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Our REAP Benchmark

Adversarial Patch Evaluation in Previous Work

Figure 1: When digitally evaluating patch attacks, past work (top row) ignores many real-world factors and thus may yield
a misleading evaluation. We develop the REAP benchmark (bottom row) that more realistically simulates the effect of a
real-world patch attack on road signs, accounting for the pose, the location, and the lighting condition.

Abstract

Machine learning models are known to be susceptible to
adversarial perturbation. One famous attack is the adversar-
ial patch, a particularly crafted sticker that makes the model
mispredict the object it is placed on. This attack presents
a critical threat to cyber-physical systems that rely on cam-
eras such as autonomous cars. Despite the significance of
the problem, conducting research in this setting has been
difficult; evaluating attacks and defenses in the real world
is exceptionally costly while synthetic data are unrealistic.
In this work, we propose the REAP (REalistic Adversarial
Patch) benchmark, a digital benchmark that enables the eval-
uations on real images under real-world conditions. Built
on top of the Mapillary Vistas dataset, our benchmark con-
tains over 14,000 traffic signs. Each sign is augmented with
geometric and lighting transformations for applying a digi-

tally generated patch realistically onto the sign. Using our
benchmark, we perform the first large-scale assessments of
adversarial patch attacks under realistic conditions. Our
experiments suggest that patch attacks may present a smaller
threat than previously believed and that the success rate of an
attack on simpler digital simulations is not predictive of its
actual effectiveness in practice. Our benchmark is released
publicly at https://github.com/wagner-group/
reap-benchmark.

1. Introduction
Research has shown that machine learning models lack ro-

bustness against adversarially chosen perturbations. Szegedy
et al. [54] first demonstrated that one can engineer perturba-
tions that are indiscernible to the human eye yet that cause
neural networks to misclassify images with high confidence.
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Since then, there has been a large body of academic work
on understanding the robustness of neural networks to such
attacks [18, 39, 55, 8, 27, 57, 36, 7, 22].

One particularly concerning type of attack is the adversar-
ial patch attack [6, 17, 24, 53, 10, 23, 33, 43, 52, 66, 21, 61].
These are real-world attacks, where the attacker’s objective is
to print out a patch, physically place it in a scene, and cause
a vision network processing the scene to malfunction. These
attacks are especially concerning because of the potential im-
pact on autonomous vehicles. A malicious agent could, for
instance, produce a sticker that, when placed on a stop sign,
cause a self-driving car to believe it is (say) a speed limit
sign, and fail to stop. Indeed, similar attacks have already
been demonstrated both in academic settings [31, 16, 50]
and on real-world autonomous vehicles [56].

Despite this significant risk, research on these attacks has
stalled to a certain extent because quantitatively evaluating
the significance of this threat is challenging. The most accu-
rate approach would be to conduct real-world experiments,
but they are very expensive, and at present, not practical to
do at a large scale. This leaves much to be desired compared
to other branches of computer vision research, where the
availability of benchmarks such as ImageNet have reduced
the barriers to research and spurred tremendous innovation.

Instead, researchers turn to one of two techniques: either,
they physically create their attacks and try them out on a
small number of real-world examples by physically attach-
ing them to objects, or they digitally evaluate patch attacks
using digital images containing simulated patches. Both
approaches have major drawbacks. Although the former
simulates more realistic conditions, the sample size is very
small, and typically one cannot draw statistical conclusions
from the results [6, 17, 53, 10, 66, 20, 21, 61]. Addition-
ally, because of the ad-hoc nature of these evaluations, it is
impossible to compare the results across different papers. Ul-
timately, such experiments only serve as a proof of concept
for the proposed attacks and defenses, but not as a rigorous
evaluation of their effectiveness.

In contrast, a digital simulation of attacks/defenses allows
quantitative evaluation [24, 33, 65, 46, 37, 62, 58, 44]. How-
ever, it is difficult to accurately capture all of the challenges
that arise in the real world. Past work often made unrealistic
assumptions, such as that the patch is square, axis-aligned,
can be located anywhere on the image, fully under the con-
trol of the attacker, and ignore noise and variation in lighting
and pose (see top row of Fig. 1). Consequently, it is unclear
if these evaluations are actually reflective of what would
happen in real-world scenarios.

1.1. Our Contributions
The REAP Benchmark: We propose REalistic Adversarial
Patch Benchmark (REAP), the first large-scale standardized
benchmark for security against patch attacks. Motivated by

the aforementioned shortcomings of prior evaluations, we
design REAP with the following principles in mind:
1. Large-scale evaluation: REAP consists of 14,651 im-

ages of road signs drawn from the Mapillary Vistas
dataset. This allows us to draw quantitative conclusions
about the effectiveness of attacks/defenses on the dataset.

2. Realistic patch rendering: REAP has tooling, which,
for every road sign in the dataset, allows us to realistically
render any digital patch onto the sign, matching factors
such as where to place the patch, the camera angle, light-
ing conditions, etc. Importantly, this transformation is
fast and differentiable so one can still perform backprop-
agation through the rendering process.

3. Realistic image distribution: REAP consists of images
taken under realistic conditions, including variation in
sizes and distances from the camera as well as various
lighting conditions and degrees of occlusion.

Evaluations with REAP: With our new benchmark in hand,
we also perform the first large-scale evaluations of existing
attacks on object detectors. We evaluate existing attacks
on three different object detection architectures: Faster R-
CNN [48], YOLOF [9], and DINO [64]. We also implement
and evaluate a baseline defense adapted from adversarial
training [36] to defend against patch attacks on object detec-
tion. The conclusions we find are:
1. Existing patch attacks are not that effective. Perhaps

surprisingly, existing attacks do not succeed on a major-
ity of images on our benchmark. This is in contrast to
simpler attack models such as `p-bounded perturbations
or patch attacks on simpler benchmarks, where the at-
tack success rate is near 100%. Moreover, adversarially
trained models can almost completely stop the attacks
with only a minor performance drop on benign data.

2. Performance on synthetic data is not reflective of per-
formance on REAP. We find that the success rates of
attacks on synthetic versions of our benchmark and the
full REAP are only poorly correlated. We conclude that
performance on simple synthetic benchmarks is not pre-
dictive of attack success rate in more realistic conditions.

3. Lighting and patch placement are particularly impor-
tant. Finally, we investigate what transforms in the patch
rendering are the most important, in terms of the effect
on the attack success rate. We find that the most signif-
icant first-order effects are from the lighting transform,
as well as the positioning of the patch. In contrast, the
perspective transforms—while still important—seem to
affect the attack success rate somewhat less.

While we believe these conclusions are already quite inter-
esting, they are only the tip of the iceberg of what can be
done with REAP. We believe that REAP will help support
future research in adversarial patches by enabling a more
accurate evaluation of new attacks and defenses.
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2. Related Work
Adversarial patch attacks. The literature on adversarial
patches, and adversarial attacks more generally, is vast and a
full review is beyond the scope of this paper. For conciseness,
we only survey the most relevant works. Since their intro-
duction in Brown et al. [6], Karmon et al. [24], Eykholt et al.
[17], there have been a variety of adversarial patch attacks
proposed [23, 33, 43, 52, 21, 61]. Of particular interest to us
are the ones on object detection of road signs [17, 53, 10, 66].

Small scale, real-world tests. A common methodology
used to test the transferability of the adversarial patch to the
physical world is to print it out, physically place it onto an
object, and capture pictures or videos of the patch for evalu-
ation [6, 17, 53, 10, 66, 20, 21, 61]. While this method pro-
vides the most realistic evaluation, it has a number of down-
sides. First, it is, by nature, very time-consuming and hence
limits the number of images that can be used for testing. Con-
sequently, one cannot extract quantitative conclusions from
the results. Additionally, they are difficult to standardize
across papers, making their result not directly comparable.
For instance, the pictures of the adversarial patches are taken
under different angles, lighting conditions, or from varying
distances. Sometimes, the adversarial patches themselves
are printed using different printers [10, 66].

Completely simulated environment. Another line of work
considers purely simulated environments for evaluating ad-
versarial patches such as CARLA [14, 32, 45] and At-
tackScenes [21]. A huge advantage of this method is that it
has the most precise and the most flexible control of the envi-
ronment, e.g., cameras and objects can be placed anywhere.
However, it is labor-intensive to build a diverse set of scenes
digitally, and it compromises heavily on realism. Another ex-
ample is 3DB [28], a photorealistic simulation for studying
the reliability of computer vision systems. Nevertheless, it
lacks the tooling necessary for evaluating adversarial patches
and does not contain any driving scene, a setting to which
adversarial patches are most applicable. Our benchmark uti-
lizes images of real and diverse driving scenes and focuses
on realistically simulating only the adversarial patches.

Digital simulation. This third approach takes a middle road
and simulates the effects of the adversarial patch by digitally
inserting it into a real image. This has been done at scale
and to varying degrees of sophistication. One of the most
common, but also simplest, ways this is done is to apply
the patch to the image at some random position, and with
some simple transformations, for instance, those induced by
expectation over transformation [6, 24, 33, 65, 46, 37, 62,
58, 44]. This approach violates all the physical constraints
and hence, is far from being realistic.

Arguably the benchmarks most similar to ours are the
ones in Zhao et al. [66] and Braunegg et al. [5]. Zhao et al.
[66] digitally insert synthetic stop signs with patches into

images with realistic camera angles. However, they do not
account for lighting conditions, and the target object itself
is synthetic. In contrast, all signs in our dataset are real,
and we also produce a transformation to match lighting
conditions. In Section 4.3, we find that these two factors
affect the evaluation metrics to a large extent. APRICOT [5]
contains images of real scenes with a printed adversarial
patch. Compared to ours, APRICOT is smaller in size (1K
vs 14K images) and is heavily inflexible as it comes with a
pre-defined adversarial patch with a fixed size and location.
Defenses. There have also been a slew of proposed defenses
against patch attacks, e.g., [19, 41, 65, 62, 46, 37, 40, 11].
Most examine object classification. Only a handful consider
object detection, which may be more relevant in practice [12,
63]. We choose to experiment with adversarial training [36]
as a defense because, to the extent of our knowledge, it has
not been applied in this setting (Rao et al. [46] study patch
adversarial training on classifiers). It is also known to be
a strong baseline and arguably the only effective defense
across other `p-norms [13]. Importantly, unlike the other
defenses listed above, adversarial training does not make
assumptions about the number or size of the patch.

3. Adversarial Patch Benchmark
3.1. Overview

Our dataset is a collection of images containing traffic
signs, each of which comes with a segmentation mask and
a class. So far, this is more or less standard. The main
additional feature of our benchmark is that, for each sign,
we also provide an associated rendering transformation.

Given a digital patch, this transformation allows us to
apply the patch on the sign in a way that respects the scaling,
orientation, and lighting of the sign in the image. We empha-
size that a separate transformation is inferred individually
for each sign, in order to ensure that the transformation is
accurate for every image. Moreover, the rendering transfor-
mation is fully differentiable, which allows our dataset to
be used to generate patch attacks and to apply adversarial
defenses along the line of adversarial training.

Figs. 2 and 3 give an overview of the process to obtain the
geometric (Section 3.4.1) and the relighting (Section 3.4.2)
transformations, respectively. We use an algorithm to gener-
ate the candidate annotations automatically, visually inspect
each of them, and then manually fix any wrong annotation.
In total, we label 14,651 traffic signs across 8,433 images.

3.2. Datasets
We build our benchmark using images from the Mapillary

Vistas dataset [42]. It includes 20,000 street-level images
from around the world, annotated with bounding boxes of
124 object categories, including traffic signs. A limitation
of Vistas is that all traffic signs are grouped under one class.
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This creates a challenge for us, because our patch-rendering
process depends on the size and shape of the sign. Without
this information, the rendering is less realistic. We deal with
this challenge by grouping the signs so that all signs in the
same group can use the same geometric transform procedure.
The grouping process is described in the next section.

3.3. Traffic Sign Classification
Grouping traffic signs by their shape and size has two ad-

vantages. First, it allows more accurate geometric transforms
as previously mentioned. Second, it allows us to study multi-
class sign detection. Instead of labeling the Vistas signs by
hand, we train a ResNet-18 on a similar dataset, Mapillary
Traffic Sign (MTSD) [15], to classify them. MTSD contains
granular labeling of over 300 traffic sign classes, but we can-
not use it in place of Vistas as it lacks segmentation labels
required to compute the geometric transforms.

We created two versions of the benchmark: REAP
and REAP-S. REAP is our main benchmark with the classes
matching those of MTSD. However, most of the classes con-
tain fewer than 10 samples so we only keep the 100 most
common classes. We need a sufficient number of samples
per class because (i) some will be further filtered out in the
preprocessing and (ii) the samples will be split into a “train-
ing” (for the attacker to “train” the adversarial patch) and
a test set (for evaluating the attack). Conversely, REAP-S
groups the signs into 11 classes by shape and size, namely
circle, triangle, upside-down triangle, diamond (S), diamond
(L), square, rectangle (S), rectangle (M), rectangle (L), pen-
tagon, and octagon. REAP-S serves as a simpler alternative
to REAP and is also intuitively more “defender-friendly.”
For both REAP and REAP-S, the remaining signs that do
not belong to the classes are labeled as a background class or
“others” which will be ignored when we compute the metrics.

Since Mapillary Vistas does not come with these labels,
we first trained a ConvNeXt model [35] on MTSD, which
achieves about 98% accuracy on the validation set, to gen-
erate the candidate class labels. The labels were then auto-
matically corrected when we compute the parameters for the
geometric transform in Section 3.4.1. For the remaining ones
that cannot be automatically verified, we manually inspected
and corrected them.

Our grouping of the signs in REAP-S has an extra benefit.
Since each class is (approximately) associated with a stan-
dardized physical size, we can specify the patch size in real
units (e.g., inches) instead of pixels. The real unit is arguably
more useful for estimating the threat of adversarial patches
than constraining the size by the number of pixels. One com-
plication is that a single class of sign may come in different
sizes, e.g., stop signs can be 24”, 36”, or 48”, depending on
the kind of road they are located on, but usually one size is

Update August 18, 2023: In the previous version of the paper, we only
present REAP-S which was called REAP.

more common. The Vistas dataset does not contain sufficient
information to distinguish between these sizes so we pick
one canonical size for each sign type. Specifically, we select
the size specified for “Expressway” according to the official
U.S. Department of Transportation’s guideline. Appendix A
describes our design decision in detail.

3.4. Transformations

We render adversarial patches with two types of transfor-
mations: geometric and relighting. Since the traffic signs
in our dataset vary in shape, size, and orientation, we first
need to apply a geometric, specifically perspective or 3D,
transform to the patch to simulate these variations. Next, we
account for the fact that pictures of real-world traffic signs
are taken under different lighting conditions by applying a
relighting transform to the patch. The importance of these
transformations is highlighted in Fig. 4.

3.4.1 Geometric Transformation

To determine the parameters of the perspective transform,
we need four keypoints for each sign. We infer the key-
points for a particular traffic sign using only its segmentation
mask (which is provided in the Mapillary Vistas dataset) by
following the four steps below (also visualized in Fig. 2):
1. Find contour: First, we find the contour of the segmen-

tation mask.
2. Compute convex hull: Then, we find the convex hull

of the contour to correct annotation errors and occlusion.
This does not affect correct masks, as they should already
be convex.

3. Fit polygon and ellipse: We fit an ellipse to the convex
hull, to find circular signs. If the fitted ellipse results in
a larger error than a certain threshold, we know that the
sign is not circular and therefore fit a polygon instead.

4. Cross verify: We verify that the shape obtained from the
previous step matches with the ResNet’s prediction. If
not, the sign is flagged for manual inspection.
The last step is finding the keypoints. For polygons, we

first match the vertices to the canonical ones and then take
the four predefined vertices as the keypoints. For circular
signs, we use the ends of their major and minor axes as
the four keypoints. These keypoints are used to infer a
perspective transform appropriate for this sign. Triangular
signs are a special case as we can only identify a maximum
of three keypoints which means we can only infer a unique
affine transform (six degrees of freedom). Note that this
transform is linear and hence is fully differentiable. Lastly,
we manually check all annotations and correct any errors.

https://mutcd.fhwa.dot.gov/htm/2003/part2/

part2b1.htm
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Figure 2: The automated procedure we use to extract the keypoints from each traffic sign.
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Figure 3: Computing relighting parameters (top) and apply-
ing the transform (bottom).

3.4.2 Relighting Transformation

Each traffic sign in our dataset has two associated relighting
parameters, ↵,� 2 R. Given a patch P, its relighted version
Prelighted = ↵P + � is rendered on the scene as depicted
on the bottom row of Fig. 3. We infer ↵,� by matching
the histogram of the original sign (e.g., the real stop sign
on the upper-right of Fig. 3) to a canonical image (e.g., the
synthetic stop sign on the upper-left): in particular, we set �
as the p-th percentile of all the pixel values (aggregated
over all three RGB channels) on that sign and ↵ as the
difference between the p-th and (1 � p)-th percentile. We
call this the “percentile” method and explain why we chose
it in Section 3.5. This method assumes that relighting can
be approximated with a linear transform where ↵ and �
represent contrast and brightness adjustments. Like before,
since this transformation is linear, it is differentiable.

3.5. Realism Test

In this section, we measure how realistic the patches are
when rendered with different transform methods: three for
geometric and eight for relighting. The geometric transforms
include perspective (or homographic), affine, and translate

Figure 4: Example ablation of the geometric and relighting
transforms in our dataset. The rightmost stop sign has a patch
rendered with a perspective and relighting transform which
makes it more realistic. The first and second images have
patches that are too bright whereas the first and third images
have patches that do not respect the sign’s orientation.

Table 1: Comparison of different geometric and relighting
transforms from our realism test (mean ± standard deviation
of RMSE across 44 samples). The best results are in bold.

Transforms Methods Colors RMSE (#)

Geometric
Translate & Scale n/a 1.72 ± 1.19
Affine n/a 1.35 ± 0.49
Perspective (3D) n/a 1.13 ± 0.41

Relighting

Percentile
RGB 0.110 ± 0.034
HSV 0.227 ± 0.118
LAB 0.652 ± 0.112

Polynomial
RGB 0.113 ± 0.037
HSV 0.118 ± 0.035
LAB 0.161 ± 0.043

Color Transfer HSV 0.117 ± 0.035
LAB 0.184 ± 0.062

& scale transforms. For relighting, we experiment with
three methods, each of which can be carried out on different
color spaces (RGB, HSV, and LAB): the percentile method,
described in Section 3.4.2; polynomial fitting, where we find
the polynomial that best fits the pixel values on each real
sign given the corresponding pixel values on the digital one;
and Color Transfer [47], which tries to match the mean and
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Figure 5: RMSE between the photographed and the rendered
patches using the “percentile” method with different values
of p. The shaded region denotes the standard deviation across
44 samples. p = 20 yields the lowest RMSE.

Figure 6: Random samples used in our realism experiments
(left: real, right: rendered). Fig. 17 contains all samples.

the standard deviation of the pixel values.

We photograph 44 pairs of real traffic signs with and with-
out an adversarial patch: 11 signs, one for each class, in four
scenes and lighting conditions. For each sample, we hand-
annotated the keypoints of both the signs and the patches.
Then, given an image of the sign without the patch, we ren-
der the patch on it using the different transform methods.
For geometric transforms, we measure the root mean square
error (RMSE) between the rendered and the corresponding
groundtruth corners of the patch. To compare the relighting
methods, we compute the RMSE between the rendered and
the corresponding groundtruth pixel values of the patch. We
use the groundtruth geometric transform when computing
the relighting parameters to disentangle the potential error
from the geometric transform.

Table 1 reports the best RMSE achieved by each trans-
form after a hyperparameter sweep (p, polynomial degrees,
etc.). The perspective transform achieves the lowest RMSE
as expected which emphasizes the importance of using the
full 3D transform instead of simpler alternatives. For relight-
ing, the percentile method with p = 0.2 performs as well as,
or better than, any other at rendering the adversarial patches.
Hence, these are the two transforms we use to construct the
REAP benchmark and in all of the experiments in Section 4
unless stated otherwise. Fig. 6 visually compares the ren-
dered patches with the groundtruth ones under these best
transform methods. Appendix B contains more details.

4. Experiments on REAP Benchmark
Our benchmark can be used to evaluate attacks and de-

fenses under various threat models, e.g., making objects
appear vs disappear, using a universal patch vs a targeted
attack, etc. In this paper, we focus on the setting where
the adversary tries to make a traffic sign disappear or be
misclassified using the per-class attack, i.e., only one patch
per class of objects, similar to Benz et al. [4]. We argue that
this threat model is more realistic and more alarming as the
attacker only needs to distribute several adversarial stickers
that are effective across million of traffic signs. We assume
the adversary has access to the target model (white-box).

4.1. Experiment Setup
Traffic sign detectors. We experiment with three object
detection models, Faster R-CNN [48], YOLOF [9], and
DINO [64], all trained on the MTSD dataset to predict bound-
ing boxes for all 11 traffic sign classes plus the “other” class.
We follow the training method and hyperparameters from
Neuhold et al. [42]. As mentioned in Section 4.2, we report
the false negative rate (FNR) in addition to mAP scores. For
FNR, the score threshold is chosen as one that maximizes
the F1 score on the validation set of MTSD.

Attack algorithms. We use the RP2 attack [17] and the
DPatch attack [33] to generate adversarial patches for all
models. We assume that the adversary has access to 5 held-
out images from our benchmark and use them to generate
one adversarial patch per sign class. We note that this
setting, referred to as per-class attack, is different from the
usual white-box attack threat model where each sample is
given a unique perturbation (we call it per-instance attack)
and is more similar to the “universal” adversarial perturba-
tion [38]. We argue that this threat model is more realistic
and more alarming as the attacker only needs to distribute
one adversarial sticker that are effective across million of
traffic signs of the same type. Appendix D.5 discusses the
threat models in more detail.

Each of the classes has a specific set of these 5 images
each of which contains at least one sign of that class. For
REAP-S, we use 50 images since there are more samples per
class. In practice, an adversary may benefit from using more
than 5 (or 50) images to generate the patch, but we set our
limit here to leave sufficient samples for the evaluation phase.
We do not find a significant difference in the performance of
the two attacks (Appendix D.1) so we report only the results
of DPatch attack with PGD optimizer in the main paper.

Defense algorithm. We use adversarial training with
DPatch attack and five-step PGD as it performs the best
empirically. The patches are generated per-instance at a
random location to prevent overfitting to a specific one. To
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Table 2: Mean FNR and mAP of the adversarial patches on six traffic sign detectors on REAP. “FRCNN” refers to Faster
R-CNN, “Adv.” indicates adversarially trained models. For defenders, lower FNR (#) and higher mAP (") are better.

Patch Size FRCNN YOLOF DINO Adv. FRCNN Adv. YOLOF Adv. DINO

FNR mAP FNR mAP FNR mAP FNR mAP FNR mAP FNR mAP

No patch 4.3 72.9 18.5 54.8 14.1 68.2 3.1 73.3 21.0 55.0 9.4 74.2
Small (10”⇥10”) 15.4 59.4 33.7 43.5 32.0 60.4 3.8 71.8 22.5 54.7 1.8 80.6
Medium (10”⇥20”) 22.4 46.5 42.7 36.6 35.4 52.6 6.1 66.8 27.1 51.9 1.2 80.1
Large (two 10”⇥20”) 50.0 18.2 72.8 19.4 62.8 39.5 13.9 56.3 57.7 34.1 3.6 77.8

improve the effectiveness of adversarial training under a
small number of steps, we cache patches generated in the
previous epoch and use it as an initialization for the next
one [67]. For more detailed setup and results, please see
Appendix C.

Synthetic Benchmark. We use canonical synthetic signs,
one per class, as a baseline to compare our REAP-S bench-
mark to (we cannot find canonical synthetic signs for all
100 classes of REAP). Similarly to Eykholt et al. [17], the
synthetic sign is placed at a random location on one of 50
random background images and randomly rotated between
0 and 15 degrees. We use the synthetic benchmark for both
generating and testing the adversarial patch. For testing, we
use 2,000 background images per class, randomly selected
from our REAP-S benchmark to keep the distribution of the
scenes similar.

4.2. Evaluation Metrics
Here, we define a successful attack as a patch that makes

the sign either (i) undetected or (ii) classified to a wrong
class (i.e., any of the other classes, or the background class).
Similarly to previous work, we measure the effectiveness
of an attack by the attack success rate (ASR), defined as
follows. Given a list of signs {xi}Ni=1 and the corresponding
version with an adversarial patch applied to it, {x0

i}Ni=1,

ASR =

PN
i=1 1xiis detected ^ 1x0

iis not detected
PN

i=1 1xiis detected

. (1)

ASR and FNR are easy to interpret but dependent on specific
thresholds of both the confidence score and the IoU between
the groundtruth and the detected boxes. Hence, we also
report mAP which averages across these thresholds.

4.3. Main Results
Experiments on our REAP benchmark illuminate several

findings that were not previously observed due to the lack of
scalability and reproducibility of real-world experiments:

(1) Patch attacks against road signs are less effective than
previously believed. From Table 2, a 10”⇥10” adversarial

patch increases FNR by only 11–18 percentage points on the
undefended models. For REAP-S (Table 3), the increase is
8–12 percentage points. For comparison, a class-wise adver-
sarial perturbation under imperceptible `1 norms achieves
above 90% success rate [4]. More importantly, on adver-
sarially trained models, FNR remains almost identical
before and after applying the patch on Faster R-CNN and
YOLOF. Surprisingly, adversarially trained DINO performs
better on samples with adversarial patches than without. We
hypothesize that this is a result of overfitting to some adver-
sarial patches and not a clear sign of weak attacks or gradient
obfuscation. We refer to Section 4.4 for additional detail.

This result implies that a well-known defense like adver-
sarial training is effective and may be sufficient to protect
against patch attacks in the real world. Adversarial attacks
are most troubling when they are imperceptible; patches as
large as 10”⇥10” (or larger) are likely to draw attention,
which may make them less of a threat in practice.

Our findings are also consistent with prior works that
investigate physical-world attacks on stop signs. In these
works, the attack is often clearly visible. For instance,
Eykholt et al. [17] and Zhao et al. [66] use a patch that is
close to our two 10”⇥20” patches which is why they observe
a high attack success rate similar to our results with the larger
patch size. Nonetheless, a patch of this size surely breaches
all notions of imperceptibility. Perhaps an interesting threat
model to study in the future is to allow large patches but
additionally constrain the perturbation with `1-norm.

(2) ASR measured on synthetic data is not predictive of
ASR measured on our realistic benchmark. We compare
REAP-S to a synthetic benchmark intended to be represen-
tative of methodology often found in prior work: we take a
single synthetic image of a road sign, then generate attacks
against it (instead of a real image). Table 3 and Fig. 8 show
that there is a large difference between metrics as measured
on such a synthetic benchmark compared to our benchmark.
The gap can be up to 50–60 percentage points on average.

Fig. 8 and Table 9 in Appendix D compare ASR on the
two benchmarks by class of the traffic signs. If the two
ASRs were similar, all data points would have lied close to
the diagonal dashed line. Instead, most of the data points
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Table 3: Mean ASR and FNR of the adversarial patches on the six traffic sign detectors on REAP-S. For sign-specific metrics,
see Table 9. It is clear that evaluating on the synthetic signs overestimates the attack’s potency in every setting. For defenders,
lower FNR (#) and ASR (#) are better.

Patch Size Benchmarks FRCNN YOLOF DINO Adv. FRCNN Adv. YOLOF Adv. DINO

FNR ASR FNR ASR FNR ASR FNR ASR FNR ASR FNR ASR

No patch Synthetic 19.8 n/a 17.0 n/a 12.7 n/a 15.7 n/a 19.0 n/a 5.8 n/a
REAP-S (ours) 20.2 n/a 17.1 n/a 12.8 n/a 17.4 n/a 19.2 n/a 6.1 n/a

Small
(10”⇥10”)

Synthetic 76.9 73.1 89.8 88.6 58.8 56.9 50.0 43.9 76.8 73.4 24.1 22.6
REAP-S (ours) 50.5 39.2 48.6 38.9 36.2 28.0 18.7 5.1 28.3 12.7 1.1 0.1

Medium
(10”⇥20”)

Synthetic 89.9 88.3 92.0 91.1 73.1 72.6 79.5 77.3 83.7 81.7 34.7 33.9
REAP-S (ours) 64.4 56.1 60.5 52.8 45.5 38.4 33.8 23.5 46.5 34.7 1.3 0.1

Large
(two 10”⇥20”)

Synthetic 99.6 99.6 100.0 100.0 96.5 96.4 98.9 98.8 99.1 98.9 52.9 52.7
REAP-S (ours) 85.2 82.0 88.2 86.1 85.1 83.5 59.3 53.6 69.9 64.3 5.1 4.3

Figure 7: Examples of small (10”⇥10”), medium (10”⇥20”) and large (two 10”⇥20”) patches applied to three of the signs
from our benchmark. The large patch size is clearly visible and obscures the notion of imperceptibility. We still choose to
experiment with it since it is approximately the same size used by prior work [17, 66].

(a) Faster R-CNN (b) DINO

Figure 8: ASRs on synthetic vs REAP-S benchmarks for
Faster R-CNN (left) and DINO (right). The dashed line
marks the points with an equal ASR on both datasets.

are below the line, suggesting that the synthetic benchmark
consistently overestimates the ASR. Moreover, there is no
clear relationship between the two measurements of ASR.
If the rankings of the ASRs are well-correlated, we should
expect ordering of the points to be similar in both horizontal
and vertical directions, but this is not the case.

(3) The lighting transform affects the attack’s effective-
ness more than the geometric transform. Fig. 9 shows
how the transformations our benchmark applies to the patch
affect its mAP scores. For all models, our realistic lighting
transform has a much larger effect than the geometric trans-

Figure 9: Effects of different geometric and relighting trans-
form methods on the mAP of the YOLOF model under attack.
The hatched bars are the default setting. When either geo-
metric or relighting transform is varied, the other one is fixed
to the default (perspective, p = 0.2).

form. Without the lighting transform, mAP decreases by
17 percentage points for YOLOF and 15 for Faster R-CNN
(i.e., an increase of 23 and 14 points on the ASR). This ob-
servation explains why the synthetic benchmark as well as
synthetic evaluations in previous works overestimate ASR.

4.4. Extended Attack Evaluation
Because these results were so surprising, we investigated

the possibility that our attack algorithms are not sufficiently
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Table 4: Robustness of the adversarially trained models un-
der different attack threat models (10”⇥10” patch size). The
per-instance attack has the highest ASR and the lowest mAP
as expected, and there is no sign of gradient obfuscation.

Attacks ASR (") mAP (#)

Adv. Faster R-CNN

No Attack n/a 66.0
Per-Class Attack 5.1 65.7
Per-Instance Attack 16.0 59.3
Transfer from YOLOF 3.2 67.8
Transfer from Adv. YOLOF 7.0 63.6
Transfer from Synthetic 2.7 69.1

Adv. YOLOF

No Attack n/a 58.5
Per-Class Attack 17.7 51.3
Per-Instance Attack 28.2 46.5
Transfer from Faster R-CNN 13.5 53.1
Transfer from Adv. Faster R-CNN 7.9 55.4
Transfer from Synthetic 12.2 54.3

Adv. DINO

No Attack n/a 65.7
Per-Class Attack 0.1 75.1
Per-Instance Attack 2.7 63.7
Transfer from Adv. Faster R-CNN 0.1 76.5
Transfer from Adv. YOLOF 0.2 76.1
Transfer from DINO 0.0 79.6
Transfer from Synthetic 0.4 72.7

Augment Strength FRCNN Adv. YOLOF Adv. DINO

FNR mAP FNR mAP FNR mAP

None n/a 15.4 59.4 22.5 54.7 1.2 80.1

Color-jitter
0.1 16.1 58.8 23.1 54.7 1.2 80.1
0.2 16.0 58.5 23.6 54.6 1.2 80.0
0.3 15.5 59.0 23.3 54.7 1.3 80.1

Unif. noise
0.1 15.7 58.9 23.0 54.8 1.2 80.4
0.2 15.4 58.8 22.6 54.7 1.4 80.1
0.3 15.6 58.6 22.9 54.7 1.4 80.2

Table 5: FNR and mAP with color-jitter or random noise
applied during the attack EoT on REAP. We use the small
patch for Faster R-CNN and Adv. YOLOF, and the medium
size for Adv. DINO. None of the augmentations seems to
affect the potency of the attack.

strong (e.g., gradient obfuscation [2]) or that the adversari-
ally trained models “catastrophically overfit” [59, 25, 1], i.e.,
they memorize the attack patterns during training but are not
actually robust. In particular, we evaluate the adversarially
trained models against transfer and per-instance attacks.

The per-instance attack generates one patch for each in-

stance of traffic signs, as opposed to our default per-class
patch. The transfer attack generates per-class patches from
either a different source model or the synthetic data. Ta-
ble 4 shows that the per-instance attack always achieves a
higher ASR (and lower mAP) than the per-class attack, and
the transfer attack has the lowest ASR in most cases. This
result is expected and does not indicate that the gradient
obfuscation or the catastrophic overfitting phenomenon is
happening.

To further improve the robustness of the adversarial
patches (i.e., making the attack transfer to other instances
in the same class), we also tried to generate the adversarial
patches by applying random augmentations including color-
jitter and uniform noise injection (similar to expectation over
transformation [3]). Table 5 shows that the augmentations
with varying strength levels do not significantly affect the
ASR of the attack.

Overall, the effectiveness of all the attacks remains lim-
ited against all the adversarially trained models. In particular,
the ASR of the per-instance attack, which is an upper bound
of ASR on all threat models, is only 3% on Adv. DINO
on REAP-S. Based on these experiments (and others in Ap-
pendix D.6), we tentatively conclude that the adversarially
trained classifiers truly do appear robust for the REAP de-
tection task. Because this result is so surprising, further
research is needed before we can have full confidence in this
conclusion.

5. Conclusion and Future Directions

We construct the first large-scale benchmark for evalu-
ating adversarial patches. Our benchmark consists of over
14,000 signs from real driving scenes, and each sign is anno-
tated with the transformations necessary to render an adver-
sarial patch realistically onto it. Using this benchmark, we
experiment with a broad range of models and attacks. We
find that adversarial patches of a clearly visible size fool an
undefended model on less than 28% of the signs and only
1% for a defended model. This is in contrast to adversar-
ial examples with bounded `p-norm, where attacks nearly
always succeed. All in all, our experiments suggest that re-
alistic constraints render patch attacks significantly less
effective, and vanilla adversarial training is an effective
defense against the current practical patch attacks.

One interesting direction for future research is to explore
whether attacks against object detectors can be improved.
Also, in our experiments, adversarial training achieved
strong robustness at the cost of degrading mAP on clean
images by about 5 percentage points. It would be interest-
ing to explore new defenses that have less impact on clean
performance. We hope that our benchmark will provide a
foundation for more realistic evaluation of patch attacks and
drive future research on defenses against them.
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