
Scrash: A Tool for Generating Secure Crash Information

Pete Broadwell Matt Harren Naveen Sastry
{pbwell, matth, nks}@cs.berkeley.edu

December 16, 2002

Abstract

A growing number of contemporary applications and
operating systems include provisions for sending debug-
ging information back to the developer after a crash.
While this practice is of great help to the developer,
it can pose a privacy vulnerability to the end user of
the software. Crash reports may contain sensitive user
data such as passwords and credit card numbers, which
are exposed to misuse or interception when the report is
sent over the network and later stored in the developer’s
crash data repository.

This paper presents Scrash, a tool that safeguards
user information by removing sensitive data from crash
reports. Scrash operates by modifying the source code
of C programs to ensure that data labeled “sensitive”
does not appear in a crash report. In evaluation tests,
Scrash added only a small amount of run-time overhead
and required minimal involvement on the part of the
developer.

1 Introduction

Examining a process’ state is one of the primary re-
sources that developers use to diagnose and fix errors
in computer programs. For this reason, operating sys-
tems and programming suites have for decades included
tools to capture a process’ state at crash time. The file
that holds this state is known as a core file. Recently,
however, the advent of ubiquitous network connectivity
for the personal computer has given developers the abil-
ity to receive information about bugs in their programs
after they have been distributed to users.

The remote crash reporting tools incorporated into
modern operating systems and applications typically
send the developer a subset of the data present in a
core file: part or all of the call stack, register contents,
or system configuration information. While it is rare for
a crash report to be more detailed than this, the largest
reports may also contain the contents of the heap and
any files that the program may have been accessing dur-
ing the crash. We will call the information that is sent

back crash data. Note that what comprises crash data
varies from vendor to vendor. Each may decide to send
a different subset of the core file.

Remote crash reporting technology grants the devel-
oper access to potentially vast amounts of crash data,
speeding the diagnosis and repair of software vulnerabil-
ities. Fingerprinting the call stack after a crash can help
the developer to focus on fixing the bugs that appear
most often. Alternatively, the developer can suggest
fixes or patches to the user based on the call stack fin-
gerprint. Indeed, post-deployment crash reporting and
bug fix releases are quickly becoming a necessity for
modern consumer software, given the increasing com-
plexity and hurried development cycle of applications
and operating systems.

There are many forms of “sensitive” information wor-
thy of protection. Clearly a password should be con-
sidered private, and hence sensitive. But is the list of
recently used file names sensitive? What about the ac-
tion the user is currently executing? For this paper, we
will largely sidestep this issue. We will only allow the
sensitive tag to be applied to memory addresses, so that
the list of function names called will not be considered
sensitive. Furthermore, we will defer judgment of what
should be considered sensitive memory addresses to the
software developer. We will provide a discussion of in-
formation flow in Section 4 which impacts what should
be considered sensitive.

The benefits of mobile crash data do not come with-
out risks, however. Because they contain some or all
of the memory contents of the program at the time it
failed, crash reports may include sensitive user informa-
tion. A recent security flaw in the Dr. Watson crash
report tool for Windows NT and 2000 was due to the
fact that the program would write comprehensive crash
reports, including the memory contents of a program, to
a world-readable directory on the computer [14]. This
practice raised security and privacy concerns, because a
malicious party on a multi-user system could examine
the crash report with a text editor and extract possibly
confidential information, such as the credit card num-
bers or web browser cookies of targeted user.

In addition, there are inherent security risks associ-

1

ated with sending crash data to a remote party over
a network. For instance, it is possible for the data to
be intercepted en route, although most bug-report pro-
grams attempt to guard against this by encrypting the
data stream. Another, possibly greater concern deals
with the fate of the data after it reaches the developer.
It is likely that the data will be stored for some time,
perhaps indefinitely, in a crash data repository main-
tained by the code developer. If it becomes known
that a certain fatal error results in sensitive, valuable
user data being stored in these repositories, they could
quickly become attractive targets for both recreational
and professional information thieves.

Finally, it is important to consider that the inten-
tions of the application maintainer may not be entirely
honorable. There is always a risk that the personal data
contained in crash reports may be used to the advantage
of the person or corporation controlling it, but to the
detriment of the end user’s privacy and security. For
example, the developer may sell the private informa-
tion to a third party for profit, or may use it to deliver
unsolicited, targeted advertising to the user. Our sys-
tem does not address the problem of deliberate privacy
invasion by the developer, in part because even if we
blocked crash reports completely there would still be
no way to prevent other kinds of covert channels. In-
stead, we assume that the developer cooperates with us
and examine how secure we can make crash reports in
this case.

A simple solution would be for the user to disable
all crash reporting, but this action would deprive the
developer of much information that ultimately results
in more secure and reliable software. Instead, we try
to balance the security concerns of the user with the
debugging needs of the developer. We have developed
Scrash, a transformation on C code that removes sen-
sitive information from crash reports, while still retain-
ing significant non-user-specific debugging information
to help the developer find and fix bugs.

Scrash works by requiring the developer to annotate
data fields that will hold sensitive user data. It then
performs a static analysis of the program’s source code
to identify any other variables that may contain this
data at some point in the program’s execution. Finally,
Scrash inserts code into the program to ensure that sen-
sitive user information is stored separately from other
data and can easily be removed from a crash report.

2 Implementation

There are a number of way to prevent transmitting the
sensitive information from the core file to the developer.
Among these methods, there is often a tradeoff between

the amount of utility that the core file presents and
the privacy that the user achieves. The most secure
method, of course, is to prevent the transmission of the
core file at all. This guarantees that no information,
whether sensitive or not, is leaked via the core file but
deprives the developer of any useful crash information.
At the other end of the tradeoff, the crash reporting tool
transmits the entire core file. The developer gains all
of the utility of the core file, but without any privacy
protection for the user.

The current tools do not transmit the heap, so sensi-
tive information which resides there will not be vulner-
able; this leaves sensitive information in globals and on
the stack vulnerable to attacks. In addition, the heap is
not available for the developer’s use. It should be noted
that the heap is omitted for other reasons as well, as
it is often significantly larger than the other segments
of the core file and less helpful than the stack in the
developer’s task of figuring out what went wrong at the
crash site.

The approach that we take seeks to eliminate sensitive
information from the heap, stack, and global variables
while still providing useful information to the developer.
We place the contents of any sensitive variables in a sep-
arate region which is not transmitted on a crash. Thus,
the stack, globals and main heap will only contain in-
sensitive information, so that the crash reporting tool is
free to transmit any of them. The key difficulty is iden-
tifying the sensitive data, which we will outline below.

We have implemented Scrash using very little new
code. We have written 600 lines of Objective Caml code
to perform the transformations, and 200 lines of C code
to create a modified allocator.

2.1 Merging of source files

We use CIL (a C Intermediate Language implemented
in OCaml)[7] as the infrastructure for our source-to-
source translation. CIL translates C code into a clean,
easy to manipulate subset of C. It includes drivers that
act as drop-in replacements for gcc, ar, and ld so that
CIL can be used with existing makefiles. CIL uses these
drivers to collect all of the source files for a program,
preprocess them, and merge them into a single C file to
facilitate whole-program analysis.

2.2 Analyzing the sensitivity of vari-
ables

Our system extends each type in the program with a
type qualifier to indicate whether or not it may hold
sensitive information. We use CQual, a type qualifier in-
ference program, to determine which types should have
this “$sensitive” qualifier [3]. The implementation of

2

CQual used by our system performs a whole program,
flow-insensitive analysis with a limited form of polymor-
phism which only works for library calls. 1 to determine
where sensitive data might spread from an initial set of
sensitive variables annotated by the programmer. The
question of whether data may be sensitive is analogous
to the question of whether it may be tainted, so we can
use the same analysis as in [10].

As an alternative to annotating specific data at the
point it enters the program, the programmer may
choose to use a pre-annotated header file that marks
as sensitive all data returned by functions like read and
recv. At the cost of unnecessarily marking some values
as sensitive, this option makes it easy to denote user
data as sensitive without the need to enter program-
specific annotations. This is the approach taken in our
experiments.

The CQual stage outputs the original program and
applies attributes to each variable describing its sen-
sitivity. This allows later stages to quickly determine
whether a variable should reside in the secure or inse-
cure region of memory.

2.3 Smalloc & Shadow Stacks

After identifying the sensitive memory addresses, it be-
comes possible to erase their contents before shipping
the core file. A difficulty arises in determining where
the information resides in the core file. In general, the
sensitive variables will be scattered throughout the en-
tire core file. One method to find such variables would
be to append each sensitive variable with an immutable
tag identifying the sensitivity status. A post process
cleaning process could then iterate over the core file
and remove or overwrite all sensitive variables by look-
ing at the tag. An alternative, which we utilize, groups
sensitive memory together using a separate region.

We have written Smalloc, an allocator which is re-
gion aware, to manage this “secure” region. It is based
on the Vmalloc package which provides an ideal plat-
form to create allocators[11]. The interface to Smalloc
is similar to malloc. We add an extra parameter to
the allocation function to identify which region the new
memory should come from; the reallocate and free func-
tions remain unchanged. See Figure 3 for the complete
Smalloc interface.

We use smalloc for all heap allocated variables as
well as globals. While in principle stack allocated vari-
ables could also use this sensitive heap, we found that
the performance penalty of this is significant. Instead,
we use a shadow stack which resides within the secure
region to hold the sensitive variables.

1We expect to be able to use a fully polymorphic inference
soon.

#include <crypt.h>
int $sensitive private[2] = {0, 1};

void getPassword(char cryptpw[14]) {
char $sensitive * password = malloc (255);
memcpy (cryptpw,

crypt (password, "00"), 14);
}

void check() {
char $sensitive cryptpw[14];
getPassword(cryptpw);

}

Figure 1: The original, annotated program. It contains
a sensitive global, a pointer to sensitive data, and a
sensitive stack variable.

struct check_shadow {
char cryptpw[14] ;

};
struct __smalloc_globals {

int private[2] ;
};
struct __smalloc_globals *__smalloc_global_var ;
void (__attribute__((__constructor__))

__smalloc_global_init)() ;
void __smalloc_global_init(void) {

{
__smalloc_global_var = (struct __smalloc_globals *)

smalloc(sizeof(struct __smalloc_globals), 1);
__smalloc_global_var->private[0] = (int)0;
__smalloc_global_var->private[1] = (int)1;

}
}
char *stackPointer = 0;
void getPassword(char *cryptpw) {

char *password ;
char *tmp ;
char *tmp___0 ;
{

tmp = (char *)smalloc(255, 1);
password = tmp;
tmp___0 = crypt(password, (char const *)"00");
memcpy(cryptpw, tmp___0, 14);
return;

}
}
void check(void) {

struct check_shadow *check_shadow ;
{

check_shadow =
(struct check_shadow *)stackPointer;

stackPointer += sizeof(struct check_shadow);
getPassword((char *)(check_shadow->cryptpw));
{

stackPointer -= sizeof(struct check_shadow);
return;

}
}

}

Figure 2: The results of the program transformations
on Figure 1

3

void * smalloc (size_t size, char secure);
void * scmalloc (size_t nmemb, size_t size, char secure);
void sfree (void * ptr);
void * srealloc (void * ptr, size_t size);

Figure 3: The Smalloc allocator interface. The alloca-
tion functions take an extra parameter which specifies
whether the data should be allocated in the sensitive
region or on the insecure heap.

2.4 Transformations

We use the Smalloc library and the qualifiers derived by
CQual to drive the program transformations. CIL pro-
vides an easy platform to perform each of these transfor-
mations, which we outline below. The results of apply-
ing the complete set of transformations to the program
in Figure 1 can be seen in Figure 2.

2.4.1 Sensitive Heap Variables

A sensitive heap variable is easily identified since it con-
tains the $sensitive qualifier and is allocated with a
malloc call. Unsensitive heap variables also are allo-
cated with a malloc call, but do not contain the $sen-
sitive qualifier. We change each of the calls to use the
Smalloc allocator, using the presence of the $sensitive
attribute to control which region the smalloc uses. We
similarly replace calloc with scalloc.

In addition to replacing the allocation functions, we
also need to replace any instances of free and realloc
with the smalloc equivalents: sfree and srealloc.
These functions have the same signatures as the func-
tions they replace, so we can perform a simple substi-
tution.

2.4.2 Sensitive Stack Variables

There are two transformations which can be applied to
move sensitive stack variables. We will outline both, re-
serving the discussion of each until the evaluation sec-
tion.

The first transformation moves the sensitive stack
variables into the secure heap. The variables are al-
located at function entry and then deallocated before
the return. We then rewrite all lvalues that refer to
the reallocated stack variable. However, this requires
adding a smalloc and a sfree call to many function
bodies.

An alternative to the previous is to use a shadow
stack. This is a separate stack that parallels the normal
stack and holds sensitive variables. This shadow stack
resides within the secure region, so that we maintain
the invariant that all sensitive information is contained

within that region. We adjust the shadow stack pointer
at the entry and exit for the function.

2.4.3 Sensitive Global Variables

Finally, for sensitive global variables, we define a new
struct to contain each of the sensitive global variables,
instantiating it as smalloc global var. We allocate
it on the heap with a special initialization function. By
adding the gcc-specific attribute “constructor”, we can
ensure that this function runs before main. In this func-
tion we also perform any initialization that is needed for
each global variable by expanding its initializer clause
into regular C statements.

2.5 Postprocessing: Cleaning

Using the above transformations, all of the sensitive in-
formation is fully contained within the secure memory
region. Note that if the program crashes, the core file
will still contain the sensitive information. We use a
cleaning process which overwrites the secure memory
region. It searches for a magic tag that identifies the
metadata for the secure region. The metadata encodes
the type and size of the region, allowing the cleaning
process to overwrite it.

One could imagine incorporating this functionality
into the operating system where the core file is pro-
duced. This would ensure that the cleaning process is
always run before the crash report is written to disk
and prevent problems such as the Dr. Watson bug men-
tioned in the introduction.

3 Evaluation

We tested our system using the OpenSSH secure shell
client [8]. The program consists of about 59,000 lines
of preprocessed C code. In this application it is neces-
sary to treat all data typed by the user as sensitive. The
password used to set up the connection is the most obvi-
ous security risk, but even after the connection is estab-
lished the user may send passwords and other sensitive
information to the server. Therefore, we use the pre-
specified annotations mentioned in Section 2.2, which
marks all data returned by read (among other func-
tions) as sensitive. This marks approximately 16% of
the variables as $sensitive.

3.1 Security evaluation

We ran our modified version of ssh to verify that sen-
sitive information was placed only in the secure region
and that the cleaning process can properly eliminate the
data. Figure 4 shows the excerpts from three core files

4

core.normal.dirty:

000732e0: 6d80 0608 7fd0 0708 0cf3 ffbf 0004 0000 m...............

000732f0: 0200 0000 34f7 ffbf e854 0908 98f8 ffbf4....T......

00073300: 6842 0908 1800 0000 a066 2440 6162 7261 hB.......f$@abra

00073310: 6361 6461 6272 6100 5842 0908 f058 0908 cadabra.XB...X..

00073320: c830 0840 c4ef 0f40 7c3b 0908 28f4 ffbf .0.@...@|;..(...

00073330: 28f4 ffbf 5842 0908 0000 0000 8855 0908 (...XB.......U..

core.smalloc.dirty:

0006a330: 70d0 2340 0000 0000 0000 0000 0000 0000 p.#@............

0006a340: 70d0 2340 0904 0000 0100 0000 0df0 edfe p.#@............

0006a350: 6162 7261 6361 6461 6272 6100 0000 0000 abracadabra.....

0006a360: 80d3 2340 0000 0000 70d0 2340 0000 0000 ..#@....p.#@....

0006a370: 70d0 2340 0000 0000 90d3 2340 0000 0000 p.#@......#@....

core.smalloc.clean:

0006a330: 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX

0006a340: 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX

0006a350: 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX

0006a360: 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX

0006a370: 5858 5858 5858 5858 5858 5858 5858 5858 XXXXXXXXXXXXXXXX

Figure 4: Excerpts from the core file of an induced crash
in the ssh client. The top core file excerpt shows the
stack with the password present – “abracadabra” from
an unmodified ssh client. The middle core file is from a
version of ssh which has been modified using the Scrash
transformations and annotations. The password now re-
sides in the secure region, but since the cleaning process
has not yet been executed on the core file, the password
is again present. The bottom core file shows that the
cleaner overwrites the secure region, and all occurrences
of the password have been removed.

where the program was induced to crash. The top core
file is the original version of ssh where the password
lives on the stack. The middle core files is the result of
running ssh after applying the Scrash transformations,
in which the password resides in the secure heap. The
final excerpt shows the result after running the cleaner.

It is thus simple to validate that the password was
properly moved off of the stack and into the secure re-
gion.

3.2 Performance

Figure 5 shows the performance of ssh after being in-
strumented with our system. The tests consist of con-

Version Running time (s)
Baseline 0.420

(without Scrash)
Sensitive locals moved 0.568

to heap
Sensitive locals moved 0.440

to shadow stack

Figure 5: Time needed for the OpenSSH client to read
2000 lines of commands from stdin and transmit them
to the server. Numbers shown are the mean of 10 runs.

necting to a server on localhost and sending 2000 com-
mands to that server. We recorded the user mode por-
tion of the output of the time command on a Linux
machine.

Our first strategy for moving sensitive stack variables
to the heap – a call to smalloc at the beginning of
each applicable function, as described in Section 2.4.2 –
resulted in too large a performance penalty. An imple-
mentation using a shadow stack, however, added only
about 5% overhead on this test due to the cost of main-
taining the second stack pointer.

4 Discussion

In addition to the runtime overhead for Scrash, the sys-
tem requires some effort from the programmer. This in-
cludes annotating an initial set of sensitive variables (or
deciding to use the pre-annotated file). A small handful
of code changes were required for ssh before CIL would
accept it, such as fixing missing or mismatched variable
declarations. This is because CIL is more restrictive
in typechecking that gcc. It takes roughly three min-
utes to run the entire Scrash transformations on ssh
from preprocessing through program modification using
a 1.5 Ghz Pentium.

We must be a bit careful in evaluating the success of
a technique like Scrash. For example, the absence of the
password from the core file does not mean that there is
no sensitive information related to the password in the
core file. For example, the length of the password may
be stored in a separate variable. For complete security,
the taint analysis must also mark the length field as be-
ing tainted. Failure to do so would reveal the password’s
length.

Alternatively, it may be possible to ascertain the size
of a sensitive buffer by comparing pointers. For exam-
ple, if we let p be a pointer to a sensitive data field, we
can bound the size of the sensitive data by comparing
all heap-allocated pointers t to its pointer:

min
t>p

(t− p)

Thus, with a simple analysis, it may be possible to
reveal the length of the sensitive buffer. This suggests
that p is also sensitive and should be placed on the sen-
sitive heap, adding an extra level of indirection to all
accesses to p.

In addition, the instruction pointer and call stack can
also leak information in subtle ways. They can reveal
the state of conditional expressions that may depend on
a sensitive value, such as whether the password length
is zero or not. Similarly, the contents of the CPU regis-
ters may leak security-related information. The register

5

contents form an integral component of a program’s de-
bugging information, however, and removing them from
a core file will greatly reduce the utility of the remaining
crash data.

As we have demonstrated, the tradeoffs between user
privacy and utility to the developer become difficult to
manage when dealing with information flow and covert
channels. By its nature, our taint analysis must be con-
servative in order to be effective, yet an overly conserva-
tive set of flow analysis rules quickly results in all data
being forced into the secure region. This will not leak
any data, but obviously is not very useful to the devel-
oper. Thus, the precision and sophistication of the taint
analysis directly affects the amount of useful informa-
tion the developer receives.

A final problem involves the use of precompiled and
dynamic (shared) libraries. Current libraries, such as
glibc, are written without consideration of the concept
of sensitive data. CQual understands the semantics
of many glibc functions and will correctly propagate
qualifiers across, for example, calls to memcpy. How-
ever, there is no way for a source-level translation like
Scrash to modify the storage of variables in precom-
piled libraries. For example, strcpy may keep a char
temporarily on the stack or, more likely, in a register;
strlen may keep a running string length count as a
stack variable. In the event of a crash, these variables
will remain on the insecure stack, where they can leak
pieces of sensitive information. This leads us to con-
clude that sensitive data should never be passed to a
precompiled library function, in order to preserve the
sensitivity semantics.

There are a number of possible solutions to this prob-
lem. One could choose from a set of precompiled li-
braries with different versions of the given function: one
in which the first argument is considered sensitive but
not the second, one in which only the second argument
is considered sensitive but not the others, and so on.
For an n argument function, this could require up to
2n different versions. Alternatively, the function could
be written assuming that all the arguments are con-
sidered sensitive. A third solution involves abandoning
precompiled libraries altogether and compiling shared
functions directly into the program, using CQual to
propagate taint analysis qualifiers. This last method,
unfortunately, deprives end users of the benefits offered
by shared libraries.

5 Related Work

To the best of our knowledge, there has been no previous
research published on the topic of limiting crash data
to ensure privacy. Microsoft’s Dr. Watson [2] and the

Bug-Buddy bug reporting tool for Gnome [1] represent
the current state of the art in remote crash reporting
software. Both tools can be used to transmit the func-
tion call stack as part of a bug report. Dr. Watson
encrypts this data for transmission using SSL, and also
keeps much more detailed crash information, such as
the program heap, on the local machine.

Liblit and Aiken look to automate part of the debug-
ging process with partial information[6]. They describe
a technique to automatically reconstruct program paths
given only a limited set of information, for example just
the instruction pointer and stack backtrace. Their work
is mainly focused on a better analysis and does not ad-
dress security.

There is a large body of work which describes tech-
niques for efficient allocators [13] and garbage collectors
[12]. Region based memory allocators in which multiple
heaps are exposed have also been studied [4, 5]. While
they present a richer set of semantics than we need,
they helped to inspire our implementation. Finally, the
Vmalloc software release provides an alternative alloca-
tor to malloc. It exposes many different allocation fit
strategies and exposes rich internal interfaces.

We use CQual, a static analysis tool, to track the
possible spread of sensitive information [3]. Sabelfeld
and Myers[9] survey language-based systems for stati-
cally tracking information flow in a secure manner. This
typically involves removing all covert channels within
a program which can require extensive code modifica-
tions. We do not address the issue of convert channels
in this work.

6 Future Work

Changes to Scrash in the short term mostly involve im-
provements to the analysis phase. We hope to use an
improved CQual which reduces the number of false pos-
itive sensitive type qualifier tags. This new polymorphic
version of CQual should easily integrate into the Scrash
tool without any effort. Modifying Scrash to work with
C++ is another area of active interest; CQual has re-
cently been extended to work with C++ code.

In addition, we hope that support for Scrash will be
incorporated into some of the standard bug reporting
tools. For the greatest degree of security, however, it
will be necessary to integrate Scrash with the routines
in the operating system that actually produce core files,
so that sensitive data will already be zeroed out of a core
file before it is written to the file system.

6

7 Conclusion

We have described Scrash, a C code modification tool
for generating secure crash information. The tool is de-
veloper friendly and introduces very low run-time over-
head. It is our hope that the tool will soon become
widely adopted, so that developers may continue to take
advantage of the opportunities offered by remote crash
reports, while at the same time safeguarding the end
user’s security and privacy.

8 Acknowledgments

Many people have contributed to this project. Dan
Wilkerson and Rob Johnson implemented many last
minute CQual features for us, while John Kodumal, Jeff
Foster, and the rest of the CQual team provided advice
on using CQual. We thank Ben Liblit and David Gay
for their insightful comments and suggestions. The CIL
project has proved instrumental for implementing our
transformation. Finally, David Wagner provided help-
ful guidance along the way.

References

[1] Jacob Berkman. Project Info for Bug-Buddy.
http://www.advogato.org/proj/bug-buddy/,
2002.

[2] Microsoft Corporation. Dr. Watson Overview.
http://www.microsoft.com/TechNet/
prodtechnol/winxppro/proddocs/drwatson%
_overview.asp, 2002.

[3] Jeffrey S. Foster et al. CQual: A tool for adding
type qualifiers to C. http://www.cs.berkeley.
edu/~jfoster/cqual/.

[4] David Gay and Alexander Aiken. Memory Manage-
ment with Explicit Regions. In SIGPLAN Confer-
ence on Programming Language Design and Imple-
mentation, pages 313–323, 1998.

[5] David Gay and Alexander Aiken. Language Sup-
port for Regions. In SIGPLAN Conference on Pro-
gramming Language Design and Implementation,
pages 70–80, 2001.

[6] Ben Liblit and Alex Aiken. Building a Better Back-
trace: Techniques for Postmortem Program Anal-
ysis. UC Berkeley Computer Science Technical Re-
port UCB——CSD-02-1203, October 2002.

[7] George C. Necula, Scott McPeak, Westley Weimer,
Raymond To, and Aman Bhargava. CIL: Infras-
tructure for C Program Analysis and Transfor-
mation. http://www.cs.berkeley.edu/~necula/
cil, 2002.

[8] OpenSSH. http://www.openssh.com/.

[9] Andrei Sabelfeld and Andrew C. Myers. Language-
Based Information Flow Security. IEEE Journal on
Selected Areas in Communications, January 2003.

[10] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster,
and David Wagner. Detecting Format String Vul-
nerabilities with Type Qualifiers. In 10th USENIX
Security Symposium, pages 201–220, August 2001.

[11] Kiem-Phong Vo. Vmalloc: A General and Efficient
Memory Allocator. Software Practice & Experi-
ence, 26:1–18, 1996.

[12] Paul R. Wilson. Uniprocessor Garbage Collection
Techniques. In Proc. Int. Workshop on Memory
Management, number 637, Saint-Malo (France),
1992. Springer-Verlag.

[13] Paul R. Wilson, Mark S. Johnstone, Michael Neely,
and David Boles. Dynamic Storage Allocation: A
Survey and Critical Review. In Proc. Int. Work-
shop on Memory Management, Kinross Scotland
(UK), 1995.

[14] Brandon Wirtz. Dr. Watson’s a Big-Mouth. http:
//www.griffin-digital.com/dr__watson.htm,
2002.

7

