Problem Set 8 for CS 170

Formatting

Please use the following format for the top of the solution you turn in, with one line per item below (in the order shown below):

<your username on cory.eecs>
<your full name>
CS170, Spring 2003
Homework #8
Section <your section number>
Partners: <your list of partners>

(Remember to write your section number, not the name of your TA or the time of your section.) This will make it easier for us to sort and process your homeworks. Thank you!

Note

When asked for an algorithm you must give (1) a brief informal description of the algorithm, (2) a precise description using pseudo-code, (3) an informal argument for termination and correctness of the algorithm, and (4) an analysis of the running time of the algorithm. Be clear about what the input to the algorithm is, how you measure the size of the input, and what constitutes a “step” in your running-time analysis.

Problem 0. [Any questions?] (5 points)

What’s the one thing you’d most like to see explained better in lecture or discussion sections? A one-line answer would be appreciated.

(Sometimes we botch the description of some concept, leaving people confused. Sometimes we omit things people would like to hear about. Sometimes the book is very confusing on some point. Here’s your chance to tell us what those things were.)

Problem 1. [\TeX’s Line Breaking Algorithm] (30 points)

A paragraph is composed of \(n \) words, \(w_1, \ldots, w_n \), where the size of word \(j \) is \(s(w_j) \). We’d like to find the optimal place to introduce line breaks between the words to produce an aesthetically pleasing paragraph. The page has width \(W \). We’ll define the cost of line \(k \) to be \(c(\ell_k) \) as follows:

\[
c(\ell_k) \equiv \left(W - \sum_{w_i \in \ell_k} s(w_i) \right)^2
\]

and the cost of a paragraph to be the sum of the costs of all lines in the paragraph, \(\sum_{\ell} c(\ell) \).
Problem 2 [Gasoline Refilling] (35 points)

Suppose you want to drive from San Francisco to New York City on I-80. Your car holds C gallons of gas and gets m miles to the gallon. You are handed a list of the n gas stations that are on I-80 and the price that they sell gas. Let d_i be the distance of the i^{th} gas station from SF, and c_i be the cost of gasoline at the i^{th} gas station. Furthermore, you can assume that for any two stations i and j, the distance $d_i - d_j$ between these two stations is a multiple of m. You start out with an empty tank at station 1. Your final destination is gas station n. You need to end at station n with at least 0 gallons of gas.

Find a polynomial-time dynamic programming algorithm to output the minimum gas bill to cross the country. Analyze the running time of your algorithm in terms of n and C. You do not need to find the most efficient algorithm, as long as your solution’s running time is polynomial in n and C.

Remember that your car cannot run if your tank ever holds less than 0 gallons of gas. Also, if you decide to get gasoline at a particular station, you needn’t fill up the tank; for example, you might decide to purchase only 7 gallons of gas at one station.
Problem set 8 due on April 3 at 3:30 p.m.

For instance, we might have the desired pattern

\[p = (R, R, G, Y, B, R, G, Y, B) \]

and the tiles

\begin{align*}
 t_1 &= (R) \\
 t_2 &= (G) \\
 t_3 &= (B) \\
 t_4 &= (Y) \\
 t_5 &= (R, R) \\
 t_6 &= (B, R) \\
 t_7 &= (Y, B, R) \\
 t_8 &= (B, R, G) \\
 t_9 &= (G, Y, B)
\end{align*}

One particular tiling of \(p \) would be

\[(t_1, t_1, t_2, t_4, t_3, t_1, t_2, t_4, t_3)\]

This tiling uses 9 tiles. A better tiling would be

\[(t_5, t_9, t_1, t_9)\]

since this uses only 4 tiles.