
The Murky Issue of Changing Process Identity:
Revising “Setuid Demystified”

Dan Tsafrir† Dilma Da Silva† David Wagner⋄

†IBM T. J. Watson Research Center
P. O. Box 218

Yorktown Heights, NY 10598
{dants, dilmasilva}@us.ibm.com

⋄University of California at Berkeley
387 Soda Hall

Berkeley, CA 94720
daw@cs.berkeley.edu

Abstract

Dropping unneeded process privileges promotes security, but is notoriously error-prone due to con-
fusing set∗id system calls with unclear semantics and subtle portability issues. To make things worse,
existing recipes to accomplish the task are lacking, related manuals can be misleading, and the associated
kernel subsystem might contain bugs. We therefore proclaimthe system as untrustworthy when it comes
to the subject matter, and suggest a defensive easy-to-use solution that addresses all concerns.

1 Introduction

Whenever you run a program, it assumes your identity and you lend it all your power: whatever you’re
allowed to do, it too is allowed. This includes deleting yourfiles, killing your other programs, changing
your password, retrieving your mail, etc. Occasionally, you need to write programs that enhance the power
of others. Consider, for example, a Mahjongg game that maintains a high-score file. Of course, making
the file writable by all is not a very good idea if you want to ensure that no one cheats, so Mahjongg must
somehow convey to players the ability to update the file in a controlled manner. In Unix systems this is done
as follows: when a game ends, if the score is high enough, Mahjongg temporarily assumes the identity of the
file’s owner, makes the appropriate modifications, and switches back to the identity of the original player.

Many standard utilities work this way, includingpasswd andchsh (which update/etc/passwd), xterm
(updatesutmp usage information),su (changes user),sudo (acts as root),X (accesses interactive devices),
and so on. The common feature of these tools is that they know their real identity is of a non-privileged
user, but have the ability to assume a privileged identity when required. (Note that “privileged” doesn’t
necessarily mean root; it merely means some other identity that has the power to do what the real user
can’t.) Such executables are collectively referred as “setuid programs”, because (1) they must be explicitly
associated with a “setuid bit” (through thechmod command), and (2) they pull off the identity juggling
trick through the use of set∗id system calls (setuid(2), setreuid(2), and all their friends).

There’s another, often overlooked, type of programs that doidentity juggling but donot have an asso-
ciated setuid bit. These start off as root processes and use set∗id system calls to change their identity to
that of an ordinary non-privileged user. Examples include the login program, thecron dæmon (which runs
user tasks at a specified time), dæmons providing service to remote users by assuming their identity (sshd,
telnetd, nfs, etc.), and various mail server components.

Both types of programs share a similar philosophy: in order to reduce the chances of their extra powers
being abused, they attempt to obey the principle of least privilege, which states that “every program and

1

every user of the system should operate using the least set ofprivileges necessary to complete the job” [16].
For setuid programs this translates to

1. minimizing the number and duration of the time periods at which the program temporarily assumes
the privileged identity, in order to reduce the negative effect that programming mistakes might have
(e.g., mistakenly removing a file as root can have far greaternegative implications than doing it when
the non-privileged identity is in effect), and

2. permanently giving up the ability to assume the privileged identity as soon as it’s no longer needed, so
that if an attacker gains control (e.g., through a buffer overflow vulnerability), he can’t exploit those
privileges.

The principle of least privilege is a simple and sensible rule. But when it comes to identity-changing
programs (in the immortal words of The Essex [7] or anybody who ever tried to lose weight [14]) it’s easier
said than done. Here are a few quotes that may explain why it’sat least as hard as doing a diet: Chen et al.
said that “for historical reasons, the uid-setting system calls are poorly designed, insufficiently documented,
and widely misunderstood” and that the associated manuals “are often incomplete or even wrong” [2]. Dean
and Hu observed that “the setuid family of system calls is itsown rats nest; on different Unix and Unix-like
systems, system calls of the same name and arguments can havedifferent semantics, including the possibility
of silent failures” [3]. Torek and Dik concluded that “many years after the inception of setuid programs,
how to write them is still not well understood by the majorityof people who write them” [17]. All these
deficiencies have made the setuid mechanism the source of many security vulnerabilities.

It has been more than 30 years since Dennis Ritchie introduced the setuid mechanism [15], and more
than 20 years since people started publishing papers about how to correctly write setuid programs [1]. The
fact that this article has something new to say serves as an unfortunate testament that the topic is not yet
resolved. Our goal in this paper is to provide the equivalentof a magical diet pill that effortlessly makes you
slim. (Or at least lay the foundations for this magic.) Specifically, we design and implement an intuitive
change-identity algorithm that abstracts away the many pitfalls, confusing details, operating system specific
behavior, and portability issues. We build on and extend thealgorithm proposed by Chen et al. [2], which
neglected to factor in the role that supplementary groups play in forming an identity. Our code is publicly
available [18]. It was extensively tested on Linux 2.6.22, FreeBSD 7.0-STABLE, OpenSolaris, and AIX 5.3.
We warn that, given the history of subtle pitfalls in the set∗id syscalls, it may be prudent for developers to
avoid relying upon our algorithm until it has been subject tocareful review by others.

2 User Identity vs. Process Identity

Before attempting to securely switch identities, we need todefine what the term “identity” means. In this
context, we found it productive to make a distinction between two types of identities: that of a user, and
that of a process. The user’s credentials include the user ID(uid), the user’s primary group (gid), and an
additional array of supplementary groups (sups). Collectively, they determine which system resources the
user can access. In particular, a zero uid is associated withthe superuser (root) who can access all resources.
We define theucred t type to represent a user by aggregating these three fields, asfollows:

typedef struct supplementary_groups {
gid_t *list; // sorted ascending, no duplicates
int size; // number of entries in ’list’

} sups_t;

typedef struct user_credentials {
uid_t uid;

2

gid_t gid;
sups_t sups;

} ucred_t;

Things are a bit more complicated when it comes to the corresponding process credentials. Each process
has three user IDs: the real (ruid), effective (euid), and saved (suid). The real uid identifies the “owner” of
the process, which is typically the executable’s invoker. The effective uid represents the identity in effect,
namely, the one used by the OS (operating system) for most access decisions. The saved uid stores some
previous user ID, so that it can be restored (copied to the euid) at some later time with the help of set∗uid
system calls. Similarly, a process has three group IDs: rgid, egid, and sgid. We define thepcred t type to
encapsulate the credentials of a process:

typedef struct user_ids { uid_t r, e, s; } uids_t;
typedef struct group_ids { gid_t r, e, s; } gids_t;

typedef struct process_credentials {
uids_t uids; // uids.r = ruid, uids.e = euid, uids.s = suid
gids_t gids; // gids.r = rgid, gids.e = egid, gids.s = sgid
sups_t sups;

} pcred_t;

Supplementary groups can be queried with the help of thegetgroups system call. The ruid, euid, rgid, and
egid of a process can be retrieved withgetuid, geteuid, getgid, andgetegid, respectively. The ways to find
out the values of suid and sgid are OS-specific.

In Linux, each process has also an fsuid and an fsgid, which are used for access control to the filesystem.
Normally, these are equal to the euid and egid, respectively, unless they are explicitly changed [11]. As this
rarely used feature is Linux-specific, it is not included in the above data structures. To ensure correctness,
our algorithm never manipulates the fsuid or fsgid, ensuring that (if programs rely only upon our interface
for manipulating privileges) the fsuid and fsgid will always match the euid and egid.

The benefit of differentiating between user and process identities is that the former is more convenient
to work with, easier to understand, better captures the perception of programmers regarding identity, and
typically is all that is needed for programmers to specify what kind of an identity they require. In other
words, the notions of real, effective, and saved IDs are not important in their own right; rather, they are
simply the technical means by which identity change is made possible. Note, however, that “user” isn’t
an abstraction that is represented by any kernel primitive:the kernel doesn’t deal with users; it deals with
processes. It is therefore the job of our algorithm to internally usepcred t and provide the appropriate
mappings.

3 Rules of Identity Juggling

Identity Propagation and Split Personalities The second thing one has to consider when attempting to
correctly switch identities is the manner by which processes initially get their identity. When a userrik logs
in, the login program forks a processP and sets things up such that (1)P ’s three uids holdrik’s uid, (2)
P ’s three gids holdrik’s primary group, and (3)P ’s supplementary array is populated with the gids of the
groups to whichrik belongs. The process credentials are then inherited acrossfork. They are also inherited
acrossexec, unless the corresponding executableE has its setuid bit set, in which case the effective and
saved uids are set to be that ofE’s owner (but the real uid remains unchanged). Likewise, ifE is setgid,
then the saved and effective groups of the new process are assigned withE’s group.

Conversely, the supplementary array isalways inherited as is, even ifE’s setuid/setgid bits are set.
Notice that this can lead to a bizarre situation whereE is running with a split personality: the effective user

3

and group are ofE’s owner, whereas the supplementary groups are ofE’s invoker. This isn’t necessarily
bad (and in fact constitutes the typical case), but it’s important to understand that this is what goes on.

User ID Juggling Since access control is based on the effective user ID, a process gains privilege by
assigning a privileged user ID to its euid, and drops privilege by removing it. To drop privilege temporarily,
a process removes the privileged user ID from its euid but stores it in its saved ID; later, the process may
restore privilege by copying this value back to the euid. To drop privilege permanently, a process removes
the privileged user ID from all three uids. Thereafter, the process can never restore privilege.

Roughly speaking, there typically exists some technical way for a process to copy the value from one
of its 3 uids to another, and thus perform the uid juggling as was just described. If the process is non-root
(uid6=0), then that’s all it can do (juggle back and forth between the real and saved uids). Root, on the other
hand, can assume any identity.

Primary Group Juggling The rules of changing gids are identical, with the exceptionthat egid=0 doesn’t
convey any special privileges: only if euid=0 can the process set arbitrary gids.

Supplementary Groups Juggling The rules for changing supplementary groups are much simpler: If a
process has euid=0, it can change them however it likes through thesetgroups system call. Otherwise,
the process is forbidden from usingsetgroups, and is stuck with the current setting. The implications for
setuid programs are interesting. If the setuid program drops privileges (assuming the identity of its invoker),
then the supplementary groups will already be set appropriately. On the other hand, until that happens, the
program will have a split personality. A setuid-root program can set the supplementary groups to match its
privileged identity, if it chooses. However, non-root setuid programs cannot: they will suffer from a split
personality for as long as they maintain their privileged identity, and there’s simply no way around it. As a
result, non-root setuid programs might run with extra privileges that their creators did not anticipate.

Messiness of Setuid System CallsSeveral standard set∗id system calls allow programmers to manipulate
the real, effective, and saved IDs, in various ways. To demonstrate their problematic semantics, we focus
on only setuid(2) through an example of a vulnerability found in a mainstream program. Googling the
words “setuid” with “vulnerability” or “bug” immediately brings up many examples that are suitable for this
purpose. But to also demonstrate the prevalence of the problem, we attempted to find a new vulnerability.
Indeed, the first program we examined contained one.

Exim is a popular mail server that is used by default in many systems [5]. Figure 1 shows the function
exim uses to drop privileges permanently, taken from the latest version available at the time of this writing
[6]. It implicitly assumes that callingsetuid will update all three uids, so that all privileges are permanently
relinquished. This assumption indeed holds for some OSes, e.g., FreeBSD. But if the effective ID is nonzero
(which may be the case according to the associated documentation) then the assumption doesn’t hold for
Linux, Solaris, and AIX, as the semantics ofsetuid under these circumstances dictate that only the euid will
be updated, leaving the ruid and suid unchanged. Consequently, if exim is compromised, the attacker can
restoreexim’s special privileges and, e.g., obtain uncontrolled access to all mail in the system.

While this particular vulnerability isn’t nearly as dangerous as some previously discovered setuid bugs,
it does successfully highlight the problematic system callbehavior, which differs not only between OSes but
also according to the current identity.

4

/*
* This function sets a new uid and gid permanently, optionally calling

* initgroups() to set auxiliary groups. There are some special cases when

* running Exim in unprivileged modes. In these situations the effective

* uid will not be root; [...]

*/
void exim_setugid(uid_t uid, gid_t gid, BOOL igflag, uschar *msg)
{

uid_t euid = geteuid();
gid_t egid = getegid();

if (euid == root_uid || euid != uid || egid != gid || igflag) {

if (igflag) {
/* do some supplementary groups handling here */ ...

}

if (setgid(gid) < 0 || setuid(uid) < 0) {
/* PANIC! */ ...

}
}

}

Figure 1:Exim’s code to permanently change identity contains a vulnerability.

4 Safely Dropping Privileges

Equipped with a good understanding of the subject, we go on todevelop an algorithm to safely drop priv-
ileges permanently. We do so in a top-down manner, and make use of theucred t and pcred t types as
defined above. Figure 2 shows the algorithm. Its input parameter specifies the target identity; the algorithm
guarantees to permanently switch to the target identity, orclearly indicate failure. The algorithm works by
first changing the supplementary groups, then changing the gids, and changing the uids (in that order), and
finally checking that the current identity matches the target identity.

Error Handling There are two ways to indicate failure, depending how the macrosDO CHK andDO SYS
are defined:

#ifdef LIVING_ON_THE_EDGE
define DO_SYS(call) if((call) == -1) return -1 /* do system call */
define DO_CHK(expr) if(! (expr)) return -1 /* do boolean check */
#else
define DO_SYS(call) if((call) == -1) abort() /* do system call */
define DO_CHK(expr) if(! (expr)) abort() /* do boolean check */
#endif

But while reporting failure through return values is possible, we advise against it, as it might leave the
identity in an inconsistent state. Thus, when an identity change fails in the middle, programmers should
either abort, or really know what they’re doing.

Input Check Theucred is sane function checks the validity of the input parameter. It is implemented as
follows:

long nm = sysconf(_SC_NGROUPS_MAX);
return (nm >= 0) && (nm >= uc->sups.size) && (uc->sups.size >= 0) &&

uc->uid != (uid_t)-1 &&
uc->gid != (gid_t)-1;

5

int drop_privileges_permanently(const ucred_t *uc /*target identity*/)
{

uid_t u = uc->uid;
gid_t g = uc->gid;
pcred_t pc;

DO_CHK(ucred_is_sane(uc));
DO_SYS(set_sups(&uc->sups));
DO_SYS(set_gids(g/*real*/, g/*effective*/, g/*saved*/));
DO_SYS(set_uids(u/*real*/, u/*effective*/, u/*saved*/));

DO_SYS(get_pcred(&pc));
DO_CHK(eql_sups (&pc.sups , &uc->sups));
DO_CHK(g == pc.gids.r && g == pc.gids.e && g == pc.gids.s);
DO_CHK(u == pc.uids.r && u == pc.uids.e && u == pc.uids.s);
free(pc.sups.list);

#if defined(__linux__)
DO_SYS(get_fs_ids(&u,&g));
DO_CHK(u == uc->uid && g == uc->gid);

#endif

return 0; /* success */
}

Figure 2:Permanently switching identity, and verifying the correctness of the switch.

The maximal size of the supplementary groups may differ between systems, but can be queried in a standard
way. We also check that the user and group IDs aren’t -1, because this has special meaning for several set∗id
system calls (“ignore”).

Verification The first chunk of code in Figure 2 is responsible for setting the supplementary groups to
uc→sups, the three gids tog, and the three uids tou. Setting the uids last is important, because afterwards
the process might lose its privilege to change its groups. Setting supplementary groups before primary
groups is also important, for reasons to become clear later on. The reminder of the function verifies that
all of these operations successfully changed our credentials to the desired identity. This policy is required
in order to prevent mistakes in the face of the poorly designed set∗id interface (e.g., this policy would
have prevented theexim vulnerability), to protect against possible related kernel bugs [2] or noncompliant
behavior (see below), and to defend against possible futurekernel changes. These reasons, combined with
the fact that having the correct identity is crucial in termsof security, provide good motivation for our
untrusting approach.

Querying Process Identity The get pcred function we implement fills the memory pointed to by the
pcred t pointer it gets. We get the ruid, rgid, euid, and egid with thehelp of the standard system calls
getuid, getgid, geteuid, and getegid, respectively. Unfortunately, there’s no standard way to retrieve
saved IDs, so we use whatever facility the OS makes available, as shown in Figure 3. Thegetresuid and
getresgid nonstandard system calls are the easiest to use and the most popular among OSes. AIX’sgetuidx
andgetgidx also have easy semantics, whereas with Solaris the programmer must resort to using Solaris’s
/proc interface [10].

The supplementary groups are retrieved with the help of the standardgetgroups system call. In order
to allow for easy comparison of supplementary arrays, we normalize the array by sorting it and by removing
duplicate entries, if exist. The array ismalloced, and should therefore befreed later on.

6

int get_saved_ids(uid_t *suid, gid_t *sgid)
{
#if defined(__linux__) || defined(__HPUX__) || \

defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
uid_t ruid, euid;
gid_t rgid, egid;
DO_SYS(getresuid(&ruid, &euid, suid));
DO_SYS(getresgid(&rgid, &egid, sgid));

#elif defined(_AIX)
DO_SYS(*suid = getuidx(ID_SAVED));
DO_SYS(*sgid = getgidx(ID_SAVED));

#elif defined(__sun__) || defined(__sun)
prcred_t p; /* prcred_t is defined by Solaris */
int fd;
DO_SYS(fd = open("/proc/self/cred", O_RDONLY));
DO_CHK(read(fd, &p, sizeof(p)) == sizeof(p));
DO_SYS(close(fd));

*suid = p.pr_suid;

*sgid = p.pr_sgid;

#else
error "need to implement, notably: __NetBSD__, __APPLE__, __CYGWIN__"

#endif
return 0;

}

Figure 3:Getting the saved uid and gid is an OS-dependent operation.

Linux Filesystem IDs The fsuid is supposed to mirror the euid, as long assetfsuid isn’t explicitly used
[11], and the same goes for fsgid and egid. However, there hasbeen at least one kernel bug that violated
this invariant [2]. Therefore, in accordance to our defensive approach, the algorithm in Figure 2 explicitly
verifies that the fs-invariant indeed holds. As there are nogetfsuid or getfsgid, our implementation of
get fs ids is the C equivalent of

grep Uid /proc/self/status | awk ’{print $5}’ # prints fsuid
grep Gid /proc/self/status | awk ’{print $5}’ # prints fsgid

Setting Uids and Gids The POSIX-standard interfaces for setting IDs are tricky, OS-dependent, and offer
no way to directly set the saved IDs. Consequently,nonstandard interfaces are preferable, if they offer
superior semantics. This is the design principle underlying our implementation ofset uids andset gids. The
implementation is similar in spirit to the code in Figure 3, but is complicated by the fact that non-privileged
processes are sometimes not allowed to use the preferable interface, in which case we fallback on whatever
is available.

Specifically, all OSes that supportgetresuid (see Figure 3) also supportsetresuid andsetresgid. These
offer the clearest and most consistent semantics, and can beused by privileged and non-privileged processes
alike. (Of course the usual restrictions for non-privileged processes still apply, namely, each of the three
parameters must be equal to one of the three IDs of the process.) In Solaris, only root can use the /proc
interface for setting IDs [10], so with non-root processes we naively useseteuid andsetreuid (and their
gid counterparts) and hope for the best: the verification part in Figure 2 will catch any discrepancies. In
AIX, setuidx and setgidx are the clearest and most expressive, and can be used by root and non-root
processes [13]. However, AIX is very restrictive: a non-root process can only change its effective IDs, so

7

int set_sups(const sups_t *target_sups)
{

sups_t targetsups = *target_sups;

#ifdef __FreeBSD__
gid_t arr[targetsups.size + 1];
memcpy(arr+1, targetsups.list, targetsups.size * sizeof(gid_t));
targetsups.size = targetsups.size + 1;
targetsups.list = arr;
targetsups.list[0] = getegid();

#endif

if(geteuid() == 0) { // allowed to setgroups, let’s not take any chances
DO_SYS(setgroups(targetsups.size, targetsups.list));

}
else {

sups_t cursups;
DO_SYS(get_sups(&cursups));
if(! eql_sups(&cursups, &targetsups)) // this will probably fail... :(

DO_SYS(setgroups(targetsups.size, targetsups.list));
free(cursups.list);

}

return 0;
}

Figure 4: Setting supplementary groups, while trying to avoid failure of non-root processes, and accommodating
noncompliant behavior of FreeBSD.

dropping privileges permanently is impossible for non-root processes; also, root processes are allowed to
set euid, euid/ruid, or euid/ruid/suid, but only to the samevalue.

Supplementary Groups Caveats Recall that non-root processes are not allowed to callsetgroups. There-
fore, to avoid unnecessary failure,setgroups is only invoked if the current and target supplementary sets
are unequal, as shown in Figure 4. (Disregard the FreeBSD chunk of code for the moment.) Additionally,
recall that after setting the supplementary groups in Figure 2, we verify that this succeeded by querying the
current set of supplementary groups and checking that it matches the desired value. In both cases the current
and target supplementary sets must be compared. But unfortunately, this isn’t as easy as one would expect.

The POSIX standard specifies that “it is implementation-defined whethergetgroups also returns the
effective group ID in the grouplist array” [9]. This seemingly harmless statement means that if the egid is in
fact found in the list returned bygetgroups, there’s no way to tell whether this group is actually a member
of the supplementary group list or not. In particular, thereis no reliable, portable way to get the current list
of supplementary groups. As a result, our code for comparingthe current and target supplementary sets (see
eql sups in Figure 5, which is used in Figure 2 and Figure 4) assumes that they match even if the current
supplementary set contains the egid and the target supplementary set doesn’t. This isn’t completely safe, but
it’s the best we can do, and it’s certainly better than not comparing at all.

Noncompliant FreeBSD Behavior Kernel designers might be tempted to internally represent the egid as
just another entry in the supplementary array, as this can somewhat simplify the checking of file permissions.
Indeed, instead of separately comparing the file’s group against (1) the egid of the process and (2) its sup-
plementary array, only the latter check is required. The aforementioned POSIX rule that allowsgetgroups
to also return the egid, reflects this fact. But POSIX also explicitly states that “set[∗]gid function[s] shall not

8

bool eql_sups(const sups_t *cursups, const sups_t *targetsups)
{

int i, j, n = targetsups->size;
int diff = cursups->size - targetsups->size;
gid_t egid = getegid();

if(diff > 1 || diff < 0) return false;

for(i=0, j=0; i < n; i++, j++)
if(cursups->list[j] != targetsups->list[i]) {

if(cursups->list[j] == egid) i--; // skipping j
else return false;

}

// If reached here, we’re sure i==targetsups->size. Now, either
// j==cursups->size (skipped the egid or it wasn’t there), or we didn’t
// get to the egid yet because it’s the last entry in cursups
return j == cursups->size ||

(j+1 == cursups->size && cursups->list[j] == egid);
}

Figure 5:When comparing the current supplementary array to the target array, we must ignore the egid if it’s included
in the former.

affect the supplementary group list in any way” [12]. And, likewise,setgroups shouldn’t affect the egid.
So such a design decision, if made, must be implemented with care.

The FreeBSD kernel has taken this decision, and designated the first entry of the supplementary array
to the egid of the process. But the implementors weren’t careful enough, or didn’t care about POSIX
semantics [4]. When trying to understand why the verification code in Figure 2 sometimes fails in FreeBSD,
we realized that the kernel ignores the aforementioned POSIX rules and makes no attempt to mask the
internal connection between egid and the supplementary array. Thus, when changing the array through
setgroups, the egid becomes whatever happens to be the first entry of thearray. Likewise, when setting the
egid (e.g., throughsetegid), the first entry of the array changes accordingly, in clear violation of POSIX.
The code in the beginning of Figure 4 accommodates this noncompliant behavior. Additionally, whenever
we need to set the egid, we always make sure to do it after setting the supplementary groups, not before (see
Figure 2).

Temporarily Dropping and Restoring Privileges Our implementation also includes functions to tem-
porarily drop privileges and to restore them. They are similar to Figure 2 in that they accept a “target
identity” ucred t argument, they treat supplementary groups identically, and they verify that the required
change has indeed occurred. When dropping privileges temporarily, we change only the euid/egid if we can
help it (namely, if the values before the change are present in the real or saved IDs, which means restoration
of privileges will be possible). Otherwise we attempt to copy the current values to the saved IDs before mak-
ing the change. (Unfortunately, this will fail on AIX for non-root processes.) The algorithm that restores
privileges performs operations in the reverse order: first restoring uids, and only then restoring groups; saved
and real IDs are unaffected.

Caution! Identity is typically shared between threads of the same application. Consequently, our code
is not safe in the presence of any kind of multithreading: concurrent threads should be suspended, or else
they run the risk of executing with an inconsistent identity. Likewise, signals should be blocked or else the
corresponding handlers might suffer from the same deficiency.

9

The algorithms described in this article donot take into account any capabilities system the OS might
have e.g., “POSIX capabilities” in Linux [8]. Capabilitiessystems, if used, should be handled separately.

5 Conclusion

Correctly changing identity is an elusive, OS-dependent, error-prone, and laborious task. We therefore feel
that it is unreasonable and counterproductive to require every programmer to invent his/her own algorithm
to do so, or to expect programmers to become an expert on thesepitfalls. We suggest that the interests of the
community would be better served by a unified solution for managing process privileges, and we propose
the approach outlined in this article as one possible basis for such a solution. Our code is publicly available
[18]. We welcome suggestions, bug reports, and extensions.

References
[1] M. Bishop, “How to write a setuid program”. USENIX ;login 12(1), Jan/Feb 1987.

[2] H. Chen, D. Wagner, and D. Dean, “Setuid demystified”. In 11th USENIX Security Symp., pp. 171–190, Aug 2002.

[3] D. Dean and A. J. Hu, “Fixing races for fun and profit: how to useaccess(2)”. In 13th USENIX Security Symp., pp. 195–206,
Aug 2004.

[4] R. Ermilov, R. Watson, and B. Evans, “[CFR] ucred.crgid”. Thread from the freebsd-current mailing list, URL
http://www.mail-archive.com/freebsd-current@freebsd.org/msg28642.html, Jun 2001.

[5] “ Exim internet mailer”. URL http://www.exim.org/. (Accessed Mar 2008).

[6] “ Exim-4.69/src/exim.c”. Source code of Exim 4.69, URL ftp://ftp.exim.org/pub/exim/exim4/exim-4.69.tar.gz. (Accessed
Mar 2008).

[7] W. Linton and L. Huff, “Easier said than done”. Performed by “The Essex”. YouTube URL
http://www.youtube.com/watch?v=tgJ1ssTJtnA, Jul 1963.(Accessed March 2008).

[8] “ Man capabilities(7) – Linux man page – overview of Linux capabilities”. URL http://linux.die.net/man/7/capabilities.
(Accessed Mar 2008).

[9] “ Man getgroups(2) – the open group base specifications issue 6, IEEE Std 1003.1, 2004 edition”. URL
http://www.opengroup.org/onlinepubs/000095399/functions/getgroups.html, 2004. (Accessed Mar 2008).

[10] “Man proc(4) – Solaris 10 reference manual collection”. URL
http://docs.sun.com/app/docs/doc/816-5174/proc-4?l=en&a=view. (Accessed Mar 2008).

[11] “Man setfsuid(2) – Linux man page”. URL hhttp://linux.die.net/man/2/setfsuid. (AccessedMar 2008).

[12] “Man setgid(2) – the open group base specifications issue 6, IEEE Std 1003.1, 2004 edition”. URL
http://www.opengroup.org/onlinepubs/000095399/functions/setgid.html, 2004. (Accessed Jan 2008).

[13] “Man setuidx – AIX technical reference: base operating system and extensions, volume 2”.
http://publib.boulder.ibm.com/infocenter/systems/topic/com.ibm.aix.basetechre f/doc/basetrf2/setuid.htm. (Accessed Mar
2008).

[14] Nerd Gurl, “Why can’t I ever achieve my goals?”. Yahoo! Answers URL
http://answers.yahoo.com/question/index?qid=20080101143342AAQ1jbO, Jan 2008. (Accessed March 2008).

[15] D. M. Ritchie, “Protection of data file contents”. Patent number 4135240, URL
http://www.google.com/patents?vid=USPAT4135240, Jul 1973. (Accessed Mar 2008).

[16] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer systems”. Proc. of the IEEE 63(9),
pp. 1278–1308, Sep 1975.

[17] C. Torek and C. H. Dik, “Setuid mess”. URL http://yarchive.net/comp/setuidmess.html, Sep 1995. (Accessed March 2008).

[18] D. Tsafrir, D. Da-Silva, and D. Wagner, “Change process identity”. URL
http://www.research.ibm.com/change-process-identityor http://code.google.com/p/change-process-identity/.

10

	Introduction
	User Identity vs. Process Identity
	Rules of Identity Juggling
	Safely Dropping Privileges
	Conclusion

