1 Breadth-First Search

Breadth-first search \((BFS)\) is the variant of search that is guided by a queue, instead of the stack that is implicitly used in DFS’s recursion. In preparation for the presentation of BFS, let us first see what an iterative implementation of DFS looks like.

```plaintext
procedure i-DFS(u: vertex)
initialize empty stack S
push(u,S)
while not empty(S)
v=pop(S)
visited(v)=true
for each edge (v,w) out of v do
  if not visited(w) then push(w)

algorithm dfs(G = (V,E): graph)
for each v in V do visited(v) := false
for each v in V do
  if not visited(v) then i-DFS(v)
```

There is one stylistic difference between DFS and BFS: One does not restart BFS, because BFS only makes sense in the context of exploring the part of the graph that is reachable from a particular node \((s\) in the algorithm below). Also, although BFS does not have the wonderful and subtle properties of DFS, it does provide useful information: Because it tries to be “fair” in its choice of the next node, it visits nodes in order of increasing distance from \(s\). In fact, our BFS algorithm below labels each node with the shortest distance from \(s\), that is, the number of edges in the shortest path from \(s\) to the node. The algorithm is this:

```plaintext
Algorithm BFS(G=(V,E): graph, s: node);
initialize empty queue Q
for all \(v \in V\) do dist[v]=\(\infty\)
ininsert(s,Q)
dist[s]:=0
while Q is not empty do
  v:= remove(Q),
  for all edges \((v,w)\) out of v do
    if dist[w] = \(\infty\) then
      insert(w,Q)
    dist[w]:=dist[v]+1
```

For example, applied to the graph in Figure 1, this algorithm labels the nodes (by the array \(dist\)) as shown. We would like to show that the values of \(dist\) are exactly the distances
of each vertex from \(s \). While this may be intuitively clear, it is a bit complicated to prove it formally (although it does not have to be as complicated as in CLR/CLRS). We first need to observe the following fact.

Lemma 1

In a BFS, the order in which vertices are removed from the queue is always such that if \(u \) is removed before \(v \), then \(\text{dist}[u] \leq \text{dist}[v] \).

Proof: Let us first argue that, at any given time in the algorithm, the following invariant remains true:

\[
\text{if } v_1, \ldots, v_r \text{ are the vertices in the queue then } \text{dist}[v_1] \leq \ldots \leq \text{dist}[v_r] \leq \text{dist}[v_1] + 1.
\]

At the first step, the condition is trivially true because there is only one element in the queue. Let now the queue be \((v_1, \ldots, v_r) \) at some step, and let us see what happens at the following step. The element \(v_1 \) is removed from the queue, and its non-visited neighbors \(w_1, \ldots, w_i \) (possibly, \(i = 0 \)) are added to queue, and the vector \(\text{dist} \) is updated so that \(\text{dist}[w_1] = \text{dist}[w_2] = \ldots = \text{dist}[w_i] = \text{dist}[v_1] + 1 \), while the new queue is \((v_2, \ldots, v_r, w_1, \ldots, w_i) \) and we can see that the invariant is satisfied.

Let us now prove that if \(u \) is removed from the queue in the step before \(v \) is removed from the queue, then \(\text{dist}[u] \leq \text{dist}[v] \). There are two cases: either \(u \) is removed from the queue at a time when \(v \) is immediately after \(u \) in the queue, and then we can use the invariant to say that \(\text{dist}[u] \leq \text{dist}[v] \), or \(u \) was removed at a time when it was the only element in the queue. Then, if \(v \) is removed at the following step, it must be the case that \(v \) has been added to queue while processing \(u \), which means \(\text{dist}[v] = \text{dist}[u] + 1 \).

The lemma now follows by observing that if \(u \) is removed before \(v \), we can call \(w_1, \ldots, w_i \) the vertices removed between \(u \) and \(v \), and see that \(\text{dist}[u] \leq \text{dist}[w_1] \leq \ldots \leq \text{dist}[w_i] \leq \text{dist}[v] \). □

We are now ready to prove that the \(\text{dist} \) values are indeed the lengths of the shortest paths from \(s \) to the other vertices.

Lemma 2
At the end of BFS, for each vertex \(v \) reachable from \(s \), the value \(\text{dist}[v] \) equals the length of the shortest path from \(s \) to \(v \).

Proof: By induction on the value of \(\text{dist}[v] \). The only vertex for which \(\text{dist} \) is zero is \(s \), and zero is the correct value for \(s \).

Suppose by inductive hypothesis that for all vertices \(u \) such that \(\text{dist}[u] \leq k \) then \(\text{dist}[u] \) is the true distance from \(s \) to \(u \), and let us consider a vertex \(w \) for which \(\text{dist}[w] = k + 1 \). By the way the algorithm works, if \(\text{dist}[w] = k + 1 \) then \(w \) was first discovered from a vertex \(v \) such that the edge \((v, w)\) exists and such that \(\text{dist}[v] = k \). Then, there is a path of length \(k \) from \(s \) to \(v \), and so there is a path of length \(k + 1 \) from \(s \) to \(w \). It remains to prove that this is the shortest path. Suppose by contradiction that there is a path \((s, \ldots, v', w)\) of length \(\leq k \). Then the vertex \(v' \) is reachable from \(s \) via a path of length \(\leq k - 1 \), and so \(\text{dist}[v'] \leq k - 1 \). But this implies that \(v' \) was removed from the queue before \(v \) (because of Lemma 1), and when processing \(v' \) we would have discovered \(w \), and assigned to \(\text{dist}[w] \) the smaller value \(\text{dist}[v'] + 1 \). We reached a contradiction, so indeed \(k + 1 \) is the length of the shortest path from \(s \) to \(w \), and this completes the inductive step and the proof of the lemma. \(\square \)

Breadth-first search runs, of course, in linear time \(O(|V| + |E|) \). The reason is the same as with DFS: BFS visits each edge exactly once, and does a constant amount of work per edge.