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Abstract 
Peer-to-peer (P2P) networks have emerged 
over the past several years as new and 
effective ways for distributed resources to 
communicate and cooperate. "Peer-to-peer 
computing is the sharing of computer 
resources and services by direct exchange 
between systems.  These resources and 
services include the exchange of 
information, processing cycles, cache 
storage, and disk storage for files." P2P 
networking has the potential to greatly 
expand the usefulness of the network - be it 
for sharing music and video, privately 
contracting for services or for coordinating 
the use of expensive scientific instruments 
and computers. Some of the networks, such 
as Napster and Gnutella are created in an ad 
hoc manner with little or no centralized 
control. Other P2P networks such as 
computational and data grids are being 
designed and implemented in a very 
structured manner. P2P networks are 
presenting new challenges to computer 
security and privacy in a number of ways. 

This project will explore the security issues 
raised by P2P networks by studying an 
example on an extreme point on the design 
spectrum: Gnutella [Gnu]. Our primary 
focus will be the Gnutella network, which is 
the de facto standard for large, loosely 
structured, P2P networks. The Grid is a very 
large-scale , heterogeneous, formally 
structured P2P network that spans many 
organizations to make “virtual systems” of 
resources. [OGSA] It is quickly becoming 
the standard for distributed resource 
allocation for high-end computer and 
instrumentation systems.  This paper 
demonstrates that for P2P networks with ad 
hoc structure, significant security concerns 
persist. 
  

What are Peer-to-peer 
Networks 
 “Peer-to-peer computing is the sharing of 
computer resources and services by direct 
exchange between systems.  These resources 
and services include the exchange of 
information, processing cycles, cache 
storage, and disk storage for files.”[P2PWG]  
A broad definition of P2P includes the client 
server mode of computing, as well as 
exchange directly amongst clients or 
amongst servers.    However, P2P now also 
is used to describe some new uses of 
computers and networking.  In particular, it 
is becoming more common for systems to 
play both the server and client roles 
simultaneously.  P2P networking now is 
being used to present new services and 
functions.  P2P is more than just the 
universal file -sharing model popularized by 
Napster. According to the Peer-to-peer 
working group, business applications for 
P2P computing fall into a handful of 
scenarios. 
  

• Collaboration: Geographic 
distributed individuals and teams 
create and manage real-time and 
off-line collaboration areas in a 
variety of ways.  The goals are 



typically increased productivity and 
decreased costs.  

• Edge services. Edge services move 
data closer to the point at which it is 
actually consumed acting as a 
network caching mechanism. This 
helps deliver services and 
capabilities more efficiently across 
diverse geographic boundaries.  A 
current example is Akamai for an 
enterprise  

• Distributed computing and 
resources. Using networks and 
computers, P2P technology can use 
idle CPU power and disk space, 
allowing businesses to distribute 
large computational tasks and data 
across multiple computers. Results 
can be shared directly between 
participating peers. Prioritized use 
of the resources, even if they are not 
idle, is possible.  Examples here 
range from the seti@home to the 
Distributed Teragrid.  

• Intelligent agents. Provides ways for 
computing networks to dynamically 
work together using intelligent 
agents. Agents reside on peer 
computers and communicate various 
kinds of information back and forth. 
Agents may also initiate tasks on 
behalf of other peer systems.   

Formally and Loosely 
Structured Peer-to-peer 
Networks 

The most commonly known P2P networks 
are those associated with music sharing.  
First made popular by Napster, a centrally 
managed P2P network, and now represented 
by Gnutella and Kazaa, these P2P networks 
are designed to be loose structures and 
highly dynamic.  Gnutella, Kazaa and others 
are designed intentionally to have no central 
control or authority so they are entirely self-
organizing.  The loose federation of 
continuing dynamic organization of these 
networks presents very challenging security 
issues, especially as the network expands. 

The focus on decentralization represents a 
current trend in P2P systems and many see it 
as the stepping-stone to the extended 
functionality these systems may provide in 
the future. This is one of the main reasons 
this work focuses on the Gnutella network, 
Gnutella’s distributed non-homogeneous 
architecture make it a suitable test bed to 
observe how new ideas may affect future 
P2P networks. However, to put Gnutella’s 
architecture into perspective we must be 
aware of what other approaches have been 
taken. 
  

The Grid 

 
There are many networks emerging for e-
commerce and scientific efforts that have a 
more formal structure.  One excellent 
example of this type of P2P network is what 
is commonly called “the Grid”. Grid 
technology is a collection of tools and 
services that facilitate the building and 
managing of “virtual” systems that integrate 
distributed, heterogeneous, multi-
organizational resources on demand. [Grid] 
These resources might include the different 
computing and data systems operated by a 
supercomputer center like NERSC, as well 
as a diverse collection of user-controlled 
computing and data systems and scientific 
instruments. The "Grid" is a research effort 
(~10 years in all) whose principle initiators 
are Ian Foster (ANL) and Carl Kesselman 
(Cal Tech).  The initial implementations 
centered on Globus and did demonstrations 
(1995-96) of single applications running on 
geographically distributed, large parallel 
machines– essentially co-scheduling CPUs 
by human agreement and management.  The 
concepts and software have evolved 
dramatically since and has expanded to 
supported large scale data movement, 
collaborative work tools, and much more.  
There are several "Grids" moving for 
experimental to "production" status as other 
projects now use grid tools as reliable 
infrastructure for their science and 



engineering.  Examples of production or 
near production grids are the NSF Teragrid, 
NASA Information Power Grid, DOE 
Science Grid, Grids for Physics and the 
EuroGrid.  There is an organization that is 
like the IETF for setting grid standards 
called the Global Grid Forum.  GGF has 
brought corporate and research communities 
together to work on Grid implementations.  
This effort was given a major critical mass 
when IBM, ANL and CalTech jointly 
proposed the Open Grid Service 
Architecture (OGSA) about 8 months ago.  
The joint effort (with about 50 developers) 
is aimed at integrating the best features of 
Globus (and associated tools) with IBM's 
Websphere technology and is turning the 
grid effort from one of creating virtual 
organizations with resources to one of 
creating a distributed service system that is 
for “modern enterprise and 
interorganizational computing 
environments” [OGSA].  The end goal for 
industry is to create  move to providing “on-
demand computing” services rather than 
computing hardware.  Sam Palmisano – 
CEO of IBM – is quoted as saying grid 
computing is the “is the most important 
imitative IBM has undertaken since the 
Internet”[BW]. 
  
Current Grids are mostly based on services 
from the Globus and Condor software 
packages, and emerging data Grid and Web 
based portals.  Globus services provide a 
standard way to define and submit jobs, 
manage the code and data associated with 
those jobs, and locate and monitor the 
available resources across geographically 
and organizationally dispersed sites.  They 
also provide a consistent set of security 
services based on X.509, PKI, or Kerberos 
authentication, proxy certificates to carry the 
user authentication to remote resources, and 
a set of secure communication primitives 
based on the IETF GSS-API:  secure telnet, 
remote shell, and secure ftp are provided by 
using these services.  Condor-G provides job 
management on top of the Globus services, 
ensuring that one or more associated jobs 

that might run on remote resources execute 
once and only once.  Both Globus and 
Condor services provide for communicating 
with remote jobs, etc.  
  
A sophisticated set of Grid data services is 
being developed by the NSF GriPhyN and 
EU DataGrid projects for managing massive 
data sets in support of the global high energy 
physics community.  Over the next few 
years these will provide for cataloging, 
querying, accessing, and managing 
replication, location, and movement of very 
large data sets from a worldwide collection 
of data sources. Grid portal work at half a 
dozen institutions is defining and building 
the Web services and primitives that will 
provide all Grid services though the user’s 
Web browser.  Advanced services that will 
provide for brokering, co-scheduling, 
advance reservation of CPU capacity, 
network bandwidth, and tertiary stored data 
availability are currently being developed.  
Collaboration services are also being 
developed that provide for secure distributed 
collaboration group management, 
messaging, versioning and authoring, and 
the definition and management of “virtual 
organizations.”  These services are being 
integrated with the basic Grid services, 
frequently through Web Grid services. 
  

Gnutella  

Overview of the protocol and 
architecture 

The Gnutella protocol is a peer-to-peer 
(P2P) overlay network designed for resource 
sharing across the global Internet. The 
network is built completely at the 
application layer, and nodes interact via 
client programs running on their local 
machines, irrespective of the underlying 
physical network. As originally conceived, 
connectivity, routing, and resource searching 
are handled in a wholly distributed way, 
with every node nominally equal to every 



other (recent upgrades changed this 
slightly). Any differences in a node’s ability 
stem solely from their own computational, 
memory, or network bandwidth relative to 
other nodes. 
 
The Gnutella protocol was originally a very 
simple protocol, completely specified in a 
sparse 6-page document [GNU]. The 
protocol eventually grew in complexity as 
the popularity and function exceeded its 
very simple initial design. Currently, 
Gnutella developers refer to the original 
protocol (with minor modifications) as 
version 0.4, and the next generation 
protocol, which has absorbed a slew of new 
features and even wholesale protocol 
additions, as version 0.6 
 
The sections that follow briefly describe 
Gnutella in its original incarnation, followed 
by a description of the relevant parts of the 
later version. They are necessarily brief but 
more detail can be found at [Gnu] and 
[GDF]. 
 

Gnutella v0.4 Protocol 

The Gnutella protocol consists of five types 
of messages: ping, pong, query, query hit 
(the reply to a query message), and push. A 
ping message is used to discover new nodes 
on the network. A pong message is sent as a 
reply to a ping and provides information 
about a network node, including IP address, 
port number, and number of files shared. A 
query message is used to search for files 
shared by other nodes on the network. It 
contains a query string and a minimum 
requested link speed. A query-hit message 
contains a list of one or more files which 
match a given query, the size of each file, 
and the link speed of the responding node 
Push is used to upload a file to clients 
behind a firewall who cannot download files 
themselves. 
 
A node initiates a connection to another via 
a two-way handshake: 

 
A →B: GNUTELLA CONNECT/ 0.4 
B→ A: GNUTELLA OK 
 
A and B then exchange Gnutella protocol 
messages. Each protocol message contains a 
23-byte descriptor of the form {id, type, 
TTL, hops, payload length}. The first field is 
a 16-byte descriptor number (roughly) 
unique on the network.  TTL is the time-to-
live of the packet on the overlay network, 
and hops is the number of hops thus far the 
message has traveled.  Each time the 
message transits a node on the network the 
hop count is changed. The payload length 
describes the actual data in the Gnutella 
packet, if any. This number is crucial, as 
more than one Gnutella packet can fit in one 
IP datagram, and there are no breaks in the 
Gnutella datastream. Lastly, the type 
describes which of five message types is in 
the packet, either Ping, Pong, Query, 
QueryHit, and Push. 
 
Ping messages carry no payload, and are 
used to explore the network for more 
neighbors. Upon receiving a ping, a node 
will decrement (increment) the TTL (hops) 
field appropriately and pass along the ping 
to all neighbors except the originating node. 
That node will also return a pong message 
containing as payload a 13-byte descriptor 
{port, IP address, number of files shared, 
kBs shared}. Note, pongs are sent back 
along the network overlay back to the 
originating node, not directly. Hence, a 
pinging node ostensibly learns of the 
existence of all nodes within a radius of one 
TTL. 
 
When a node decides to find a file or 
resource, it sends a Gnutella header along 
with a descriptor {minimum speed, search 
criteria}. The first field is a two-byte 
number that lists the minimal connection (in  
kb/s) of nodes that should respond, followed 
by the specified search criteria. Nodes who 
match the criteria respond with a query-hit 
message of the form {number of hits, port, 
IP address, speed, result [1…n], host ID}. 
Each result is a tuple {File Index, File Size, 



File Name}, with File Index a unique ID 
issued by the responding node, and File 
Name some human-readable tag to display 
on a hit list. The descriptor ID number on 
the 23-byte Gnutella header must match that 
of the query packet's header ID number.  
This allows matching by both the query 
launcher and all intervening nodes. Hits are 
sent back via the overlay network to the 
originating node. 
 
Finally, to access a resource (e.g. a file), the 
querying node establishes a TCP connection 
with the responding serving node, and sends 
an HTTP GET request of the form: 
 
GET/get/<File Index>/<File 
Name>/HTTP/1.0 \r\n 
Connection: Keep-Alive \r\n 
Range: bytes=0-x \r\n 
User-Agent: Gnutella \r\n 
 
The range field allows for continuing a 
disrupted download, or parallel downloads 
from several nodes. Note, the download is 
outside of the overlay network, and direct 
between the serving and the downloading 
nodes. 
 
Finally, in addition to the above four basic 
message, the protocol supports a PUSH 
message to allow downloads from firewalled 
hosts. The query originator, in addition to 
the Gnutella header, sends {node ID, File 
Index, IP address, port} to the firewalled 
node via the network. The node ID is a 
random unique 16-byte string, and the 
address and port refer to that of the query 
origination node. The serving node then 
starts a TCP connection back to the querying 
node, along with a string indicating the file 
in question. With just a standard the TCP 
connection established (which is allowed by 
almost every firewall), the querying node 
then sends the HTTP request and everything 
proceeds as before. 

Gnutella v0.6 Protocol 

With Gnutella's meteoric rise in popularity 
following the disbanding of Napster, the 

original protocol soon displayed its 
inadequacies. Early measurement studies 
showed that as much as 50% of Gnutella 
traffic consisted of superfluous pongs 
flooding the network. Since nodes were 
regularly looking for neighbors, as well as 
sending 'keep-alive' pings that signaled their 
continuing existence to current neighbors, 
cascades of redundant pongs were choking 
connections, and impeding searches. In 
addition, in the early days of custom-written 
clients, some Gnutella nodes were engaging 
in anti-social behavior like hammering 
neighbors with pings or queries, injecting 
packets with large TTL values, or 
continuing to forward packets they had 
already seen. In response, the major 
developers of clients, plus open source 
participants, added a series of heuristic 
modifications to the original protocol, as 
well as some fairly fundamental changes 
that are collectively called 'v0.6' (for 
somewhat obscure reasons). The most 
significant change concerned network 
topology is described below. 
 
In an attempt to make Gnutella scalable for 
mass usage, developers imagined 
establishing a minimal hierarchy in the 
Gnutella network. So-called 'supernodes' or 
'ultrapeers' would be able to leverage the 
superior bandwidth of their hardware and 
handle a larger share of search routing and 
connectivity, while keeping low-bandwidth 
nodes from choking traffic  via their slow 
connections. Functionally, each supernode 
keeps connections open to a set of leaf 
nodes, and to a number of other supernodes. 
Leaf nodes themselves keep connections 
only to their supernode, which handled its 
traffic to the rest of the network. Hence, the 
set of high-bandwidth supernodes form a 
data bus used by the larger network. 
 
By using a header in the handshake 
messages passed on connection initiation, 
nodes then negotiate connectivity based on 
their status: leaf nodes subsume their 
existence to a supernode, and supernodes 
collect leaves and inform other supernodes 
of their existence. In more sophisticated 



implementations of the idea, leaf nodes pass 
a file index to their supernode, who then 
answer all incoming search queries on its 
leaves' behalf. This reduces supernode-leaf 
traffic, and shields the leaf nodes from all 
traffic other than direct download requests, 
and whatever traffic they themselves 
generate. 
 

Threat Categories 
 
A paradigm shift is needed when 
considering the security of peer-2-peer 
networks and the associated threat models. 
In the standard client-server architecture, 
services are provided by a particular host (or 
a small group of hosts). Thus, by attacking a 
specific machine an attacker can subvert, 
modify or make a service become 
unavailable. For example, if Ebay's website 
is successfully attacked, no one will be able 
to have that service (i.e. take part in 
auctions) they will have to use some other 
website. In these cases, services are linked 
to hosts, attacking a service means attacking 
a host. With decentralized P2P networks 
that is no longer true. One can still attack 
specific hosts in the network, but because 
the services provided are not (usually) 
provided a small number of hosts, it is not 
clear what that would achieve. For example, 
by attacking a single supernode in the 
Gnutella network one would not be able to 
make any single file become unavailable. 
On the other hand, attacks mounted against 
the whole network, may try to disrupt a 
single service while leaving others 
unaffected. Decentralized P2P networks 
decouple services from hosts. A similar 
decoupling is needed when analyzing the 
security of such systems and different threat 
models emerge. Threat models are the focus 
here.  

Flooding 

In [Yaz], many flooding attacks that rely on 
the interactions of the Gnutella protocol with 
the TCP/IP protocol stack are considered 

and discussed at length. The author also 
implements an attack on his own webserver 
through the generation of fake query-hit 
messages. The work presented in [Das] also 
considers the security aspects of the 
Gnutella network, this time problems with 
the Gnutella protocol itself independently of 
any underlying protocols are considered. 
However, the main focus is the development 
of a traffic model to deal specifically with 
query-flood DoS attacks. 
 
The simplicity of version 0.4 of the Gnutella 
protocol leads to some inefficiencies. 
Perhaps, the most notable of which is the 
need to broadcast query messages when 
trying to locate resources. This causes an 
exponential growth in the number of 
messages in the network. Version 0.6 of the 
Gnutella protocol addresses many of these 
issues, but it also introduces another level of 
complexity when compared to the very basic 
4 messages seen in version 0.4. One of the 
most significant changes is the introduction 
of a two-tier system where high-bandwidth 
nodes (supernodes) help decrease traffic by 
caching query routing information. 
However, query communication between 
supernodes in version 0.6 is essentially the 
same as in version 0.4, i.e. queries are made 
by broadcast on the neighboring network 
graph. 
 
Both the connectivity (ping/pong) and the 
querying (query/query-hit) functionalities of 
the Gnutella protocol lay the burden of 
multiplexing/demutiplexing messages on 
intervening nodes and hence assume implicit 
faith in third parties. Nodes are assumed to 
be well behaved. The design focus is 
primarily functionality and efficiency, as 
supposed to security. There has been no 
attempt to establish in reality how 
trustworthy these intermediate third parties 
really are. There are no protocol 
mechanisms to establish or estimate this and 
we have been unable to identify any open 



proposals to use the underlying protocol 
infrastructure to obtain such information1. 
 
Attacks consisting of flooding a single type 
of the 4 basic messages in Gnutella  have 
been considered in the literature. Flooding 
with reply messages (i.e. pong and query-
hit) is thought to be unfruitful as replies are 
dropped unless a previous matching ping or 
query was sent over the same network 
connection previously. Any malicious nodes 
immediate neighbors would, just by 
following of the protocol, curtail the 
efficiency of any such attack. The situation 
was very different with ping messages 
because these were propagated through the 
network. Precisely due to the large amount 
of traffic ping messages can generate the 
new ping caching techniques introduced in 
version 0.6 largely make ping flooding a 
thing of the past, by seriously limiting if not 
completely preventing ping messages from 
propagating beyond immediate neighbors. 
Query flooding still presents a major threat 
and is addressed in depth in [Das] and can 
only be minimized – not prevented – by load 
balancing. Attacks consisting of a mix of 
messages have not to our knowledge been 
considered in depth in the open literature. 
Whether or not such attacks can be more 
effective than the simple ones already 
considered is still unclear. 
 
We suggest that the reason query-flooding 
attacks still present a major concern is a 
fundamental one. The main functionality 
provided by the Gnutella protocol is 
distributed file searching. In a distributed 
file search the work is spread so that many 
hosts look for the same files. Thus, the query 
message requests a service from the network 
and requires a certain amount of work to be 
performed. When correctly followed the 
Gnutella protocol ensures that the load is 
collaboratively spread amongst the nodes. 

                                                 
1 Perhaps a framework on the lines of [GN2] 
would be useful here. Extra book keeping is 
arguably the major ingredient that is required to 
produce an estimate of a node’s reliability, the 
network overhead maybe minimal. 

However, there is absolutely no guarantee 
that the protocol has to be followed and thus 
is open to abuse. For example, a malicious 
vendor could sell a Gnutella client that 
relays “difficult but unyielding” queries only 
to its competitors, keeping its own clients 
from that load. In query flooding the abuse 
is simply to cause too much work, another 
possibility would be supply erroneous 
replies to all queries. However, if the 
network is to provide any functionality the 
query mechanism must be able to request 
service. This is an indication that some 
feedback control should be present on any 
mechanism that can cause work to be 
performed. But is not present in the Gnutella 
protocol. Some proposals to achieve this 
have been presented (such as hash-cash) and 
will be discussed later. 

Content Authentication 

Whenever a file is downloaded, there needs 
to be confidence that the contents of the file 
are what is expected and advertised.  In the 
best case, not only is the file what is 
expected, but also it is only what is 
expected.  In other words, there is no 
additional information or capabilities in the 
file that the user does not know about and 
probably does not want.  Current practice in 
cooperative P2P networks such as Gnutella 
relies heavily on good faith trust is trust 
between the consumer and the provider that 
the file label corresponds to the unaltered 
file content.  In other words, if you request a 
particular song title, what is transferred is 
that exact song and only the song.  
Unfortunately, there is nothing but good will 
assuring that “what you see is what you 
get”.   
  
Currently the only way to tell if the file 
delivered is the file expected is to listen to it 
and see if it sounds correct.  There is little 
overhead for a user listening to a file, and 
discard it if it is not what is expected.  
However, this is not guarantee that the file is 
intact or unaltered.  Besides substituting the 
expected content with other content, but 



even more sinister things can occur. Content 
may be added in ways that are not detectable 
through listening.  An alteration might be 
harmless, but it may also be able to 
introduce virus code, messages, and other 
subterfuge.   

Hijacking queries   

Because of its trust in intermediate third 
parties, Gnutella is highly susceptible to 
malicious behavior, as has been 
demonstrated by the numerous attacks 
described in [Yaz]. However, if one 
considers the new paradigm of attacks where 
services are targeted as opposed to hosts 
there has been little work done. In the 
Gnutella protocol, intermediate parties are 
able to see a significant share of the queries 
from all servers within their local subgraph.  
 
What damage could be inflicted upon the 
network if a node misbehaves and uses 
query information?  Every supernode has the 
ability to see a large proportion of the 
queries.  Gnutella has a 7 hop query protocol 
so the query will proceed through as many 
as 6 supernode hops.  If every supernode 
knows of 4 others, then it is conceivable that 
almost 1,300 supernodes will see the query.  
So, essentially, the Gnutella is the logical 
equivalent of a broadcast Ethernet with more 
than 1,300 nodes able to listen to and 
respond any query. It may be unclear how 
much damage can be inflicted on the 
network by a node’s ability to listen to much 
of the query traffic and to response as it 
wants, but it is certainly clear that 
anonymity is compromised.  Furthermore, 
even in the best case, this opens the P2P 
network to other attacks. 
   

Threat Solutions 

Distributed Hash Tables  

 
Recently, a number of DHT-based P2P 
networks have been proposed as alternatives 

to the unbounded searches and anarchic 
topology of networks like Gnutella and 
Napster. Almost all such networks depend 
on a global hash function to map node and 
file ID's to some logical space, with 
accompanying connectivity and search 
procedures to channel queries, provide 
bounds on queries, deal with node failures, 
etc. 
 
One of the more intuitive proposals is that of 
Content Addressable Networks (CAN). The 
global hash maps to a d-dimensional 
hypercube, with each node being responsible 
for some chunk of the hash space. With d=2, 
our space becomes a sheet and, after several 
nodes have joined, the network resembles a 
rough checkerboard, with each square 
controlled by one node that stores all files 
whose key (e.g. title or metadata) hashes to 
its square. The routing information goes 
only as O(d), but lookup cost is O(d N1/d) 
where N is the number of nodes in the 
network. In addition, routing is not very 
robust to node failure, as the ungraceful 
departure of neighboring nodes leaves a 
querying node clueless to its surroundings, 
and unable to complete it's query. To date, 
CAN implementations have not made it all 
the way into a real-world system.  
 
The Chord project “aims to build scalable, 
robust distributed systems using peer-to-peer 
ideas. The basis for much of our work is the 
Chord distributed hash lookup primitive.” 
[CHORD] Chord arranges its nodes and files 
on a modular ring, with each node 
maintaining O(log N) neighbor information 
on a network of size N. For instance, if m is 
the number of bits in the node/file 
identifiers, then the ring extends from 0 to 
2m-1. Each node maintains a table of 
pointers, where the ith entry contains the 
identity of the node at least 2i-1 away on the 
hash ring. Basically, each node possesses a 
pointer (containing a real IP address) to 
nodes roughly increasing in powers of 2 
away. Individual nodes are responsible for 
storing files between themselves and the 
previous node on the ring. Hence, a query 
begins by consulting its pointer table and 



tries to find the successor node for the 
queried identifier on the ring. If no such 
pointer exists, the query forwards his query 
to the node closest in the hash space to the 
identifier. That node will likely have more 
information concerning nodes in its area, 
and will either return a correct pointer to the 
querying node, or forward in turn the query 
to a closer node. In either case, the distance 
between the query and the sought-for file or 
node always decreases by at least a power of 
two, giving a bound of log N overall for 
searches.  
 
Such a network, like all P2P networks, is 
susceptible to the effects of node failure on 
performance. In the case, of Chord, even 
fairly catastrophic node failure results in a 
functioning network, if with a diminished 
O(n) lookup. Nodes joining the network 
generate O(log N) traffic to construct their 
pointer table, as well as a similar 
communication complexity to update other 
nodes' tables. Only one transfer and re-
shuffling of files occurs between the 
entering node and the former successor node 
for that chunk of hash space. In the 
background, nodes constantly run a 
stabilization algorithm that keep them 
current on routing information and make 
sure pointers are fresh. 
 
Chord's designers have run simulations 
modeling its behavior under a variety of 
conditions. The number of hops required to 
resolve a query was indeed shown to go as 
log N, with a mean of 4.5 hops for a network 
of 1000 nodes (here a hop refers to the 
number of nodes traversed in searching for 
an identifier).  A simulation of node failure, 
with nodes failing randomly while queries 
are underway, showed essentially no 
network lookup failure. In other words, the 
percent failed lookups was almost exactly 
the percent failed nodes, indicating that 
searches failed due to keys disappearing off 
the system along with their hosting nodes, 
and not due to a system failure. 
Additionally, looking at query failures as a 
varying function of the rate of node join 
(and departure), the testers saw a linear 

dependence of failure on the 
arrival/departure rate. Specifically, with a 
large node fail/join rate of 10% per second, 
only 7% of queries went unanswered, 
indicating considerable robustness even in 
the face of dramatic simultaneous failure.  

DHT and Gnutella 

While DHT networks can provide an 
impressive set of features wholly absent 
from more ad hoc P2P networks, we would 
not suggest that a DHT-style network should 
replace Gnutella . It would be unfeasible. 
The hash assigns file storage based on a 
random function, not based on what files 
users already possess. In networks like 
Napster and Gnutella users share what they 
have, and it would be impractical to imagine 
users storing files other than their own. This 
mean s the host with the hash of the content 
also has to have the content or be able to get 
it efficiently. Rather, we would suggest 
running a DHT-style lookup service 
alongside the going Gnutella v0.6 
architecture. Such a scheme would imbue 
Gnutella with two important properties that 
it has so far lacked:  file permanence and 
guaranteed lookup.  
 
To realize the importance of these two 
features, pause and think of security 
protocols in common computer networks. 
Most systems either depend on a trusted 
computing base (e.g. a typical host-client 
password authentication with an a priori 
trusted user list), or the ability to read from 
or write to a global information repository 
(for example, reputation scores in ebay, or 
entries in a PKI), as well as the ability to 
access such memory when needed. Gnutella, 
as it exists now, possesses none of these 
building blocks; no nodes are fundamentally 
trusted, files come and go on the whim of 
their storing nodes, and findability is 
determined purely as a tenuous function of 
topology and network activity at the time of 
query. Such lack of functionality limits any 
security measure to stopgap hacks like 



HashCash or an inefficient (and probably 
ineffective) indirection.  
 
With a Chord ring at the supernode level in 
Gnutella, to take an example, one can 
imagine leveraging the collective storage to 
establish a reputation system to rate 
participating nodes. Thus, nodes known to 
distribute false or misleading files can be 
deservedly reported. Search results would 
then be accompanied with a report on the 
supplier's reputation, allowing downloader's 
to avoid disseminators of false files. 
Likewise, reputation would allow regulation 
of 'free-loading' on the network, whereby 
nodes burden the network with searches and 
downloads, and yet provide no files 
themselves. Uploaders could preferentially 
serve users that provide clean reputations, 
incentivising even casual users to share what 
they have.  
 
Such an add-on would place an acceptable 
burden on the supernode layer. Currently, 
some 90% of supernode traffic stems from 
queries and query hits, with supernodes 
having to field their leaf nodes' traffic as 
well as cross-network traffic for which they 
are the bridges. Chord lookups on a network 
with roughly a thousand members (about the 
size of the supernode graph on Gnutella) 
take anywhere from 2 to 8 hops. The TTL 
on most legitimate Gnutella traffic is 7, 
placing a Chord lookup within the envelope 
of most going traffic. 
 
Recall also that 7-hop Gnutella queries 
expand in an exponential flood, while Chord 
lookups visit only one node per hop, further 
diminishing Chord's effect with respect to 
the already existing bandwidth burden on 
supernodes. Additionally, the increasing 
efficiency and precision of the Gnutella 
search architecture following the adoption of 
yet more v0.6 features, such as the Query 
Routing Protocol and GUESS (a UDP-based 
iterative search add-on), will diminish 
further the rather redundant query traffic at 
the supernode level, opening up more 
bandwidth for interactive reputation or 
authentication protocols.  

Authentication, Encryption 
and FFTs 

It is not clear what benefits could be 
achieved by the use of authentication or 
encryption in the current Gnutella 
framework. Both authentication and 
encryption primitives assume “trusted” 
endpoints to establish communication 
channels, these are simply not present in 
Gnutella right now. A querying host has a 
priori no idea of who might answer the 
query. Without the existence of an 
underlying “trust or reliability framework”, 
other mechanisms (like sampling a few 
possibilities) may be more fruitful. 
 
A simple example  is to imagine a 
modification to the Gnutella protocol to try 
to stop censoring of query replies in the 
Gnutella network. We do this by having 
replies be sent straight to the IP address of 
the querying host end we also establish end-
to-end encryption/authentication. Obviously, 
there is no mutual authentication, as it is 
impossible to know who will reply. Thus, 
any malicious intermediate node can still 
censor the reply by mounting a man-in-the-
middle attack. The use of cryptographic 
primitives relies on the existence of an 
underlying “trust infrastructure” such as a 
private key infrastructure. 
 
One way to prevent content alteration is to 
have a trusted third party verify the content 
through mechanisms such as digital 
signatures.  This is a proven mechanism and 
can be implemented in a straightforward 
manner.  However, there are limitations to 
this approach.  First, this is a much more 
centralized approach.  Every resource or 
item of content would have to have a digital 
signature, meaning the overhead for a peer 
to provide a resource becomes higher. Every 
down load would have to contact the central 
authority to get the key for the signature.  
This approach may be useful for some P2P 
applications, particularly ones where there is 
either a high cost associated with the risk of 
an altered resource.  Another instance where 



digital signatures may be acceptable is when 
the P2P network is relative modest or 
limited in scale, for example when a P2P 
network is applied to business-to-business 
transactions. But, for very large, dynamic 
networks like Gnutella that have tremendous 
numbers of participants, it may not be 
feasible nor desirable to have any part of 
such a network rely on a centralized 
resource.  
 
Another more generalized approach is to 
acquire several copies of a file from 
different sources.  Gnutella already provides 
multiple sources for the requestor to choose 
from if more than one source has the file.  
Once multiple copies are acquired, various 
types of checks can be made to determine if 
they are the same.  Once there is the ability 
to compare the contents of multiple files, it 
becomes possible to implement a voting or 
selection scheme.  Depending on the 
confidence needed to assure altered files is 
detected; a requestor can use well known 
methods such as straight voting.  For 
example, if two out of three files are judged 
to be equivalent, then the minority file is 
considered bogus. A more robust selection 
method could be implemented by following 
an algorithm such as described as the 
“Byzantine Generals Problem” [Lam] which 
will guarantee the correct outcome.  The 
basic algorithm works if there is a small 
number of treacherous nodes relative to the 
overall number of nodes. If the number of 
treacherous nodes might be large, then the 
query originator would have to have 
multiple rounds of communication with all 
the participants to determine which are 
truthful. There are multiple implementations 
to solve the problem, each with increasing 
cost (in both messages and computation) 
based on the needs of the query originator. 
In either case, if the files are not identical, 
then the consumer has options ranging from 
rejecting the dissimilar file to ignoring all 
other responses from the resource that sent 
the bad file.  Once it is possible to determine 
truthful and untruthful hosts, it is also 
possible to send a message to the reputation 

framework discussed above to either 
enhance or detract from a node’s reputation. 
  
A more fundamental question is how to 
compare files in order to have some 
substance to select from. In some cases, a 
straight checksum may be viable.  A 
checksum requires two issues that possibly 
are non-optimal.  The first issue is that K 
(with K> 1) copies of the file have to be 
transferred to the receiver, using multiple 
times the bandwidth and storage. Either the 
entire file has to be transferred K times, or a 
large part of it.  If only parts of the file are 
used, more problems come into play in at 
least the Gnutella case.  Consider two music 
files from two different sources.  While 
containing effectively the same music, it is 
highly unlikely they are bit-wise identical 
since they were created on two different 
CDs, maybe at two different times, from two 
different manufactures and with two 
difference manufacturing processes. All this 
will cause checksums to be different. The 
CDs may have different errors and timing.  
There may be different lengths of idle time 
before the music or after the music.  Thus to 
use partial file checksums, firm conventions 
would have to be put into place for all files 
that may require the cooperation of the 
originators of the file. The second and more 
critical issue is in order for checksums to be 
the same; the files have to be bit for bit  
identical.  Some P2P applications do want 
absolutely identical files bit for bit.  
However, a number, including Gnutella 
would not be able to use a checksum 
because equivalent files are not bit for bit 
identical.   A more flexible solution is to use 
Fourier Transforms to compare the files.  
The approach is to take any two files X and 
Y out of the set of M files, and perform a 
Fourier Transform on each.  Given the 
Fourier Transform F, one can calculate 
F(X), and  F(Y’), where Y’ is the file Y, 
written in reverse order.  Then taking the 
inverse Fourier transform of the product of 
F(X) and F(Y’) provides a signal profile 
whose characteristics are like Figure 1.  The 
sharpness and height of the peak of the 
signal will indicate how likely it is the files 



agree.  The location of the peak along the x-
axis indicates when the files start agreeing.  
The sooner the peak appears, the earlier the 
files agree.  For equivalent files, a very 
steep, high peak near the x origin would be 
expected.  The concept is to perform pair-
wise comparisons on N copies of the file, 
where N will vary based on the needs of the 
consumer. 
  
 

 
The FFT scheme has several advantages.  
First, it can be used in all cases – whether 
the files are bit wise identical or not. 
Second, the entire file does not have to be 
present.  FFTs can be blocked – operating 
on segments of the file – and then blocks 
combined if it is necessary to test the entire 
file. It is likely for a network like Gnutella 
only the first parts of the file are needed. 
Using part of the file has the dual advantage 
of saving bandwidth and computation.  That 
savings in bandwidth could be avoided all 
together or used to acquire more copies of 
the file to improve the accuracy of the 
checking and to prevent an attacker from 
overwhelming the number of good files by 
sending many copies of bad files. These 
choices could be tuned based on the network 
characteristics of the receiver.  A variant of 
the above scheme is to take the file content 
and pass it through a hash function to 
provide a value.  Then, based on the hash 

function and the size of the hash space, two 
files whose value is identical may 
beconsidered equivalent. 
  
Thus, for a cost of bandwidth and/or 
computation, it is possible to verify the 
authenticity of a file's contents and to detect 
and eliminate untrustworthy peers to an 
arbitrary degree. While not foolproof – an 
attacker can in theory launch so many 
responses that it would have high probability 
the consumer would select more bogus files 
than correct files, this is unlikely. 
 
 

 
Proposal for an 
experiment 
 
In the following section, we propose a 
measurement experiment on Gnutella 
network. Since such an experiment, and the 
attack it hopes to emulate, depend intimately 
on graph of the Gnutella network, we spend  
the next sections explaining Gnutella 
network structure. A description of the 
experiment itself follows.  

Gnutella topology 

It has recently been observed that a 
multitude of networks in both the natural 
and human worlds follow a power-law 
distribution, where the probability of a node 
having degree k goes as P(k)~k -α. Here, α 
generally ranges from 1.2-4, and is a global 
parameter describing the network. Such 
disparate sets as World Wide Web pages, 
authors in science publications, Hollywood 
movie actors, and human sexual contacts are 
described by power-law networks of varying 
α. Gnutella, with its ad hoc and chaotic 
connection architecture, also possesses such 
a structure (see below figure). 
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Figure 1 – A schematic diagram of using 
Fourier Transforms and a selection 
mechanism to decide if a files has been 
altered even if the files are not bit wise 
identical. 



 
 

 
 
Figure 2 Two crawls of the Gnutella 
network, from [Rip]. The first above was 
taken November 2000, the second below 
March 2001.As can be seen, the topology of 
Gnutella is in rapid transition. In between 
the two crawls, LimeWire and BearShare, 
two leading Gnutella clients, instituted the 
two-tier hierarchy of nodes, as described in 
previous sections. The sudden change 
around link number 10 reflects the existence 
of two communities of nodes: leaf nodes 
connected to one or few supernodes, and the 
supernodes connected to a brood of leaf 
nodes as well as any number of other 
supernodes. Essentially, the Gnutella 
network is splitting into two superimposed 
networks, with the supernode graph 
retaining power-law properties but at a 
different α constant.  

 

The reasoning behind why such 
uncoordinated phenomenon as web page 
authoring and human sexual behavior show 

such general scaling stands some enquiry. 
As Albert and Barabasi [Bara1] showed, 
large-scale structure is determined by how 
entering nodes attach to the growing 
network. Specifically, if nodes attach to a 
node i with probability proportional to 
ki/Σ Iki, (where ki is the degree of the ith 
node) a power-law graph results. The 
phenomenon is summarized by the phrase 
“the rich get richer”, reflecting how the time 
rate of change of connectivity is 
proportional to the instantaneous 
connectivity, allowing nodes that get slightly 
ahead of the game to rapidly outpace their 
less well-connected colleagues.  
 
    In Gnutella, nodes join by contacting 
well-known nodes that in turn provide a new 
node with the contact information for yet 
other nodes. While the technical details of 
node joining are slightly complex (as well as 
obscure where the protocol specification is 
ambiguous), it seems safe to say that well-
connected nodes, due to their existence 
being known to many nodes, are probably 
disproportionately represented in node-join 
handoffs.  This fact, combined with a base 
of users that occupy a spectrum from 
occasional users to hardcore Gnutella 
stalwarts, leads to the variation in 
connectivity indicated in previous figures. It 
seems safe to say that Gnutella is now, and 
will remain for the near future, a power-law 
network of possibly varying α parameter. 

 
Graph properties 
 
 Such networks demonstrate many 
interesting properties, most notably a small 
network diameter, or short average path 
length between nodes. This leads to the 
well-known ‘small-worlds’ effect, whereby 
any two nodes in even large networks are 
connected by a relatively small number of 
hops. As previously explained, searches on 
Gnutella are propagated via undirected 
floods on a network with uncertain topology 
and constantly changing node population. 
Despite these harsh conditions, searches in 
Gnutella are remarkably successful, 



precisely due to this short-range property of 
the graph. Whether by accident or design, 
the power-law structure has saved Gnutella 
from total breakdown, even when the 
network outgrew its humble beginnings to 
become a global network moving terabytes 
of data over tens of thousands of machines. 
Any proposed changes or improvements to 
the protocol should preserve the 
fundamental network properties that have 
made Gnutella so long-lived.  
 
Another large-scale property of power-law 
networks is that of robustness under node 
failure. As modeled by [Bara2], power-law 
networks exhibit different behavior under 
the effects of either random or targeted node 
loss, particularly compared to random 
graphs. Cohen et. al. [Coh] found that the 
proportion of nodes p that could fail, without 
splitting a power-law graph of parameter α 
into disconnected components was limited 
by: 
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Here is p is the proportion of failing nodes, 
m is the lowest possible degree, and K the 
maximum possible degree.  
Taking α=2.4 from earlier (and perhaps now 
dated) measurement studies, and setting 
m=1, K~30, we arrive at a critical proportion 
pc of about .7. Hence, upwards of 70% of 
Gnutella nodes can fail and the graph 
remains topologically connected.  
This tremendous robustness is necessary in 
the face of occasional physical network 
failures, and far more frequent node 
disappearance, where users simply turn off 
after downloading. Statistics show [Sar] that 
50% of Gnutella nodes spend no more than 
60 minutes online at any given time, 
indicating a constant churn of online hosts.  
Against more targeted node failure however, 
a power-law network shows considerable 
disadvantages. Since a minority of nodes 
constitutes a majority of the connectivity, 
removing those few nodes has dreadful 
consequences on the network.  

 

 

 
 

Figure 3 Two network plots of the Gnutella 
network , from February 16, 2001, spanning 
1771 nodes [Sar]. The first contains all nodes 
and their accompanying connections. In the 
second, the top 4% connected nodes have been 
removed. The resulting network is fragmented 
into multiple pieces.  

 
A final interesting property of power-law 
networks refers to their epidemic properties. 
Networks are often used as models of 
disease-propagation among a community of 
carriers, with nodes representing potential 
infected organisms and edges modes of 
transmission. Quantitative epidemiology has 
developed a classic SIR model (for 
susceptible/infected/removed, the three 
states nodes can be in) describing the extent 
and speed of outbreaks given certain disease 
transmissibility. Recently several 
researchers have extended the model, 
examining the effect of underlying topology 
on outbreak strength. Pastor-Satorras and 
Vespignani [Ves] have claimed to have 
analytically proven that scale -free power-
law networks allow diseases to reach 
epidemic proportions even with low 
transmission rates between nodes. Newman 



[New], using both analysis and simulations, 
shows that power-law graphs of certain α 
exhibit epidemic behavior no matter how 
low the transmissibility between nodes. The 
arguments of both authors are lengthy and 
complex, but an intuitive insight can be had 
by analogy to searches on the graph. Power-
law searches work so well as queries very 
quickly reach a well-connected node, which 
in turn propagates the query far and wide. 
Likewise, even one infection on a power-
law graph likely reaches a well-connected 
node, which spreads it to everyone else.  
 

Experimental design 

 
It was our intention to design a measurement 
experiment that simulated a denial-of-
service (DOS) attack against the Gnutella 
network. As seen above, the topology of the 
Gnutella network imbues the graph with 
several interesting properties, some of which 
might be weapons in the hands of attackers. 
 
For example, the susceptibility of power-law 
graphs to targeted node attack would open 
the door for a determined adversary to 
shutdown the backbone of high-degree users 
that make Gnutella work. Such an adversary 
could employ network-level attacks against 
such hosts and cut off their network access, 
or simply emulate such nodes himself, 
pulling out at the last second after achieving 
a massive connectivity.  
 
It would be difficult to perform such attacks 
in an academic context, as they may be 
called morally (if not legally) into question. 
A better strategy may well be to use the 
epidemic qualities of power-law graphs to 
distribute unwanted content, and that way 
undermine Gnutella’s fantastic file -sharing 
potential. Such unwanted content could take 
the form of random or garbage files, or more 
pointed content like a virus. Virus spreading 
on Gnutella has already been documented 
[Vir], although the virus in question only 
caused damage when run from the local 

machine and had no way of taking over the 
Gnutella client itself. However, such a 
shortcoming will only last until the first 
security hole in a well-distributed Gnutella 
client is discovered. 
 
Assuming for the moment clients are safe, 
one can still imagine virus-like files that 
would be of interest to the Gnutella hacker. 
For example, major copyright holders like 
the Motion Picture Association of America 
(MPAA) or the Recording Industry 
Association of America (RIAA) could 
collude with major makers of mp3 players, 
like Microsoft’ s Media Player or 
RealMedia’s RealPlayer, such that players 
would only play specially marked mp3’s a 
limited number of times (such proposals 
have already been made in the context of 
digital-rights management). Copyright 
holders (and their hired IT guns) would then 
exploit Gnutella to spread such specially 
tagged files, making sure any downloaded 
file was of only very limited utility. 
 
While this seems counterproductive to the 
cause of the MPAA/RIAA, in that the 
aggrieved party is itself distributing content, 
a more circumspect analysis reveals its 
power. Viruses are successful if they infect 
many hosts. Infectious agents that are too 
virulent inevitably cause outbursts that burn 
themselves out (e.g. the Ebola virus, that 
incapacitates victims within days and kills 
them within a week). Viruses like HIV, for 
example, are much more effective, as they 
are just as inexorably terminal (essentially 
all people infected with HIV develop AIDS 
and die), but they allow their hosts a good 5-
10 years (or more, with the use of modern 
anti-retrovirals) to spread the virus to others.  
Likewise, the current strategy of the 
(modest) efforts of anti-piracy agents to 
spread garbage files when queried for 
copyrighted content seems ineffective by 
comparison. Any given Gnutella search 
returns dozens of hits, and if a download 
fails due to a false file, the user just picks 
another uploader. Such tactics will only 
dissuade the most casual and finicky P2P 
user. 



 
Much more effective would be to drown the 
entire namespace of interest (e.g. all queries 
containing ‘The Beatles’) with marked and 
incapacitated files. The user who downloads 
such a file will not know of its infected state 
at first, as the file plays normally, until it 
reaches the play limit imposed by its 
creators and enforced by the media player. 
In the meanwhile, other users have 
downloaded the file themselves, who in turn 
propagate it, and quickly every file on the 
system is incapacitated in this way. It seems 
much more irritating if what is at first a 
normal and impressive mp3 collection 
suddenly refuses to play overnight, requiring 
the slow process of rebuilding it, then 
simply having to try one or two downloads 
at first to find a copy of a certain file.   
The topology of Gnutella will certainly aid 
in such an attack, as discussed above. A 
potential attacker need only spread the file 
to a relatively small collection of high-
connectivity nodes, who will in turn 
disseminate it to the rest of the network. If 
wisely done, such an attacker would not 
even need vast resources to complete his 
task.  
 

 The Experiment 

Fortunately, the technology of music 
compression allows us to model such an 
attack without need to disrupt network 
service. The mp3 standard allows an 
arbitrary amount of data to be appended 
before the first compressed block of a music 
file. Such data is typically parsed by mp3 
players to provide file metadata like artist 
name, recording, etc. to the user looking at 
the player’s GUI. Such a data field can be 
modified at will, and clients uploading and 
downloading the file (generally) maintain 
the integrity of prepended tag. To our 
knowledge, however, no client uses the tag 
information to perform matches on 
incoming queries, and the Gnutella protocol 
provides no direct way of advertising the 
contents of the tag to outside queriers. 

Hence, the file’s ebb and flow in the 
network should be quite independent of 
whatever is written in its tag, but the tag 
should survive along with the file’s contents 
as the file circulates. 
 
Our experiment thus involves two stages: in 
the first, we inject files into the network 
with music files marked with a unique 
random nonce as their mp3 tag. In the 
second, we probe the network, and see to 
what extent our marked file permeated. Our 
second probing step will be repeated at 
regular intervals after, and perhaps even 
during, the injection phase. 
 
Our hope is to use this ‘release-and-catch’ 
methodology to quantify the speed and 
extent of content distribution on Gnutella, 
something until now unexplored. In 
addition, this serves as an excellent model of 
the DOS attack detailed above. Whether 
Gnutella’s future attackers intend to simply 
distribute false content, or employ the more 
subtle strategy described here, such an 
experiment will reveal the magnitude of 
success one could achieve with a slow-
burning virus that gives its hosts plenty of 
time to spread.  
 
Operationally, this experiment will involve 
custom coding a Gnutella client to act as 
tagger and distributor. Such a client will 
have to achieve high connectivity with the 
supernode level of Gnutella hosts, getting a 
rapid picture of the network’s most well 
connected nodes. Prior to client 
initialization, we will choose a piece of the 
file namespace as our virus vector. Intuition 
indicates that the best piece of namespace 
would be for files in high demand, with 
large numbers of hosts repeatedly making 
searches. This way, we will be able to 
quickly hijack the namespace, pre-empting 
non-marked files’ entry to the network with 
our own marked version. As a guide, one 
can use the ‘Top Sellers’ list on 
Amazon.com to determine a well-frequented 
part of the namespace on a daily basis. 
 



Hence, once situated on the network, and 
with a target namespace in mind, our client 
selectively responds to queries emanating 
from selected ‘elite’ high-connectivity 
supernodes. The cut-off for inclusion in the 
elite category can be made dynamically, or 
simply as a result of an ongoing crawl (e.g. 
within the current top 5% of connected 
supernodes). The goal is to limit our upload 
of files only to a subset of the supernodes, 
and hence that way parameterizes our later 
results on file dissemination. That is, on 
each inject-and-probe cycle we chose to 
distribute to a greater or lesser fraction of 
supernodes, and measure the effect of 
greater or lesser file injection on the file’s 
circulation. 
 
In the probe phase, one can adopt two 
philosophies. One is that of an omnipotent 
and omniscient network god, trying to 
discover the presence of every relevant file 
and whether it has been tagged or not. 
Essentially, probing everyone at the 
supernode level, downloading upon 
receiving a hit, and tallying the percentage 
permeation of tagged files versus non-
tagged.  
 
While such a tack might be ideal, given the 
tremendous bandwidth use that Gnutella 
produces, it may well be unfeasible, even for 
fast, high-bandwidth academic machines 
(see below problems section). 
 
A smarter measurement may be to simply 
emulate a normal Gnutella user and gauge 
what effect the tagging ‘hack’ has on what 
such a user sees. Thus, following injection, 
we would re-connect as lowly leaf nodes 
and search repeatedly for files in the 
namespace. Downloads on those search hits 
would reveal their tag, and would allow us 
to quantify success as degree of permeation 
on normal user downloads, rather than on 
the network as a whole.  
 

Progress and Problems 

 
For the past month, development has been 
underway for just such a custom client. Our 
initial code base is the Jtella API, a set of 
Java libraries for network applications on 
Gnutella. Jtella numbers some 5000 lines, 
but we have been obliged to change or add 
another 2000 lines for even basic 
functionality. Jtella was written almost two 
years ago, before the introduction of v0.6, 
and contains the basic, low-level code for 
Gnutella connectivity in the form of 
ping/pong messages, persistent TCP 
connections, etc. The full-blown 
experimental client will have to contain 
support for v0.6 features (already done), as 
well as the high-level algorithm for 
maintaining placement in the Gnutella 
graph. This latter feature may prove to be 
the most difficult. Initial attempts at 
connectivity reveal the Gnutella network to 
be a highly dynamic and changing 
environment. Accurate global knowledge of 
the instantaneous topology may prove 
elusive, if not impossible, and our file 
injection may occur in an opaque fog of 
network information. 
 
In addition, certain properties of 
commercially written clients tend to produce 
fragmentation in an otherwise uniform 
Gnutella network. For example, it is known 
that BearShare allows its supernodes to 
accept only other BearShare leaf nodes 
(recall that the client vendor is passed along 
with everything else in the v0.6 handshake), 
producing a so-called ‘BearShare cloud’ in 
the network. Our initial connectivity 
experiments indeed showed BearShare 
nodes only responding to handshakes with 
‘BearShare’ in the vendor field. Depending 
on whether this behavior continues 
(BearShare claims it will change it) our 
client may well have to spoof a series of 
vendor names to achieve connectivity over 
the entire graph. 
 
 
 



Administrative Issues 

In order to run the experiment as designed, it 
was necessary to investigate the regulations 
relating to the use of copyrighted material 
and other issues regarding Gnutella.  The 
University of California has at least two 
governing documents that apply to this.  
Copyright policy is related to the 1998 
Digital Millennium Copyright Act. The 
university document is “Guidelines for 
Compliance with the Online Service 
Provider Provisions of the Digital 
Millennium Copyright Act” [DMCA].  This 
policy defines what is possible to do with 
copyrighted material in the university 
context, include what UC considered fare 
use. The second policy is the UC Berkeley 
IT policy, which controls what activities are 
appropriate when using campus computers 
and networks. The IT policy refers to the 
DCMA guidelines for how copyrighted 
material should be handled.   
 
The project team approached UC Office of 
the President’s General Counsel and 
described the experiment and its issues.  We 
also explained why we thought it was 
appropriate and useful to carry out the 
experiment.  Further issues were discussed 
regarding the privacy of network users and 
the fact there would be no obvious impact 
on the other users of the network.  
 
After approximately 6 weeks of discussions, 
the University gave approval for the 
experiment.  We do plan to pursue the 
experiment at a later date. 
 

Findings 
Ad hoc peer-to-peer networks, represented 
in this study by Gnutella, have significant 
security issues.  Previous work focused on 
v0.4 of the network document many ways 
the network can be compromised.  The 
changed of v0.6, which are intended to 
allow growth to a very large scale introduce 
more vulnerabilities, because v0.6 turned the 
network into a “power law” system where 

very few nodes have most of the control and 
indeed most of the content.  While leaving 
the network unstructured, v0.6 has the affect 
of making the query structure more 
hierarchical.  Thus attacks focused on the 
relatively few supernodes make the Gnutella 
network much more susceptible to 
compromise.   
 
Gnutella is basically not securable  in its 
current implementation. Several solutions 
were investigated to improve security on the 
network, such as point-to-point encryption, 
authentication and Distributed Hash Tables.  
Some of these are shown to be untenable in 
the current Gnutella implementations. It 
needs additional structure and capability in 
order to withstand even a modest level of 
attack.  This is important since it is clear the 
music industry is planning concerted efforts 
to disrupt Gnutella services. 
 
This paper introduces the idea that security 
can be view not just from a host or network 
perspective but also from a “service” 
perspective. In the Gnutella case, this means 
looking at attacks on the namespace and file 
content rather on host per se. 
 
We have introduced several solutions that 
may be used to increase security and 
privacy.  The use of Fourier Transforms to 
check content in file that are not bit-wise 
identical enables would enable the query 
originator to determine if the content in a 
file is what is expected.  Coupled with a 
selection mechanism, it becomes feasible to 
resist flooding and query interception 
attacks.  
 
Finally, an experiment was designed and 
coded to investigate the actual performance 
of a network and to explore the feasibility of 
some of the exploits discussed.  This 
experiment could not be performed until 
legal and administrative issues were 
resolved within the university pertaining to 
the investigation of P2P networks that 
exchanged copyrighted material.  We 
received approval for the experiment, but 
only two days before the submission 



deadline.  However, the effort to gain the 
approval will not be wasted since it will 
allow the experiment to go forward and be 
discussed at a later time, and possibly allow 
other groups to investigate P2P networks 
with their own experiments. 
 

Summary 
 
Despite the apparent need to make Gnutella 
more secure for users, the feeling among its 
open-source developers seems to be one of 
indifference. What 'state-sponsored' hacking 
there has been on Gnutella is relatively 
small, with the network retaining most of its 
functionality. Also, the pursuit of Gnutella 
users by the MPAA or RIAA has been 
limited to relatively high-profile cases of 
people either sharing enormous numbers of 
files or sharing clearly pirated copies of 
copyrighted (and perhaps then unreleased) 
content. The average Gnutella user sharing 
and downloading a handful of files has for 
the moment little to fear from the large 
lobby groups and their blackmailed ISPs. If 
the day arrives that file -sharing becomes 
impossible due to a deluge of false content, 
or hijacked queries, or when users receive 
immediate cease-and-desist emails the 
moment their Gnutella clients blink on, then 
perhaps Gnutella developers, some of whom 
have commercial interests in the survival of 
the network, will start to pay security serious 
attention. For the moment, most developers 
seem content with improving Gnutella to the 
point of competing with currently more 
successful networks like Kazaa, which 
enjoys an order of magnitude greater usage 
statistics than Gnutella.  
 
Finally, it needs to be noted that many of the 
issues discussed in this document are 
specific to Gnutella, Kazaa and other very 
loosely formed networks.  Other P2P 
networks, including the Grid are designed 
with much more emphasis on security and 
will in all probability have few, and 
certainly different, issues. 
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