DAM: a DoS Attack Mitigation Infrastructure -

Byung-Gon Chun, Rodrigo Fonseca and Puneet Mehra
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

{bgchun,rfonseca,pmehra}@eecs.berkeley.edu

ABSTRACT

Denial-of-Service (DoS) attacks represent a serious and grow-
ing threat to the firms utilizing the Internet. Defenses against
DoS that rely upon identification and isolation of the attack
stream are difficult due to the distributed nature of most
attacks and source IP spoofing. Stopping an attacking host
often requires human intervention and cooperation across
administrative boundaries, resulting in costly downtime for
victim sites. An alternative safeguard against DoS attacks
is the use of load-balancing techniques to simply diffuse the
attack load across replicated content servers. However, cur-
rent Content Distribution Networks (CDNs) do not provide
adequate support for this protection mechanism since they
provide direct IP access to the servers and generally rely on
vulnerable redirection mechanisms. This provides attackers
with the opportunity to either directly attack the server, or
the redirection mechanism itself. In this paper we present
DAM, a novel infrastructure for DoS Attack Mitigation, de-
signed to address these deficiencies in current CDNs. Our
basic approach is to use an additional layer of indirection
to prevent direct IP access to the content servers, and to
use a robust overlay protocol, Chord, as the basis for our
redirection mechanism. The robust load-balancing mecha-
nism evenly distributes service requests, including potential
attacks, across servers, while the additional level of indirec-
tion protects content servers from network-saturating flood-
ing attacks. Various simulations using the NS-2 simulator
demonstrate the efficacy of our approach.

1. INTRODUCTION

Denial of Service (DoS) attacks arguably represent the most
serious security threat facing the Internet community today.
A recent empirical study of Internet DoS attacks observed
12,805 attacks on over 5,000 distinct hosts over a three-week
period [1]. Websites are a prime candidate for such attacks,

*DAM is a joint project of Byung-Gon Chun and Puneet
Mehra in ¢s261 and Byung-Gon Chun and Rodrigo Fonseca
in cs262A.

and a series of successful DoS attacks on such high-profile
targets as eBay, Yahoo, CNN.com, and buy.com in Febru-
ary 2000 prompted attention from the Attorney General and
an official FBI investigation into the source of the attacks
[2]. These attacks have had a significant financial impact
on companies, with the firms losing an estimated $1.2 bil-
lion in lost revenues during the short attack period noted
above [3]. Even more alarming than these episodes is the
possibility that DoS attacks may actually be on the rise [4],
representing a growing threat to business utilizing the Inter-
net.

Defenses against DoS which rely upon identification and iso-
lation of an attacking stream have several drawbacks. The
identification of an attacking stream is often difficult since
attackers usually forge source IP addresses (IP spoofing) or
use machines in many different domains to conduct a co-
ordinated attack. It may also be difficult to differentiate a
DoS attack from a flash crowd [5], potentially resulting in
denying access to legitimate users. Furthermore even after
sucessful identification of attacking hosts, it may be diffi-
cult to get cooperation from different network providers to
contain the attack. In any case, such cooperation usually
involves human intervention and consequently takes on the
order of several hours, resulting in costly downtime for the
victim site.

In this work we are mainly concerned with DoS flooding at-
tacks. These attacks have two distinct flavors. First, they
may involve overwhelming the network link capacity of the
content server via brute force packet-flooding, which is rep-
resentative of the previously mentioned attacks on websites.
Secondly, the attacks may involve saturating a server’s pro-
cessing ability, i.e. kernel data structures or CPU cycles,
through seemingly-legitimate HTTP requests.

Given the threat model, and the fact that many content
sites already use replicated servers and geographic mirroring
of content for robustness and performance enhancements,
an alternative defense against DoS attacks is to evenly dis-
tribute the offered attack load over these replicated con-
tent servers. Current Content Delivery Networks (CDNs),
which provide geographic mirroring and access to replicated
servers, do not necessarily provide enough protection from
DoS attacks, for two reasons. First, unless the CDN hosts
all of the content on its own servers, it usually provides a
redirection mechanism for clients to find a “good” content
server with the requested data. In such cases an attacker,

after obtaining the server IP, can directly flood packets to
this IP address, bypassing any redirection provided by the
CDN. A second disadvantage of CDNs is that the redirection
schemes generally rely upon DNS, or load-balancing hard-
ware appliances, which represent a single point of attack.

In this paper we present DAM, a novel infrastructure for
DoS Attack Mitigation. Our proposed infrastructure pro-
vides robust load-balancing to protect against DoS attacks,
and addresses the deficiencies of the CDN systems outlined
above. First, our infrastructure uses an additional level of
indirection to deny clients direct IP access to content servers.
Since all communication must go through a node in our in-
frastructre, flooding attacks seeking to saturate network re-
sources only affect the path to the infrastructure node and
not the content server. Secondly, our infrastructure uses a
robust overlay protocol, Chord [6], to provide a redirection
mechanism which is not vulnerable to DoS attacks.

A Dbasic premise of our approach is that DoS attacks may
be viewed as a resource competition between attackers and
content providers; the side with greater resources wins the
match. As such, we envision DAM as a large, shared infras-
tructure which allows different content service providers to
pool resources to obtain greater protection from DoS attacks
than otherwise possible due to their individual economic
constraints. Specifically, having a large number of nodes
in our infrastructure is more economically and technically
feasible than having an equal number of content servers.
Since our infrastructure does not actually store any content,
it has more modest computational and storage requirements
than the servers hosting the content, and hence each node
in the infrastructure may support multiple content providers
simultaneously. Simply having a large number of replicated
servers, aside from being more costly, also incurs additional
complexity to ensure that all replicas have the latest con-
tent. DAM avoids this complexity since it does not store
any content. We demonstrate the efficacy of our approach
through a variety of different simulations involving the NS-2
network simulator [7].

The rest of the paper is organized as follows. In Section 2
we discuss related work. We provide a detailed discussion
of the architecture of DAM in Section 3. In Section 4 we
describe the simulations, and their results, which validate
our proposed architecture. Finally, in Section 5 we provide
some directions for future work and conclude this paper.

2. RELATED WORK

There has been much work done on detecting attackers and
isolating attack streams, including filtering, traceback and
pushback [8, 9]. To avoid the difficulties of detecting and
isolating DoS attacks, our approach focuses on evenly dis-
tributing the offered load over server replicas in order to
mitigate DoS attacks. Identification and punishment of at-
tacking streams is orthogonal to our approach, and can in
fact be combined with our infrastructure. Furthermore,
our infrastructure may provide useful information about the
source of attacks if proximity-based load-balancing is used,
thus providing more accurate detection. Y. Chen et al. in-
vestigated the resilience of object location services, such as
Tapestry to DoS attacks [10]. Their work focused on evalu-
ating the object location services themselves, while our work

proposes a new architecture to protect general web services.
A. Keromytis, V. Misra, and D. Rubenstein proposed a Se-
cure Overlay Service (SOS) to protect critical emergency
services from DoS attack [11]. The goal of the SOS is to
allow secure communication between a small number of pre-
approved sources and a particular destination. The SOS
protects the destination by allowing only secret servlets to
contact the destination. To provide protection, every packet
must traverse the secure overlay, resulting in a substantial
increase in communication latency. Our work differs because
we must allow communication between a large number of
untrusted clients and the server with the desired content.
Furthermore, to accomodate the needs of the target appli-
cation, namely web services, our infrastructure must provide
security with minor performance impact. Hence, after the
service name resolution step, all communication is done with
only one overlay hop, reducing the communication latency.

3. DAM ARCHITECTURE

3.1 Goals and Assumptions

The goal of DAM is to provide protection to web services
from the DoS flooding attacks descibed in Section 1. DAM
aims to protect content servers from many, untrusted clients.
It is a lightweight mechanism designed to support a large vol-
ume of web requests and responses with minimal overhead.
As discussed in Section 1, since DAM is shared by multiple
services, it is possible to dedicate more resources to this in-
frastructure than that possessed by a single service provider.
Consequently, DAM requires greater effort from attackers to
launch a successful attack against a service provider.

We now state the assumptions which have influenced the
design of our infrastructure. We assume that infrastructure
operations and node IP addresses are public information.
Hence, we cannot rely on secrecy of algorithms or infras-
tructure node addresses to provide any protection. We as-
sume a trustworthy infrastructure. Specifically, we do not
consider the problem of malicious infrastructure nodes. This
issue has already been addressed in other work [12]. Finally,
we assume that content servers are only accessible through
DAM.

3.2 Architecture Overview

‘We now provide an overview of DAM, and the key differences
between DAM and traditional web-browsing using a CDN.
Traditional access of web servers consists of two steps. First,
a client interested in accessing a particular web service such
as www.cnn.com must perform a name service resolution to
obtain an IP address for that service. Specifically, a client
does a DNS lookup for the service name and obtains a server
IP address. After the resolution step is complete, the client
makes request(s) directly to the IP address to access the
desired content. As shown in Figure 1, these two steps are
still present in DAM, though each step has been modified
to facilitate the desired security goals of our infrastructure.

During the resolution step, a client using DAM resolves a
service name to an IP address, using our infrastructure in-
stead of traditional DNS. However, this IP address is the
address of a gate node, which serves as a level of indirection
for the content server. During the second step of the brows-
ing process, a client issues requests and receives responses

®
a)

(a)

(b)

Figure 1: Web service access (a) The client resolves a host name to a gate IP address. In the resolution, the
infrastructure determines a server to access through the gate. (b) The client communicates with the chosen

server through the gate.

from the gate instead of directly communicating with the
server. We now provide more details about the resolution
and communication steps.

The client sends its initial name resolution request to an
adapter node, which serves as the interface to our infras-
tructure. This request is then transmitted to an authorita-
tive load balancer node for that service using a distributed
hash table (DHT) for routing the message from the adapter
to the load balancer. We choose to use Chord for its sim-
plicity and robustness properties, but DAM can use any
recently proposed DHT [13],[14],[15] as the underlying com-
munication mechanism. The load balancer selects a partic-
ular content server based on its load-balancing policy, which
considers network proximity and server load in its selection
decision. The resolution request is then forwarded to the
chosen server. The server is responsible for selecting a gate
from among multiple gates, based on proximity and load
information obtained from these gates. Finally, the gate
receives the name resolution request, and sends a resolu-
tion reply with its IP address to the client. At this point,
the client communicates with the chosen server through the
gate, which transparently performs network address trans-
lation (NAT) in forwarding packets between the client and
server.

In essence, DAM performs load balancing across servers to
evenly distribute HTTP requests, while a server distributes
these HTTP requests across different gates to handle the
possibility of malicious clients launching a flooding attack
against a given gate. Furthermore, only the dedicated gate(s)
can communicate with a given content server, and each
server selects a random subset of nodes in the infrastruc-
ture for its dedicated gates.

We now discuss a few important details regarding client
access process. Each resolution reply has a Time-To-Live
(TTL) value. A client can initiate connections to the gate
for a given service until the resolution mapping the service
name to the gate expires. The infrastructure uses this map-
ping cache at the client to avoid resolution latency for every
HTTP request. After the resolution step is complete, the

client communicates with the server through only one over-
lay hop. If the gate used for communication is appropriately
selected based on proximity to the client, the additional la-
tency of using this indirection point will be minimal.

There are several robustness and scalability issues in our
infrastructure which must be addressed. To avoid a single
point of attack or failure in the architecture, DAM maintains
replicated load balancers. In addition, each server is aware
of multiple random gates in the infrastructure. If gates are
attacked, a server can simply choose other gates, which are
not likely to be under attack since they are randomly cho-
sen, for communicating with clients. DAM assigns the task
of server selection to load balancers and the task of gate
selection to servers to minimize the amount of state which
must be maintained at either load balancer or server nodes.
Furthermore, packet filters may be employed at the server
to only allow communication with the dedicated gates.

3.3 Adapter

As previously mentioned, an adapter node serves as the in-
terface between clients and our infrastructure. Clients send
name resolution requests to a local adapter in the infras-
tructure via IP on a well known port. The local adapter
hashes the service name (e.g., www.cnn.com) to an identi-
fier in Chord with the SHA-1 hash function. The adapter
then forwards the name resolution requests to the authori-
tative load balancer for that service. This load balancer is
simply the node that is responsible for the identifer in the
Chord identifer space.

3.4 Load balancer

A load balancer is responsible for choosing a server for a
name resolution request. It uses a load balancing policy,
utilizing server proximity to the client and server load, to
make this decision. After selecting a server, it forwards the
name resolution request to the chosen server with a partic-
ular TTL. This TTL value is used by the client name cache,
as previously discussed.

DAM uses landmarks to decide the network proximity be-
tween two hosts. We choose the landmark scheme since it

has been well explored in overlay network research [16]. An-
other alternative method of deciding proximity is to main-
tain the AS-level map of the Internet to determine distance
between two hosts. We map each host to a coordinate in
the Euclidean geometric space. The round trip time to a
landmark determines the magnitude for a given axis in this
space. The distance between two hosts is calculated by the
cosine similarity of two network vectors defined in the equa-
tion (1) [17]. When the distance is smaller, the two hosts
are more proximate in the network.

- hleh2

Distance(hl,h2) =1 — —— 5 (1)
[h1] x |h2]|

where Al is a network vector of host 1 and h?2 is a network
vector of host 2.

For server load information, we currently use the utilization
of the server during an update interval. Other metrics may
include average queue length in the server and the number
of active connections. When a site is composed of servers
in a cluster, we assume that the site exposes the aggregated
load information and the load balancing switch IP address
to our load balancer. This hierarchy decreases the amount
of load information to update.

We propose a novel load balancing policy — the dynamic
proximity load policy. This policy tries to exploit proximity
and avoid overloaded servers. It tries to achieve the best of
the policy based on only proximity and the policy based on
only load. It also overcomes the inflexibility of static prox-
imity load policy. In the static proximity load policy, the
load balancer chooses k servers among m servers (k < m)
with proximity and chooses one server among k servers with
the smallest load. If the client population is skewed in the
network, static policy will assign clients to heavily-loaded
servers, which may result in poor performance, especially
when the closest server is under attack. The dynamic prox-
imity load balancing policy exploits proximity information,
while avoiding over-loaded servers. The pseudocode for this
algorithm is presented below:

Algorithm Dynamic Prozimity Load Algorithm
1. SortedServerList = List of servers sorted by distance to
the client in ascending order

2. for each server S € SortedServerList

3. if satisfy_load_condition(S)

4. then return S

6. // no server matches the load condition

7. return least_loaded_server()

In the algorithm, the satisfy_load_condition function checks
whether the load of a server is below a certain threshold
value. The least_loaded server function finds a server with
the smallest load. Further discussion of different load bal-
ancing polices may be found in [18].

The load balancer uses secure authentication in server reg-
istration and de-registration to protect from DoS attacks
involving fake servers. Replication of load balancers is used
to protect against flooding directed at the load balancers

themselves. The authoritative load balancer is the primary
load balancer. Each primary load balancer pushes the col-
lected load information to secondary load balancers periodi-
cally. If attackers shut down the primary load balancer, the
Chord protocol handles the failure through its re-stabilizing
procedure. The identifier space is delegated to the new clos-
est successor node, which will become the new primary load
balancer.

3.5 Server add-on

‘When the server receives the resolution request, the server
selects a gate to allow communication with the client. Since
the server knows exactly which gate can forward packets, it
can set up packet filtering for additional defense. Currently
the server uses only proximity information to select a gate.
A gate selection policy based on bandwdith usage and gate
processor load is an area of further investigation.

The server also sends periodic load updates to the authori-
tative load balancer. Currently this update interval is fixed,
and investigating an adaptive scheme is a direction for fu-
ture work. Such an adaptive technique would send more
frequent load updates if the load was changing often during
the interval, and would send updates less frequently if the
amount of server load was relatively steady.

3.6 Gate

A gate node perform network address translation (NAT) to
forward packets between clients and servers. When the gate
receives the resolution request, it puts an entry into its con-
nection ready table with the timeout of the TTL given in the
resolution message. If the client issues a connection request
within the TTL, the gate sets up a mapping in NAT table
in both directions, i.e. from the client to the server and
from the server to the client. Each entry in the NAT table
maintains the client and server IP addresses, port numbers
and associated timeout value. Whenever a packet traverses
the gate, the matching entry is refreshed. If there is no valid
mapping for the packet in the table, the gate may send a
RST packet to the sender, or silently drop the packet, based
on the desired semantics. When there is no packet flow for a
given connection for the timeout duration, a garbage collec-
tor deletes the NAT entry to reclaim the memory space. The
garbage collection can be implemented efficiently with the
second-chance clock algorithm used in operating systems.

3.7 What does DAM provide?

In this section, we discuss the protection DAM provides for
different forms of DoS attacks. For network link saturation
attacks, DAM protects the network links to servers. In con-
trast, in current CDNs attackers may directly attack servers
after the resolution step. In DAM, attackers can only flood
gate nodes, and hence servers are not affected by such at-
tacks. The flooding packets will simply be dropped at gates
since there will not be a valid NAT entry for these packets.

Attacks seeking to saturate server processing capabilities are
difficult to mount in DAM, since DAM spreads HTTP ses-
sions to different content servers based on proximity and
load, thus denying attackers the ability to target a partic-
ular content server. Specifically, every communication with
a content server must go through a gate for that server. To

get a valid mapping at a gate, an attacker must perform the
resolution step. Since attackers cannot control the server
selected by load balancer, it is difficult to focus the attack
volume on a given content server. Hence, with DAM, at-
tackers need more resources to attack a service since they
cannot mount a sequential attack that overwhelms content
servers on an individual basis. Instead, attackers must have
enough resources to issue HT'TP requests overwhelm all con-
tent servers, or launch a flooding attack which overwhelms
all gates that are in use by any content server for the vic-
tim service. Thus, with DAM, adding an additional content
server for a given service increases the protection level of
every other server, since attack volume is spread across all
servers. Although the current CDNs increase scalability for
client requests, they do not increase the protection level for
other content servers in a similar manner to DAM.

Finally, using the DHT makes DAM highly resistant to DoS
attacks. Since the responsibility of resolutions of names is
distributed to geographically distributed nodes in the net-
work, attackers need to shut down the whole infrastructure
to shut down the whole name space. In addition, the replica-
tion of load balancers provides additional protection against
DoS attacks that target a portion of the namespace, i.e. the
namespace for a given service.

4. SIMULATIONS

4.1 Simulation Framework

We have used the NS-2 network simulator to validate our
proposed infrastructure. Our simulations include all of the
salient aspects of the problem we are investigating, including
web clients, servers, attackers, and the different components
of our infrastructure discussed in Section 3. We test the per-
formance of our architecture against a competing CDN ap-
proach, which utilizes load-balancing among content servers,
but provides clients with a direct IP connection to a “good”
server containing the desired content.

We have tested scenarios involving 200, 400 and 1000 node
transit-stub network topolgies generated by the GT-ITM
[19] library. The links in the topologies were assigned the
following bandwidths: 100Mbps for intra-stub domain links,
1.5Mbps for stub-transit links, and 45Mbps for intra-transit
domain links. These bandwidth values have been previously
used in other simulation studies [10],[20]. In addition, the
links in the topologies were assigned the following delays,
as recommended in [16]: 1lms for intra-stub domain links,
10ms for stub-transit links, and 100ms for intra-transit do-
main links. Landmarks are randomly placed in the network.
DAM nodes, servers, clients, and attackers are placed ran-
domly in stub domains.

We ran each simulation for 300 seconds. For each data point
we averaged simulation results over ten different client traffic
generation scenarios. We now discuss the various elements
of our simulations in more detail.

4.1.1 Client Model

We have tested two types of client workloads — a naive client
and a more sophisticated HTTP client. In both workloads,
if a client cannot find a valid mapping from a service name
to an IP address in the name cache, it issues a resolution

Component Shape (a) | Scale (k)
Page Size 1.1 1k
Embedded Obj. Size 1.1 10k
Num. Embedded Objs. 2.43 1.0
OFF Time (s.) 1.5 1.0

Table 1: Parameters for the distributions used in

the HTTP Client model

request to DAM. The current TTL of a cache entry is 30
seconds. A naive client requests an object and waits for
a response. After getting a response it can issue another
request. The maximum request sending rate allowed is 2
requests/second. The size of the server responses are uni-
formly distributed in [1K B, 50K B].

The HTTP client tries to more accurately model the behav-
ior of human clients. In particular, we attempt to generate
traffic that is bursty and self-similar, presenting high vari-
ability over different time-scales. Our model is based on
the SURGE web workload generator [21], which generates
HTTP traffic matching empirical observations. We use a
simplified model, in which objects are represented simply
by their size, since we do not model caching at any point.

One important characteristic that we preserve is the concept
of user equivalents, and that of an ON-OFF process for re-
quest generation. Each client alternates between two phases,
the ON and OFF periods, both with durations following
heavy-tailed distributions. The client operates according to
HTTP/1.1, using persistent and pipelined connections [22].
During the ON period, the client issues several requests. The
first request is considered to be an html page, which refer-
ences a number of embedded files. The number of embedded
files per page, as well as the sizes of the files returned follow
Pareto distributions. The client waits for the response to
the first requested object to arrive, and then makes a se-
ries of requests for embedded files, using the pipelined con-
nection. After all of the responses have been received, the
client starts an OFF period, which also has the duration
governed by a pareto distribution. The combined effect of
the different ON-OFF client processes creates a bursty and
self-similar traffic pattern [23]. The parameters used for the
distributions are shown in Table 1. The Pareto distribu-
tion, with the probability density function given by (2), is
a heavy-tailed distribution, which presents high variability
and a non-negligible probability for high values.

p(z) = ak®c” @+ (2)

4.1.2 Server Model

We use a simple server model involving round robin schedul-
ing of client requests. The server maintains a single queue
that receives HTTP requests from the network. It processes
each request for a 1ms time slice. After processing for a
time slice, if the processed amount is greater than or equal
to a chunk size, the server sends the processed amount of
bytes to the client. The chunk size used in our simulations
is 8KB. If the entire request has not yet been serviced, then
the server places the request at the end of the queue noting
the amount of service that the request has received. This

scheduling attempts to model the queuing delay at a real
web server. In addition, the server is able to process a fixed
number of requests per second. In our simulations this pro-
cessing rate was set to 100KB/s.

4.1.3 Attacker Model

We used two different types of attackers — UDP attacker
and HTTP attacker. UDP attackers send 1KB UDP pack-
ets with a constant sending rate. HTTP attackers request
an object of 10KB with a constant request rate. The request
rate is varied to control the overall attack volume. The at-
tacks are coordinated with a master control unit, similar to
real attacks such as Trinoo [24]. Given the number of tar-
get servers to attack, attackers are partitioned into groups
randomly, and each group attacks one target server.

4.1.4 Infrastructure Configuration

DAM components reside on top of Chord. We use 8 land-
marks for determining client and server locations as previ-
ously outlined in Section 3.4. The resolution TTL used in
our simluations is 30 seconds. Each server sends updated
load information to their respective authoritative load ev-
ery 30 seconds, and the gate load update interval is also 30
seconds.

4.2 Performance Metrics
We use the following metrics to evaluate the performance of
DAM in comparison to existing CDN architectures.

Aggregate throughput: This is the total bytes, per second, of
HTTP server responses received by clients in the network.

Inverse power: This is defined by average response time di-
vided by aggregate throughput. Inverse power is a metric
that captures two important aspects of HTTP responses:
the throughput of the response and the delay in the re-
sponse.

Average resolution time: This is the average time taken for
the response to a resolution request issued by a client. For
the CDN, this value is simply the round trip time to the
authoritiative DNS server. In DAM, this value includes the
time needed for chord routing to the load-balancer, the time
from the server to the gate, and finally the time taken for
the response from the gate to the client.

Cumulative count: This is the cumulative count of packets
received at all clients based on their average response time.
We do not use the cumulative distribution function (CDF)
due to the large disparity in the number of responses handled
by DAM in comparison to CDNs under high attack volume.

4.3 Simulation Results

We now present the results for simulations involving a 400
node transit stub topology with 3 content servers, 40 HTTP
clients, and 20 attackers. Figure 2 shows the aggregate
throughput, inverse power, and average resolution time for
DAM in comparison to the current CDN with errorbars de-
noting the 90% confidence interval. Results for naive clients,
and for other topolgies sizes, though not shown, are similar.

As shown in Figure 2 (a), DAM offers a slightly lower ag-

gregate throughput than the CDN for low attack volumes,
due to the overhead of communication using gate nodes.
However, as attack volume is increased, DAM is able to
maintain a high throughput, while the clients’ throughput
sharply falls off when using the CDN. As shown in the graph,
for high attack volumes, DAM offers greater than an order
of magnitude improvement over the competing CDN archi-
tecture. When there is no attack (i.e., attack rate is 0),
there is little difference between the aggregate throughput
for DAM and the CDN. In low attack volume, DAM’s aggre-
gate throughput is slightly less than the CDN, since servers
can choose gates which are under attack. The relatively
large confidence interval is also due to the choice of gates.
This performance can be improved by utilizing bandwidth
usage information from gates during the selection process,
and we plan on investigating this enhancement in future
work. After 500 packets/s attack rate per attacker, the CDN
throughput drops sharply because the links to servers are
saturated. Servers are idle most of time under high attack
volume, since client requests do not reach servers.

Figure 2 (b) demonstrates that DAM offers a low inverse
power, regardless of attack volume. Meanwhile, for any at-
tack load larger than 500 packets per second, the inverse
power of the network for the CDN increases with attack
volume due to the substantial decrease in throughput cou-
pled with an the increased latency in HTTP responses. The
time needed for service name resolution in DAM is slightly
more than twice that needed for clients using the CDN, as
shown in Figure 2(c). However, this resolution time can be
decreased by utilizing an adaptive TTL scheme, which as-
signs larger TTLs when the system is not under attack, and
smaller TTLs during times of high load. In addition, the IP
addresses of load balancers can be cached with large TTL
to avoid Chord routing latency in the resolution step.

Finally, Figure 3 shows the cumulative count for HT'TP re-
sponses for different attack volume (0, 500, 600, and 1500
packets per second for an attacker). This figure reveals that
for attack volumes larger than 500 packets per second, fewer
client HTTP requests are serviced by the content servers.
Investigating simulation trace files revealed that TCP back-
offs due to lost packets in the network contributed to clients
issuing a significantly fewer number of HI'TP requests to
servers, resulting in fewer server responses and degredation
in client throughput.

5. CONCLUSIONS AND FUTURE WORK

DoS attacks represent a major threat to the Internet today.
In this paper we propose DAM, a novel architecture to mit-
igate DoS attacks. DAM is a high-capacity infrastructure,
shared by multiple service providers, which uses its vast re-
sources to absorb DoS attacks with minimal performance
degradation. In particular, DAM uses an indirection point
to disallow direct IP access to servers. This level of indi-
rection, tightly coupled with load balancing, offers servers
significant protection from DoS attacks.

To demonstrate the viability of this approach we have imple-
mented DAM in NS-2. Our simulations showed that a rep-
resentative example of current CDN architectures collapses
under heavy attack load, while DAM continues to provide
good client throughput. Furthermore, our simulations also

0012

14

0.01

0.008

0.006

0.004

Aggregate Throughput (KB/s)
=
8
Inverse Power (s/K B)

0.002

F} 12}
1}
08t

06

04

average resolution latency/(sec)

02

e 0

0 I

Attack Rate Per Attacker(pkt/s)

(a)

L L L L L —— ¥
0 200 400 600 800 1000 1200 1400 1600 0 200 400 600 800
Attack Rate Per Attacker(pkt/s)

0

* * r
1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
atack volume (bytes'sec)

(c)

Figure 2: Simulation Results for 400 node topology. (a) Average throughput as a function of attack rate. (b)
Inverse power as a function of attack rate. (c) Average resolution time as a function of attack rate.

reveal that DAM is quite efficient in normal operating con-
ditions, i.e. with no attack load. Overall, these simulation
results revealed that DAM is a very effective infrastructure
for DoS attack mitigation.

There are several directions for future work. We intend
to study the effect of attacks on the infrastructure itself.
Since we handle these attacks with replication of load bal-
ancers, we would like to investigate the effectiveness of this
approach. We also intend to examine more accurate load
models, especially the network bandwidth usage at gates
and load at servers. A final area for future work is to port
our implementation of DAM in NS-2 to a real-world DHT
and evaluate our system’s effectiveness with experiments in
a wide area testbed such as PlanetLab [25].

6. ACKNOWLEDGEMENTS

The authors thank Eric Brewer, Ion Stoica, and David Wag-
ner for valuable feedback regarding this work.

7. REFERENCES
[1] David Moore, Geoffrey M. Voelker, and Stefan Savage,
“Inferring Internet Denial-of-Service Activity,” in
Useniz Security Symposium, 2001.

[2] “Ann Harrison. The denial-of-service aftermath.
CNN.com. February 14, 2000.
http://www.cnn.com/2000/ TECH /computing/02/14/
dos.aftermath.idg/,” .

[3] “Thomas R. Horton. Board level concerns for
consequences of information security threats.
Washington, DC Summit. April 18, 2000.
http://www.ciao.gov/industry/04-18-00/
hortonprinter.html,” .

[4] “Jaikumar Vijayan. Denial-of-service attacks on the
rise? CNN.com. April 9, 2002.
http://www.cnn.com/2002/TECH/internet/04/09/
dos.threat.idg,” .

[6] Jaeyeon Jung, Balachander Krishnamurthy, and
Michael Rabinovich, “Flash Crowds and Denial of
Service Attacks: Characterization and Implications for
CDNs and Web Sites,” in 11th International WWW
Conference, 2002.

[6] Ion Stoica, Robert Morris, David Karger, Frans
Kaashoek, and Hari Balakrishnan, “Chord: A scalable
Peer-To-Peer lookup service for internet applications,”
in Proceedings of the 2001 ACM SIGCOMM
Conference, 2001, pp. 149-160.

[7] “UCB/LBNL/VINT. The Network Simulator version
2, ns-2. http://www.isi.edu/nsnam/ns,” .

[8] Stefan Savage, David Wetherall, Anna R. Karlin, and
Tom Anderson, “Practical network support for IP
traceback,” in SIGCOMM, 2000.

[9] Ratul Mahajan et al, “Controlling High Bandwidth
Aggregates in the Network,” ACM CCR, vol. 32, no.
3, pp. 62-73, July 2002.

[10] Yan Chen, Adam Bargteil, David Bindel, Randy H.
Katz and John Kubiatowicz, “Quantifying network
denial of service: A location service case study,”
Lecture Notes in Computer Science, vol. 2229, 2001.

[11] A. Keromytis, V. Misra, and D. Rubenstein, “SOS:
Secure Overlay Services,” in SIGCOMM, 2002.

[12] Miguel Castro, Peter Druschel, Ayalvadi Ganesh,
Antony Rowstron and Dan S. Wallach, “Security for
structured peer-to-peer overlay networks,” in
Proceedings of 5th Symposium on Operating Systems
Design and Implementation, 2002.

[13] Sylvia Ratnasamy, Paul Francis, Mark Handley,
Richard Karp, and Scott Shenker, “A scalable content
addressable network,” in Proceedings of ACM
SIGCOMM 2001, 2001.

[14] Antony Rowstron and Peter Druschel, “Pastry:
Scalable, decentralized object location, and routing for

large-scale peer-to-peer systems,” Lecture Notes in
Computer Science, vol. 2218, pp. 329-77, 2001.

[15] B. Y. Zhao, J. D. Kubiatowicz and A. D. Joseph,
“Tapestry: An Infrastructure for Fault-tolerant
Wide-area Location and Routing,” Tech. Rep.
UCB/CSD-01-1141, UC Berkeley, April 2001.

[16] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker,
“Topologically-aware overlay construction and server
selection,” in Proceedings of IEEE INFOCOM’02,
2002.

[17] C. Overton Y. Chen, K. Lim and R. H. Katz, “On the
stability of network distance estimation,” in
Proceeding of ACM SIGMETRICS Practical Aspects of
Performance Analysis Workshop (PAPA 2002), 2002.

[18] Byung-Gon Chun, Rodrigo Fonseca, and Puneet
Mehra, “DAM: an Infrastructure for DoS Attack
Mitigation,” CS 262A Project Report, U.C. Berkeley,
2002.

[19] Ellen W. Zegura, Kenneth L. Calvert, and Samrat
Bhattacharjee, “How to model an internetwork,” in
Proceedings of IEEE INFOCOM’96, 1996.

[20] J. Jannotti et al, “Overcast: Reliable Multicasting
with an Overlay Network,” in Useniz OSDI, 2000.

[21] Paul Barford and Mark Crovella, “Generating
representative web workloads for network and server
performance evaluation,” in Measurement and
Modeling of Computer Systems, 1998, pp. 151-160.

[22] Jeffrey C. Mogul, “The case for persistent-connection
HTTP,” in Proc. SIGCOMM ’95 Symposium on
Communications Architectures and Protocols,
Cambridge, MA, August 1995, pp. 299-313.

[23] Vern Paxson and Sally Floyd, “Wide area traffic: The
failure of posson modeling,” IEEE/ACM Transactions
on Networking, vol. 3(1), pp. 226-244, 1995.

[24] “David dittrich. the dos project’s ’trinoo’ distributed
denial of service attack tool.
http://staff.washington.edu/dittrich/misc/trinoo.analysis,”

[25] “PlanetLab. http://www.planet-lab.org,” .

Cumulative Count

Cumulative Count

25000

0 Attack Packets's

10000

5000 |

001

25000

01 1 10 100 1000
Response Time (9)

600 Attack Packets's

5000 |

001

1000

Response Time (9)

Figure 3: Cumulative count of HTTP response times

Cumulative Count

Cumulative Count

25000

500 Attack Packets/s

25000

1000

Response Time (5)

1500 Attack Packets/s

1000

Response Time (5)

for different attack loads

