number (roughly)
unique on the network. TTL is the time-to-
live of the packet on the overlay network,
and hops is the number of hops thus far the
message has traveled. Each time the
message transits a node on the network the
hop count is changed. The payload length
describes the actual data in the Gnutella
packet, if any. This number is crucial, as
more than one Gnutella packet can fit in one
IP datagram, and there are no breaks in the
Gnutella datastream. Lastly, the type
describes which of five message types is in
the packet, either Ping, Pong, Query,
QueryHit, and Push.

Ping messages carry no payload, and are
used to explore the network for more
neighbors. Upon receiving a ping, a node
will decrement (increment) the TTL (hops)
field appropriately and pass along the ping
to all neighbors except the originating node.
That node will also return a pong message
containing as payload a 13-byte descriptor
{port, IP address, number of files shared,
kBs shared}. Note, pongs are sent back
along the network overlay back to the
originating node, not directly. Hence, a
pinging node ostensibly learns of the
existence of all nodes within a radius of one
TTL.

When a node decides to find a file or
resource, it sends a Gnutella header along
with a descriptor {minimum speed, search
criteria}. The first field is a two-byte
number that lists the minimal connection (in
kb/s) of nodes that should respond, followed
by the specified search criteria. Nodes who
match the criteria respond with a query-hit
message of the form {number of hits, port,
IP address, speed, result [1…n], host ID}.
Each result is a tuple {File Index, File Size,

File Name}, with File Index a unique ID
issued by the responding node, and File
Name some human-readable tag to display
on a hit list. The descriptor ID number on
the 23-byte Gnutella header must match that
of the query packet's header ID number.
This allows matching by both the query
launcher and all intervening nodes. Hits are
sent back via the overlay network to the
originating node.

Finally, to access a resource (e.g. a file), the
querying node establishes a TCP connection
with the responding serving node, and sends
an HTTP GET request of the form:

GET/get/<File Index>/<File
Name>/HTTP/1.0 \r\n
Connection: Keep-Alive \r\n
Range: bytes=0-x \r\n
User-Agent: Gnutella \r\n

The range field allows for continuing a
disrupted download, or parallel downloads
from several nodes. Note, the download is
outside of the overlay network, and direct
between the serving and the downloading
nodes.

Finally, in addition to the above four basic
message, the protocol supports a PUSH
message to allow downloads from firewalled
hosts. The query originator, in addition to
the Gnutella header, sends {node ID, File
Index, IP address, port} to the firewalled
node via the network. The node ID is a
random unique 16-byte string, and the
address and port refer to that of the query
origination node. The serving node then
starts a TCP connection back to the querying
node, along with a string indicating the file
in question. With just a standard the TCP
connection established (which is allowed by
almost every firewall), the querying node
then sends the HTTP request and everything
proceeds as before.

Gnutella v0.6 Protocol

With Gnutella's meteoric rise in popularity
following the disbanding of Napster, the

original protocol soon displayed its
inadequacies. Early measurement studies
showed that as much as 50% of Gnutella
traffic consisted of superfluous pongs
flooding the network. Since nodes were
regularly looking for neighbors, as well as
sending 'keep-alive' pings that signaled their
continuing existence to current neighbors,
cascades of redundant pongs were choking
connections, and impeding searches. In
addition, in the early days of custom-written
clients, some Gnutella nodes were engaging
in anti-social behavior like hammering
neighbors with pings or queries, injecting
packets with large TTL values, or
continuing to forward packets they had
already seen. In response, the major
developers of clients, plus open source
participants, added a series of heuristic
modifications to the original protocol, as
well as some fairly fundamental changes
that are collectively called 'v0.6' (for
somewhat obscure reasons). The most
significant change concerned network
topology is described below.

In an attempt to make Gnutella scalable for
mass usage, developers imagined
establishing a minimal hierarchy in the
Gnutella network. So-called 'supernodes' or
'ultrapeers' would be able to leverage the
superior bandwidth of their hardware and
handle a larger share of search routing and
connectivity, while keeping low-bandwidth
nodes from choking traffic via their slow
connections. Functionally, each supernode
keeps connections open to a set of leaf
nodes, and to a number of other supernodes.
Leaf nodes themselves keep connections
only to their supernode, which handled its
traffic to the rest of the network. Hence, the
set of high-bandwidth supernodes form a
data bus used by the larger network.

By using a header in the handshake
messages passed on connection initiation,
nodes then negotiate connectivity based on
their status: leaf nodes subsume their
existence to a supernode, and supernodes
collect leaves and inform other supernodes
of their existence. In more sophisticated

implementations of the idea, leaf nodes pass
a file index to their supernode, who then
answer all incoming search queries on its
leaves' behalf. This reduces supernode-leaf
traffic, and shields the leaf nodes from all
traffic other than direct download requests,
and whatever traffic they themselves
generate.

Threat Categories

A paradigm shift is needed when
considering the security of peer-2-peer
networks and the associated threat models.
In the standard client-server architecture,
services are provided by a particular host (or
a small group of hosts). Thus, by attacking a
specific machine an attacker can subvert,
modify or make a service become
unavailable. For example, if Ebay's website
is successfully attacked, no one will be able
to have that service (i.e. take part in
auctions) they will have to use some other
website. In these cases, services are linked
to hosts, attacking a service means attacking
a host. With decentralized P2P networks
that is no longer true. One can still attack
specific hosts in the network, but because
the services provided are not (usually)
provided a small number of hosts, it is not
clear what that would achieve. For example,
by attacking a single supernode in the
Gnutella network one would not be able to
make any single file become unavailable.
On the other hand, attacks mounted against
the whole network, may try to disrupt a
single service while leaving others
unaffected. Decentralized P2P networks
decouple services from hosts. A similar
decoupling is needed when analyzing the
security of such systems and different threat
models emerge. Threat models are the focus
here.

Flooding

In [Yaz], many flooding attacks that rely on
the interactions of the Gnutella protocol with
the TCP/IP protocol stack are considered

and discussed at length. The author also
implements an attack on his own webserver
through the generation of fake query-hit
messages. The work presented in [Das] also
considers the security aspects of the
Gnutella network, this time problems with
the Gnutella protocol itself independently of
any underlying protocols are considered.
However, the main focus is the development
of a traffic model to deal specifically with
query-flood DoS attacks.

The simplicity of version 0.4 of the Gnutella
protocol leads to some inefficiencies.
Perhaps, the most notable of which is the
need to broadcast query messages when
trying to locate resources. This causes an
exponential growth in the number of
messages in the network. Version 0.6 of the
Gnutella protocol addresses many of these
issues, but it also introduces another level of
complexity when compared to the very basic
4 messages seen in version 0.4. One of the
most significant changes is the introduction
of a two-tier system where high-bandwidth
nodes (supernodes) help decrease traffic by
caching query routing information.
However, query communication between
supernodes in version 0.6 is essentially the
same as in version 0.4, i.e. queries are made
by broadcast on the neighboring network
graph.

Both the connectivity (ping/pong) and the
querying (query/query-hit) functionalities of
the Gnutella protocol lay the burden of
multiplexing/demutiplexing messages on
intervening nodes and hence assume implicit
faith in third parties. Nodes are assumed to
be well behaved. The design focus is
primarily functionality and efficiency, as
supposed to security. There has been no
attempt to establish in reality how
trustworthy these intermediate third parties
really are. There are no protocol
mechanisms to establish or estimate this and
we have been unable to identify any open

proposals to use the underlying protocol
infrastructure to obtain such information1.

Attacks consisting of flooding a single type
of the 4 basic messages in Gnutella have
been considered in the literature. Flooding
with reply messages (i.e. pong and query-
hit) is thought to be unfruitful as replies are
dropped unless a previous matching ping or
query was sent over the same network
connection previously. Any malicious nodes
immediate neighbors would, just by
following of the protocol, curtail the
efficiency of any such attack. The situation
was very different with ping messages
because these were propagated through the
network. Precisely due to the large amount
of traffic ping messages can generate the
new ping caching techniques introduced in
version 0.6 largely make ping flooding a
thing of the past, by seriously limiting if not
completely preventing ping messages from
propagating beyond immediate neighbors.
Query flooding still presents a major threat
and is addressed in depth in [Das] and can
only be minimized – not prevented – by load
balancing. Attacks consisting of a mix of
messages have not to our knowledge been
considered in depth in the open literature.
Whether or not such attacks can be more
effective than the simple ones already
considered is still unclear.

We suggest that the reason query-flooding
attacks still present a major concern is a
fundamental one. The main functionality
provided by the Gnutella protocol is
distributed file searching. In a distributed
file search the work is spread so that many
hosts look for the same files. Thus, the query
message requests a service from the network
and requires a certain amount of work to be
performed. When correctly followed the
Gnutella protocol ensures that the load is
collaboratively spread amongst the nodes.

1 Perhaps a framework on the lines of [GN2]
would be useful here. Extra book keeping is
arguably the major ingredient that is required to
produce an estimate of a node’s reliability, the
network overhead maybe minimal.

However, there is absolutely no guarantee
that the protocol has to be followed and thus
is open to abuse. For example, a malicious
vendor could sell a Gnutella client that
relays “difficult but unyielding” queries only
to its competitors, keeping its own clients
from that load. In query flooding the abuse
is simply to cause too much work, another
possibility would be supply erroneous
replies to all queries. However, if the
network is to provide any functionality the
query mechanism must be able to request
service. This is an indication that some
feedback control should be present on any
mechanism that can cause work to be
performed. But is not present in the Gnutella
protocol. Some proposals to achieve this
have been presented (such as hash-cash) and
will be discussed later.

Content Authentication

Whenever a file is downloaded, there needs
to be confidence that the contents of the file
are what is expected and advertised. In the
best case, not only is the file what is
expected, but also it is only what is
expected. In other words, there is no
additional information or capabilities in the
file that the user does not know about and
probably does not want. Current practice in
cooperative P2P networks such as Gnutella
relies heavily on good faith trust is trust
between the consumer and the provider that
the file label corresponds to the unaltered
file content. In other words, if you request a
particular song title, what is transferred is
that exact song and only the song.
Unfortunately, there is nothing but good will
assuring that “what you see is what you
get”.

Currently the only way to tell if the file
delivered is the file expected is to listen to it
and see if it sounds correct. There is little
overhead for a user listening to a file, and
discard it if it is not what is expected.
However, this is not guarantee that the file is
intact or unaltered. Besides substituting the
expected content with other content, but

even more sinister things can occur. Content
may be added in ways that are not detectable
through listening. An alteration might be
harmless, but it may also be able to
introduce virus code, messages, and other
subterfuge.

Hijacking queries

Because of its trust in intermediate third
parties, Gnutella is highly susceptible to
malicious behavior, as has been
demonstrated by the numerous attacks
described in [Yaz]. However, if one
considers the new paradigm of attacks where
services are targeted as opposed to hosts
there has been little work done. In the
Gnutella protocol, intermediate parties are
able to see a significant share of the queries
from all servers within their local subgraph.

What damage could be inflicted upon the
network if a node misbehaves and uses
query information? Every supernode has the
ability to see a large proportion of the
queries. Gnutella has a 7 hop query protocol
so the query will proceed through as many
as 6 supernode hops. If every supernode
knows of 4 others, then it is conceivable that
almost 1,300 supernodes will see the query.
So, essentially, the Gnutella is the logical
equivalent of a broadcast Ethernet with more
than 1,300 nodes able to listen to and
respond any query. It may be unclear how
much damage can be inflicted on the
network by a node’s ability to listen to much
of the query traffic and to response as it
wants, but it is certainly clear that
anonymity is compromised. Furthermore,
even in the best case, this opens the P2P
network to other attacks.

Threat Solutions

Distributed Hash Tables

Recently, a number of DHT-based P2P
networks have been proposed as alternatives

to the unbounded searches and anarchic
topology of networks like Gnutella and
Napster. Almost all such networks depend
on a global hash function to map node and
file ID's to some logical space, with
accompanying connectivity and search
procedures to channel queries, provide
bounds on queries, deal with node failures,
etc.

One of the more intuitive proposals is that of
Content Addressable Networks (CAN). The
global hash maps to a d-dimensional
hypercube, with each node being responsible
for some chunk of the hash space. With d=2,
our space becomes a sheet and, after several
nodes have joined, the network resembles a
rough checkerboard, with each square
controlled by one node that stores all files
whose key (e.g. title or metadata) hashes to
its square. The routing information goes
only as O(d), but lookup cost is O(d N1/d)
where N is the number of nodes in the
network. In addition, routing is not very
robust to node failure, as the ungraceful
departure of neighboring nodes leaves a
querying node clueless to its surroundings,
and unable to complete it's query. To date,
CAN implementations have not made it all
the way into a real-world system.

The Chord project “aims to build scalable,
robust distributed systems using peer-to-peer
ideas. The basis for much of our work is the
Chord distributed hash lookup primitive.”
[CHORD] Chord arranges its nodes and files
on a modular ring, with each node
maintaining O(log N) neighbor information
on a network of size N. For instance, if m is
the number of bits in the node/file
identifiers, then the ring extends from 0 to
2m-1. Each node maintains a table of
pointers, where the ith entry contains the
identity of the node at least 2i-1 away on the
hash ring. Basically, each node possesses a
pointer (containing a real IP address) to
nodes roughly increasing in powers of 2
away. Individual nodes are responsible for
storing files between themselves and the
previous node on the ring. Hence, a query
begins by consulting its pointer table and

tries to find the successor node for the
queried identifier on the ring. If no such
pointer exists, the query forwards his query
to the node closest in the hash space to the
identifier. That node will likely have more
information concerning nodes in its area,
and will either return a correct pointer to the
querying node, or forward in turn the query
to a closer node. In either case, the distance
between the query and the sought-for file or
node always decreases by at least a power of
two, giving a bound of log N overall for
searches.

Such a network, like all P2P networks, is
susceptible to the effects of node failure on
performance. In the case, of Chord, even
fairly catastrophic node failure results in a
functioning network, if with a diminished
O(n) lookup. Nodes joining the network
generate O(log N) traffic to construct their
pointer table, as well as a similar
communication complexity to update other
nodes' tables. Only one transfer and re-
shuffling of files occurs between the
entering node and the former successor node
for that chunk of hash space. In the
background, nodes constantly run a
stabilization algorithm that keep them
current on routing information and make
sure pointers are fresh.

Chord's designers have run simulations
modeling its behavior under a variety of
conditions. The number of hops required to
resolve a query was indeed shown to go as
log N, with a mean of 4.5 hops for a network
of 1000 nodes (here a hop refers to the
number of nodes traversed in searching for
an identifier). A simulation of node failure,
with nodes failing randomly while queries
are underway, showed essentially no
network lookup failure. In other words, the
percent failed lookups was almost exactly
the percent failed nodes, indicating that
searches failed due to keys disappearing off
the system along with their hosting nodes,
and not due to a system failure.
Additionally, looking at query failures as a
varying function of the rate of node join
(and departure), the testers saw a linear

dependence of failure on the
arrival/departure rate. Specifically, with a
large node fail/join rate of 10% per second,
only 7% of queries went unanswered,
indicating considerable robustness even in
the face of dramatic simultaneous failure.

DHT and Gnutella

While DHT networks can provide an
impressive set of features wholly absent
from more ad hoc P2P networks, we would
not suggest that a DHT-style network should
replace Gnutella . It would be unfeasible.
The hash assigns file storage based on a
random function, not based on what files
users already possess. In networks like
Napster and Gnutella users share what they
have, and it would be impractical to imagine
users storing files other than their own. This
mean s the host with the hash of the content
also has to have the content or be able to get
it efficiently. Rather, we would suggest
running a DHT-style lookup service
alongside the going Gnutella v0.6
architecture. Such a scheme would imbue
Gnutella with two important properties that
it has so far lacked: file permanence and
guaranteed lookup.

To realize the importance of these two
features, pause and think of security
protocols in common computer networks.
Most systems either depend on a trusted
computing base (e.g. a typical host-client
password authentication with an a priori
trusted user list), or the ability to read from
or write to a global information repository
(for example, reputation scores in ebay, or
entries in a PKI), as well as the ability to
access such memory when needed. Gnutella,
as it exists now, possesses none of these
building blocks; no nodes are fundamentally
trusted, files come and go on the whim of
their storing nodes, and findability is
determined purely as a tenuous function of
topology and network activity at the time of
query. Such lack of functionality limits any
security measure to stopgap hacks like

HashCash or an inefficient (and probably
ineffective) indirection.

With a Chord ring at the supernode level in
Gnutella, to take an example, one can
imagine leveraging the collective storage to
establish a reputation system to rate
participating nodes. Thus, nodes known to
distribute false or misleading files can be
deservedly reported. Search results would
then be accompanied with a report on the
supplier's reputation, allowing downloader's
to avoid disseminators of false files.
Likewise, reputation would allow regulation
of 'free-loading' on the network, whereby
nodes burden the network with searches and
downloads, and yet provide no files
themselves. Uploaders could preferentially
serve users that provide clean reputations,
incentivising even casual users to share what
they have.

Such an add-on would place an acceptable
burden on the supernode layer. Currently,
some 90% of supernode traffic stems from
queries and query hits, with supernodes
having to field their leaf nodes' traffic as
well as cross-network traffic for which they
are the bridges. Chord lookups on a network
with roughly a thousand members (about the
size of the supernode graph on Gnutella)
take anywhere from 2 to 8 hops. The TTL
on most legitimate Gnutella traffic is 7,
placing a Chord lookup within the envelope
of most going traffic.

Recall also that 7-hop Gnutella queries
expand in an exponential flood, while Chord
lookups visit only one node per hop, further
diminishing Chord's effect with respect to
the already existing bandwidth burden on
supernodes. Additionally, the increasing
efficiency and precision of the Gnutella
search architecture following the adoption of
yet more v0.6 features, such as the Query
Routing Protocol and GUESS (a UDP-based
iterative search add-on), will diminish
further the rather redundant query traffic at
the supernode level, opening up more
bandwidth for interactive reputation or
authentication protocols.

Authentication, Encryption
and FFTs

It is not clear what benefits could be
achieved by the use of authentication or
encryption in the current Gnutella
framework. Both authentication and
encryption primitives assume “trusted”
endpoints to establish communication
channels, these are simply not present in
Gnutella right now. A querying host has a
priori no idea of who might answer the
query. Without the existence of an
underlying “trust or reliability framework”,
other mechanisms (like sampling a few
possibilities) may be more fruitful.

A simple example is to imagine a
modification to the Gnutella protocol to try
to stop censoring of query replies in the
Gnutella network. We do this by having
replies be sent straight to the IP address of
the querying host end we also establish end-
to-end encryption/authentication. Obviously,
there is no mutual authentication, as it is
impossible to know who will reply. Thus,
any malicious intermediate node can still
censor the reply by mounting a man-in-the-
middle attack. The use of cryptographic
primitives relies on the existence of an
underlying “trust infrastructure” such as a
private key infrastructure.

One way to prevent content alteration is to
have a trusted third party verify the content
through mechanisms such as digital
signatures. This is a proven mechanism and
can be implemented in a straightforward
manner. However, there are limitations to
this approach. First, this is a much more
centralized approach. Every resource or
item of content would have to have a digital
signature, meaning the overhead for a peer
to provide a resource becomes higher. Every
down load would have to contact the central
authority to get the key for the signature.
This approach may be useful for some P2P
applications, particularly ones where there is
either a high cost associated with the risk of
an altered resource. Another instance where

digital signatures may be acceptable is when
the P2P network is relative modest or
limited in scale, for example when a P2P
network is applied to business-to-business
transactions. But, for very large, dynamic
networks like Gnutella that have tremendous
numbers of participants, it may not be
feasible nor desirable to have any part of
such a network rely on a centralized
resource.

Another more generalized approach is to
acquire several copies of a file from
different sources. Gnutella already provides
multiple sources for the requestor to choose
from if more than one source has the file.
Once multiple copies are acquired, various
types of checks can be made to determine if
they are the same. Once there is the ability
to compare the contents of multiple files, it
becomes possible to implement a voting or
selection scheme. Depending on the
confidence needed to assure altered files is
detected; a requestor can use well known
methods such as straight voting. For
example, if two out of three files are judged
to be equivalent, then the minority file is
considered bogus. A more robust selection
method could be implemented by following
an algorithm such as described as the
“Byzantine Generals Problem” [Lam] which
will guarantee the correct outcome. The
basic algorithm works if there is a small
number of treacherous nodes relative to the
overall number of nodes. If the number of
treacherous nodes might be large, then the
query originator would have to have
multiple rounds of communication with all
the participants to determine which are
truthful. There are multiple implementations
to solve the problem, each with increasing
cost (in both messages and computation)
based on the needs of the query originator.
In either case, if the files are not identical,
then the consumer has options ranging from
rejecting the dissimilar file to ignoring all
other responses from the resource that sent
the bad file. Once it is possible to determine
truthful and untruthful hosts, it is also
possible to send a message to the reputation

framework discussed above to either
enhance or detract from a node’s reputation.

A more fundamental question is how to
compare files in order to have some
substance to select from. In some cases, a
straight checksum may be viable. A
checksum requires two issues that possibly
are non-optimal. The first issue is that K
(with K> 1) copies of the file have to be
transferred to the receiver, using multiple
times the bandwidth and storage. Either the
entire file has to be transferred K times, or a
large part of it. If only parts of the file are
used, more problems come into play in at
least the Gnutella case. Consider two music
files from two different sources. While
containing effectively the same music, it is
highly unlikely they are bit-wise identical
since they were created on two different
CDs, maybe at two different times, from two
different manufactures and with two
difference manufacturing processes. All this
will cause checksums to be different. The
CDs may have different errors and timing.
There may be different lengths of idle time
before the music or after the music. Thus to
use partial file checksums, firm conventions
would have to be put into place for all files
that may require the cooperation of the
originators of the file. The second and more
critical issue is in order for checksums to be
the same; the files have to be bit for bit
identical. Some P2P applications do want
absolutely identical files bit for bit.
However, a number, including Gnutella
would not be able to use a checksum
because equivalent files are not bit for bit
identical. A more flexible solution is to use
Fourier Transforms to compare the files.
The approach is to take any two files X and
Y out of the set of M files, and perform a
Fourier Transform on each. Given the
Fourier Transform F, one can calculate
F(X), and F(Y’), where Y’ is the file Y,
written in reverse order. Then taking the
inverse Fourier transform of the product of
F(X) and F(Y’) provides a signal profile
whose characteristics are like Figure 1. The
sharpness and height of the peak of the
signal will indicate how likely it is the files

agree. The location of the peak along the x-
axis indicates when the files start agreeing.
The sooner the peak appears, the earlier the
files agree. For equivalent files, a very
steep, high peak near the x origin would be
expected. The concept is to perform pair-
wise comparisons on N copies of the file,
where N will vary based on the needs of the
consumer.

The FFT scheme has several advantages.
First, it can be used in all cases – whether
the files are bit wise identical or not.
Second, the entire file does not have to be
present. FFTs can be blocked – operating
on segments of the file – and then blocks
combined if it is necessary to test the entire
file. It is likely for a network like Gnutella
only the first parts of the file are needed.
Using part of the file has the dual advantage
of saving bandwidth and computation. That
savings in bandwidth could be avoided all
together or used to acquire more copies of
the file to improve the accuracy of the
checking and to prevent an attacker from
overwhelming the number of good files by
sending many copies of bad files. These
choices could be tuned based on the network
characteristics of the receiver. A variant of
the above scheme is to take the file content
and pass it through a hash function to
provide a value. Then, based on the hash

function and the size of the hash space, two
files whose value is identical may
beconsidered equivalent.

Thus, for a cost of bandwidth and/or
computation, it is possible to verify the
authenticity of a file's contents and to detect
and eliminate untrustworthy peers to an
arbitrary degree. While not foolproof – an
attacker can in theory launch so many
responses that it would have high probability
the consumer would select more bogus files
than correct files, this is unlikely.

Proposal for an
experiment

In the following section, we propose a
measurement experiment on Gnutella
network. Since such an experiment, and the
attack it hopes to emulate, depend intimately
on graph of the Gnutella network, we spend
the next sections explaining Gnutella
network structure. A description of the
experiment itself follows.

Gnutella topology

It has recently been observed that a
multitude of networks in both the natural
and human worlds follow a power-law
distribution, where the probability of a node
having degree k goes as P(k)~k -α. Here, α
generally ranges from 1.2-4, and is a global
parameter describing the network. Such
disparate sets as World Wide Web pages,
authors in science publications, Hollywood
movie actors, and human sexual contacts are
described by power-law networks of varying
α. Gnutella, with its ad hoc and chaotic
connection architecture, also possesses such
a structure (see below figure).

F i l e
X

F i l e
Y

F i l e
Z

F -1 [F (X) ∗ F (Y ’)] F - 1 [F (Y) ∗ F (Z ’)]

α

α

V o t e ?

S a m e ?
Y e s / N o

S a m e ?
Y e s / N o

D e c i d e i f t h e r e a r e a n y b a d f i l e
p r o v i d e r s ?

Figure 1 – A schematic diagram of using
Fourier Transforms and a selection
mechanism to decide if a files has been
altered even if the files are not bit wise
identical.

Figure 2 Two crawls of the Gnutella
network, from [Rip]. The first above was
taken November 2000, the second below
March 2001.As can be seen, the topology of
Gnutella is in rapid transition. In between
the two crawls, LimeWire and BearShare,
two leading Gnutella clients, instituted the
two-tier hierarchy of nodes, as described in
previous sections. The sudden change
around link number 10 reflects the existence
of two communities of nodes: leaf nodes
connected to one or few supernodes, and the
supernodes connected to a brood of leaf
nodes as well as any number of other
supernodes. Essentially, the Gnutella
network is splitting into two superimposed
networks, with the supernode graph
retaining power-law properties but at a
different α constant.

The reasoning behind why such
uncoordinated phenomenon as web page
authoring and human sexual behavior show

such general scaling stands some enquiry.
As Albert and Barabasi [Bara1] showed,
large-scale structure is determined by how
entering nodes attach to the growing
network. Specifically, if nodes attach to a
node i with probability proportional to
ki/Σ Iki, (where ki is the degree of the ith
node) a power-law graph results. The
phenomenon is summarized by the phrase
“the rich get richer”, reflecting how the time
rate of change of connectivity is
proportional to the instantaneous
connectivity, allowing nodes that get slightly
ahead of the game to rapidly outpace their
less well-connected colleagues.

 In Gnutella, nodes join by contacting
well-known nodes that in turn provide a new
node with the contact information for yet
other nodes. While the technical details of
node joining are slightly complex (as well as
obscure where the protocol specification is
ambiguous), it seems safe to say that well-
connected nodes, due to their existence
being known to many nodes, are probably
disproportionately represented in node-join
handoffs. This fact, combined with a base
of users that occupy a spectrum from
occasional users to hardcore Gnutella
stalwarts, leads to the variation in
connectivity indicated in previous figures. It
seems safe to say that Gnutella is now, and
will remain for the near future, a power-law
network of possibly varying α parameter.

Graph properties

 Such networks demonstrate many
interesting properties, most notably a small
network diameter, or short average path
length between nodes. This leads to the
well-known ‘small-worlds’ effect, whereby
any two nodes in even large networks are
connected by a relatively small number of
hops. As previously explained, searches on
Gnutella are propagated via undirected
floods on a network with uncertain topology
and constantly changing node population.
Despite these harsh conditions, searches in
Gnutella are remarkably successful,

precisely due to this short-range property of
the graph. Whether by accident or design,
the power-law structure has saved Gnutella
from total breakdown, even when the
network outgrew its humble beginnings to
become a global network moving terabytes
of data over tens of thousands of machines.
Any proposed changes or improvements to
the protocol should preserve the
fundamental network properties that have
made Gnutella so long-lived.

Another large-scale property of power-law
networks is that of robustness under node
failure. As modeled by [Bara2], power-law
networks exhibit different behavior under
the effects of either random or targeted node
loss, particularly compared to random
graphs. Cohen et. al. [Coh] found that the
proportion of nodes p that could fail, without
splitting a power-law graph of parameter α
into disconnected components was limited
by:

132)
3

2
1(1 −−−

−
−

−+≤
α

ααα Kmp

Here is p is the proportion of failing nodes,
m is the lowest possible degree, and K the
maximum possible degree.
Taking α=2.4 from earlier (and perhaps now
dated) measurement studies, and setting
m=1, K~30, we arrive at a critical proportion
pc of about .7. Hence, upwards of 70% of
Gnutella nodes can fail and the graph
remains topologically connected.
This tremendous robustness is necessary in
the face of occasional physical network
failures, and far more frequent node
disappearance, where users simply turn off
after downloading. Statistics show [Sar] that
50% of Gnutella nodes spend no more than
60 minutes online at any given time,
indicating a constant churn of online hosts.
Against more targeted node failure however,
a power-law network shows considerable
disadvantages. Since a minority of nodes
constitutes a majority of the connectivity,
removing those few nodes has dreadful
consequences on the network.

Figure 3 Two network plots of the Gnutella
network , from February 16, 2001, spanning
1771 nodes [Sar]. The first contains all nodes
and their accompanying connections. In the
second, the top 4% connected nodes have been
removed. The resulting network is fragmented
into multiple pieces.

A final interesting property of power-law
networks refers to their epidemic properties.
Networks are often used as models of
disease-propagation among a community of
carriers, with nodes representing potential
infected organisms and edges modes of
transmission. Quantitative epidemiology has
developed a classic SIR model (for
susceptible/infected/removed, the three
states nodes can be in) describing the extent
and speed of outbreaks given certain disease
transmissibility. Recently several
researchers have extended the model,
examining the effect of underlying topology
on outbreak strength. Pastor-Satorras and
Vespignani [Ves] have claimed to have
analytically proven that scale -free power-
law networks allow diseases to reach
epidemic proportions even with low
transmission rates between nodes. Newman

[New], using both analysis and simulations,
shows that power-law graphs of certain α
exhibit epidemic behavior no matter how
low the transmissibility between nodes. The
arguments of both authors are lengthy and
complex, but an intuitive insight can be had
by analogy to searches on the graph. Power-
law searches work so well as queries very
quickly reach a well-connected node, which
in turn propagates the query far and wide.
Likewise, even one infection on a power-
law graph likely reaches a well-connected
node, which spreads it to everyone else.

Experimental design

It was our intention to design a measurement
experiment that simulated a denial-of-
service (DOS) attack against the Gnutella
network. As seen above, the topology of the
Gnutella network imbues the graph with
several interesting properties, some of which
might be weapons in the hands of attackers.

For example, the susceptibility of power-law
graphs to targeted node attack would open
the door for a determined adversary to
shutdown the backbone of high-degree users
that make Gnutella work. Such an adversary
could employ network-level attacks against
such hosts and cut off their network access,
or simply emulate such nodes himself,
pulling out at the last second after achieving
a massive connectivity.

It would be difficult to perform such attacks
in an academic context, as they may be
called morally (if not legally) into question.
A better strategy may well be to use the
epidemic qualities of power-law graphs to
distribute unwanted content, and that way
undermine Gnutella’s fantastic file -sharing
potential. Such unwanted content could take
the form of random or garbage files, or more
pointed content like a virus. Virus spreading
on Gnutella has already been documented
[Vir], although the virus in question only
caused damage when run from the local

machine and had no way of taking over the
Gnutella client itself. However, such a
shortcoming will only last until the first
security hole in a well-distributed Gnutella
client is discovered.

Assuming for the moment clients are safe,
one can still imagine virus-like files that
would be of interest to the Gnutella hacker.
For example, major copyright holders like
the Motion Picture Association of America
(MPAA) or the Recording Industry
Association of America (RIAA) could
collude with major makers of mp3 players,
like Microsoft’ s Media Player or
RealMedia’s RealPlayer, such that players
would only play specially marked mp3’s a
limited number of times (such proposals
have already been made in the context of
digital-rights management). Copyright
holders (and their hired IT guns) would then
exploit Gnutella to spread such specially
tagged files, making sure any downloaded
file was of only very limited utility.

While this seems counterproductive to the
cause of the MPAA/RIAA, in that the
aggrieved party is itself distributing content,
a more circumspect analysis reveals its
power. Viruses are successful if they infect
many hosts. Infectious agents that are too
virulent inevitably cause outbursts that burn
themselves out (e.g. the Ebola virus, that
incapacitates victims within days and kills
them within a week). Viruses like HIV, for
example, are much more effective, as they
are just as inexorably terminal (essentially
all people infected with HIV develop AIDS
and die), but they allow their hosts a good 5-
10 years (or more, with the use of modern
anti-retrovirals) to spread the virus to others.
Likewise, the current strategy of the
(modest) efforts of anti-piracy agents to
spread garbage files when queried for
copyrighted content seems ineffective by
comparison. Any given Gnutella search
returns dozens of hits, and if a download
fails due to a false file, the user just picks
another uploader. Such tactics will only
dissuade the most casual and finicky P2P
user.

Much more effective would be to drown the
entire namespace of interest (e.g. all queries
containing ‘The Beatles’) with marked and
incapacitated files. The user who downloads
such a file will not know of its infected state
at first, as the file plays normally, until it
reaches the play limit imposed by its
creators and enforced by the media player.
In the meanwhile, other users have
downloaded the file themselves, who in turn
propagate it, and quickly every file on the
system is incapacitated in this way. It seems
much more irritating if what is at first a
normal and impressive mp3 collection
suddenly refuses to play overnight, requiring
the slow process of rebuilding it, then
simply having to try one or two downloads
at first to find a copy of a certain file.
The topology of Gnutella will certainly aid
in such an attack, as discussed above. A
potential attacker need only spread the file
to a relatively small collection of high-
connectivity nodes, who will in turn
disseminate it to the rest of the network. If
wisely done, such an attacker would not
even need vast resources to complete his
task.

 The Experiment

Fortunately, the technology of music
compression allows us to model such an
attack without need to disrupt network
service. The mp3 standard allows an
arbitrary amount of data to be appended
before the first compressed block of a music
file. Such data is typically parsed by mp3
players to provide file metadata like artist
name, recording, etc. to the user looking at
the player’s GUI. Such a data field can be
modified at will, and clients uploading and
downloading the file (generally) maintain
the integrity of prepended tag. To our
knowledge, however, no client uses the tag
information to perform matches on
incoming queries, and the Gnutella protocol
provides no direct way of advertising the
contents of the tag to outside queriers.

Hence, the file’s ebb and flow in the
network should be quite independent of
whatever is written in its tag, but the tag
should survive along with the file’s contents
as the file circulates.

Our experiment thus involves two stages: in
the first, we inject files into the network
with music files marked with a unique
random nonce as their mp3 tag. In the
second, we probe the network, and see to
what extent our marked file permeated. Our
second probing step will be repeated at
regular intervals after, and perhaps even
during, the injection phase.

Our hope is to use this ‘release-and-catch’
methodology to quantify the speed and
extent of content distribution on Gnutella,
something until now unexplored. In
addition, this serves as an excellent model of
the DOS attack detailed above. Whether
Gnutella’s future attackers intend to simply
distribute false content, or employ the more
subtle strategy described here, such an
experiment will reveal the magnitude of
success one could achieve with a slow-
burning virus that gives its hosts plenty of
time to spread.

Operationally, this experiment will involve
custom coding a Gnutella client to act as
tagger and distributor. Such a client will
have to achieve high connectivity with the
supernode level of Gnutella hosts, getting a
rapid picture of the network’s most well
connected nodes. Prior to client
initialization, we will choose a piece of the
file namespace as our virus vector. Intuition
indicates that the best piece of namespace
would be for files in high demand, with
large numbers of hosts repeatedly making
searches. This way, we will be able to
quickly hijack the namespace, pre-empting
non-marked files’ entry to the network with
our own marked version. As a guide, one
can use the ‘Top Sellers’ list on
Amazon.com to determine a well-frequented
part of the namespace on a daily basis.

Hence, once situated on the network, and
with a target namespace in mind, our client
selectively responds to queries emanating
from selected ‘elite’ high-connectivity
supernodes. The cut-off for inclusion in the
elite category can be made dynamically, or
simply as a result of an ongoing crawl (e.g.
within the current top 5% of connected
supernodes). The goal is to limit our upload
of files only to a subset of the supernodes,
and hence that way parameterizes our later
results on file dissemination. That is, on
each inject-and-probe cycle we chose to
distribute to a greater or lesser fraction of
supernodes, and measure the effect of
greater or lesser file injection on the file’s
circulation.

In the probe phase, one can adopt two
philosophies. One is that of an omnipotent
and omniscient network god, trying to
discover the presence of every relevant file
and whether it has been tagged or not.
Essentially, probing everyone at the
supernode level, downloading upon
receiving a hit, and tallying the percentage
permeation of tagged files versus non-
tagged.

While such a tack might be ideal, given the
tremendous bandwidth use that Gnutella
produces, it may well be unfeasible, even for
fast, high-bandwidth academic machines
(see below problems section).

A smarter measurement may be to simply
emulate a normal Gnutella user and gauge
what effect the tagging ‘hack’ has on what
such a user sees. Thus, following injection,
we would re-connect as lowly leaf nodes
and search repeatedly for files in the
namespace. Downloads on those search hits
would reveal their tag, and would allow us
to quantify success as degree of permeation
on normal user downloads, rather than on
the network as a whole.

Progress and Problems

For the past month, development has been
underway for just such a custom client. Our
initial code base is the Jtella API, a set of
Java libraries for network applications on
Gnutella. Jtella numbers some 5000 lines,
but we have been obliged to change or add
another 2000 lines for even basic
functionality. Jtella was written almost two
years ago, before the introduction of v0.6,
and contains the basic, low-level code for
Gnutella connectivity in the form of
ping/pong messages, persistent TCP
connections, etc. The full-blown
experimental client will have to contain
support for v0.6 features (already done), as
well as the high-level algorithm for
maintaining placement in the Gnutella
graph. This latter feature may prove to be
the most difficult. Initial attempts at
connectivity reveal the Gnutella network to
be a highly dynamic and changing
environment. Accurate global knowledge of
the instantaneous topology may prove
elusive, if not impossible, and our file
injection may occur in an opaque fog of
network information.

In addition, certain properties of
commercially written clients tend to produce
fragmentation in an otherwise uniform
Gnutella network. For example, it is known
that BearShare allows its supernodes to
accept only other BearShare leaf nodes
(recall that the client vendor is passed along
with everything else in the v0.6 handshake),
producing a so-called ‘BearShare cloud’ in
the network. Our initial connectivity
experiments indeed showed BearShare
nodes only responding to handshakes with
‘BearShare’ in the vendor field. Depending
on whether this behavior continues
(BearShare claims it will change it) our
client may well have to spoof a series of
vendor names to achieve connectivity over
the entire graph.

Administrative Issues

In order to run the experiment as designed, it
was necessary to investigate the regulations
relating to the use of copyrighted material
and other issues regarding Gnutella. The
University of California has at least two
governing documents that apply to this.
Copyright policy is related to the 1998
Digital Millennium Copyright Act. The
university document is “Guidelines for
Compliance with the Online Service
Provider Provisions of the Digital
Millennium Copyright Act” [DMCA]. This
policy defines what is possible to do with
copyrighted material in the university
context, include what UC considered fare
use. The second policy is the UC Berkeley
IT policy, which controls what activities are
appropriate when using campus computers
and networks. The IT policy refers to the
DCMA guidelines for how copyrighted
material should be handled.

The project team approached UC Office of
the President’s General Counsel and
described the experiment and its issues. We
also explained why we thought it was
appropriate and useful to carry out the
experiment. Further issues were discussed
regarding the privacy of network users and
the fact there would be no obvious impact
on the other users of the network.

After approximately 6 weeks of discussions,
the University gave approval for the
experiment. We do plan to pursue the
experiment at a later date.

Findings
Ad hoc peer-to-peer networks, represented
in this study by Gnutella, have significant
security issues. Previous work focused on
v0.4 of the network document many ways
the network can be compromised. The
changed of v0.6, which are intended to
allow growth to a very large scale introduce
more vulnerabilities, because v0.6 turned the
network into a “power law” system where

very few nodes have most of the control and
indeed most of the content. While leaving
the network unstructured, v0.6 has the affect
of making the query structure more
hierarchical. Thus attacks focused on the
relatively few supernodes make the Gnutella
network much more susceptible to
compromise.

Gnutella is basically not securable in its
current implementation. Several solutions
were investigated to improve security on the
network, such as point-to-point encryption,
authentication and Distributed Hash Tables.
Some of these are shown to be untenable in
the current Gnutella implementations. It
needs additional structure and capability in
order to withstand even a modest level of
attack. This is important since it is clear the
music industry is planning concerted efforts
to disrupt Gnutella services.

This paper introduces the idea that security
can be view not just from a host or network
perspective but also from a “service”
perspective. In the Gnutella case, this means
looking at attacks on the namespace and file
content rather on host per se.

We have introduced several solutions that
may be used to increase security and
privacy. The use of Fourier Transforms to
check content in file that are not bit-wise
identical enables would enable the query
originator to determine if the content in a
file is what is expected. Coupled with a
selection mechanism, it becomes feasible to
resist flooding and query interception
attacks.

Finally, an experiment was designed and
coded to investigate the actual performance
of a network and to explore the feasibility of
some of the exploits discussed. This
experiment could not be performed until
legal and administrative issues were
resolved within the university pertaining to
the investigation of P2P networks that
exchanged copyrighted material. We
received approval for the experiment, but
only two days before the submission

deadline. However, the effort to gain the
approval will not be wasted since it will
allow the experiment to go forward and be
discussed at a later time, and possibly allow
other groups to investigate P2P networks
with their own experiments.

Summary

Despite the apparent need to make Gnutella
more secure for users, the feeling among its
open-source developers seems to be one of
indifference. What 'state-sponsored' hacking
there has been on Gnutella is relatively
small, with the network retaining most of its
functionality. Also, the pursuit of Gnutella
users by the MPAA or RIAA has been
limited to relatively high-profile cases of
people either sharing enormous numbers of
files or sharing clearly pirated copies of
copyrighted (and perhaps then unreleased)
content. The average Gnutella user sharing
and downloading a handful of files has for
the moment little to fear from the large
lobby groups and their blackmailed ISPs. If
the day arrives that file -sharing becomes
impossible due to a deluge of false content,
or hijacked queries, or when users receive
immediate cease-and-desist emails the
moment their Gnutella clients blink on, then
perhaps Gnutella developers, some of whom
have commercial interests in the survival of
the network, will start to pay security serious
attention. For the moment, most developers
seem content with improving Gnutella to the
point of competing with currently more
successful networks like Kazaa, which
enjoys an order of magnitude greater usage
statistics than Gnutella.

Finally, it needs to be noted that many of the
issues discussed in this document are
specific to Gnutella, Kazaa and other very
loosely formed networks. Other P2P
networks, including the Grid are designed
with much more emphasis on security and
will in all probability have few, and
certainly different, issues.

References
[Bara1] Emergence of Scaling in
Random Networks, Albert Barabasi and
Reka Albert, Nature, 286, 509.

[Bara2] Error and attack tolerance of
complex networks, R. Albert, H. Jeong,
and A.L. Barabasi. Nature, 406, 378.

[BW] Ante, Spencer, “Computing Power
sold like electricity”, Businessweek,
November 11, 2002.

[CHORD]
http://www.pdos.lcs.mit.edu/chord/
[Coh] R> Cohen, K. Erez, D. ben-
Avraham, S. Havlin, Resilience of the
Internet to Random Breakdowns.
Phys.Rev.Lett. 85, 4626.

[Das] N. Daswani, H. Garcia-Molina
“Query-Flood DoS Attacks in Gnutella”,
9th ACM Conference on Computer and
Communications Security, Nov 18-22
2002, Washington DC, USA.

 [DCMA] Guidelines for Compliance
with the Online Service Provider
Provisions of the Digital Millennium
Copyright Act, November 17, 2000 –
UCOP General Counsel’s Office

[GDF]
http://groups.yahoo.com/group/the_gdf/
[GNU] several websites have
introductory information, e.g.
www.bearshare.com,
www.limewire.com.

[Grid] http://www.gridforum.org, or,
The Grid: Blueprint for a New
Computing Infrastructure by Ian Foster
(Editor), Carl Kesselman (Editor)

[Gro] C. Grothoff “GNUnet – An Excess

Based Economy” available at:
http://www.gnu.org/software/GNUnet/

[Lam] The Byzantine General Problem,
Leslie Lamport, Robert Shostak and
Marshall Pease, ACM Tansactions on
Programming Languages and Systems,
Vol. 4, No. 3, July 1982, Pages 382-401.

[NERSC]
http://www.nersc.gov/aboutnersc/pubs/S
trategic_Proposal_final.pdf

[New] The spread of epidemic disease
on networks, M.E.J. Newman. Sante Fe
Institute working paper.
http://www.santafe.edu/sfi/publications/
Working-Papers/02-04-020.pdf

 [P2PWG] http://www.peer-to-
peerwg.org/whatis/index.html
[OGSA] http://www.gridforum.org/ogsi-
wg/drafts/ogsa_draft2.9_2002-06-22.pdf
 [Sari] A Measurement Study of Peer-to-
Peer File Sharing Systems, Stefan
Saroiu, P. Krishna Gummadi and Steven
D. Gribble. Appeared in MMCN 2002.

[Rip] Mapping the Gnutella Network:
Macroscopic Properties of Large Peer-
to-peer Systems. Matei Ripeanu, Ian
Foster, and Adriana Iamnitchi. IEEE
Internet Computing, vol. 6, no. 1, Jan-
Feb 2002.

[Sar] A Measurement Study of Peer-to-Peer
File Sharing Systems, Stefan Saroiu, P.
Krishna Gummadi, Steven D. Gribble. In
Proceedings of the Multimedia Computing
and Networking (MMCN), San Jose,
January, 2002.

[v4] Documentation on v0.4 and the
major parts of v0.6 can be found at
http://www.limewire.com/index.jsp/deve

loper. Further documentation of new and
proposed features is at [GDF].

[Vir]http://www.commandsoftware.com/
virus/gnutella.html

[Yaz] D. Zeinalipour-Yazti “Exploiting
the Security Weaknesses of the Gnutella
Protocol” Course project for “Seminar in
Computer Security” at the University of
California –Riverside, Computer
Science, March, 2002.

