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Abstract—Hardware-Assisted Flow Integrity eXtension
(HAFIX) was proposed as a defense against code-reuse attacks
that exploit backward edges (returns). HAFIX provides fine-
grained protection by confining return addresses to only target
call sites in functions active on the call stack. We study whether
the backward-edge policy in HAFIX is sufficient to prevent
code-reuse exploits on real-world programs. In this paper, we
present three general attacks that exploit weaknesses in HAFIX
and demonstrate these attacks are effective in case studies
examining Nginx web server, Exim mail server, and PHP. We
then propose improvements to HAFIX we believe will improve
its effectiveness against code-reuse attacks.

I. INTRODUCTION

Memory-safety vulnerabilities have been used to exploit
systems for over two decades. Researchers have studied many
defenses against these attacks, yet performance and other
limitations of these defenses have meant that memory-safety
exploits remain ubiquitous [1]. Data Execution Prevention
(DEP) [2], which marks pages of memory used for data as
non-executable, has caused a shift to code-reuse attacks which
redirect program flow to code already present in a program [3].

Mitigations to code-reuse attacks have included stack ca-
naries [4], address randomization (ASLR) [5], and control-
flow integrity (CFI) [6]. Stack canaries and ASLR have
limitations, and exploits have been demonstrated on both
mitigations [7]. CFI is one promising defense. However, CFI
seems to suffer from a performance/security tradeoff: full-
strength CFI imposes a non-trivial performance overhead.
Researchers have proposed coarse-grained CFI defenses that
reduce the performance overhead by relaxing the security
policy [8], [9], [10], but unfortunately these schemes have been
demonstrated to be ineffective [11].

Recent research has suggested using hardware to implement
CFI. In 2014, Davi et al. proposed an intriguing hardware-
assisted approach with a novel policy for restricting return
instructions [12]. Their design keeps track of an “active set” of
return sites. Each function call adds the subsequent instruction
to the set, and return instructions are only allowed to return
to an instruction in the active set. In 2015, Davi et al.
refined their design, which they dubbed Hardware-Assisted
Flow Integrity eXtension (HAFIX) [13]. They also described
two hardware implementations of HAFIX, one for the x86
Siskiyou Peak and one for SPARC LEON3, and showed that
both implementations achieve excellent performance.

In this paper, we analyze the security of HAFIX’s novel
active-set policy for return instructions. This policy provides
an interesting intermediate point between coarse-grained CFI

and full-strength CFI with a shadow stack. Other researchers
have studied coarse-grained CFI (where return instructions are
allowed to target any location that follows a call instruction)
and fully-precise CFI with a shadow stack (where each return
instruction can only return back to the location after the
matching call instruction), but the effectiveness of the active-
set policy at preventing exploits in real-world programs has
not been carefully studied before in the research literature. Our
results help understand whether this policy will be sufficient
at preventing exploits or if a shadow stack is a requirement
for preventing exploits.

To shed light on this question, we examine real-world
binaries that had vulnerabilities and evaluate whether HAFIX’s
active-set policy would have prevented exploitation of those
vulnerabilities. We show that this policy is circumventable
when an attacker has write access to arbitrary memory. We
present three novel attacks, based on the attacker’s ability
to return to parent code in a child process after a fork, to
earlier call sites in functions on the stack, and to the entry
function of a program (typically main). Our results can be
viewed as adding to the evidence that a shadow stack is a
minimum requirement for CFI, and that weaker policies for
return instructions are not sufficient.

To the best of our knowledge we are the first to evaluate
the active-set policy on real-world programs. Previous research
has speculated about potential weaknesses with HAFIX [14],
but the extent that these weaknesses are effective at preventing
actual exploits has not been studied.

II. BACKGROUND AND RELATED WORK

A. Control-Flow Integrity (CFI)

Control-Flow Integrity [6] is a code-reuse defense that con-
fines the program’s execution to be consistent with its control-
flow graph (CFG). The program is monitored at runtime to
ensure its control flow follows a valid path in the CFG. Any
deviation from the CFG produces an exception.

Control transfers can be split into two categories, forward
edges (function calls and jumps, including indirect transfers)
and backward edges (return instructions). Any CFI implemen-
tation must limit both forward and backward edges. Research
suggests that at least some forward-edge policies can be en-
forced efficiently in software [15], but backward-edge policies
can be more expensive [16]. This has motivated researchers
to examine several different backward-edge policies and to
consider hardware support for policy enforcement.



The strongest (most restrictive, most secure) backward-edge
policy involves validating return addresses with a shadow
stack in protected memory. Each call instruction causes the
return address to be pushed to the ordinary stack and to the
protected shadow stack; a return instruction validates the return
address against the value at the top of the shadow stack.
However, shadow stacks impose a significant performance
overhead in software, motivating researchers to study weaker,
coarse-grained policies for backward edges [17]. One weaker
alternative is to omit the shadow stack and check that every
return instruction targets the location following some call
instruction.

B. HAFIX: Hardware-Assisted Flow Integrity Extension

HAFIX is a hardware CFI implementation for backward
edges; the performance overhead is just 2% [13]. Their
design [12],[13, § 3] introduces an active-set policy that
maintains a set of active functions (functions that are executing
on the stack) and restricts returns to only target call-preceded
instructions in active functions. This policy is used in the
HAFIX x86 implementation.

Under HAFIX, the compiler assigns unique labels to each
function, then uses the labels in the following three new
instructions: (1.) CFIBR: CFIBR is inserted as the first
instruction to each function to insert the function’s label into
the active set; (2.) CFIRET: CFIRET is inserted after each call
instruction to check that the function’s label is in the active
set; (3.) CFIDEL: CFIDEL is inserted before each return
instruction to remove the function’s label from the active set.
A state machine ensures that every function call and return
must be followed immediately by a CFIBR or CFIRET. We
illustrate the result of this transformation in pseudocode below:
//main - label=0
int main() {

CFIBR 0 // insert label 0 into the active set
...
foo();
CFIRET 0 // ensure label 0 is in the active set
....
CFIDEL 0 // delete label 0 from the active set
return; }

//foo - label=1
int foo() {

CFIBR 1 // insert label 1 into the active set
...
CFIDEL 1 // delete label 1 from the active set
return; }

In the example above, foo can return to main since main’s
label, 0, is present in the active set when foo’s return instruc-
tion is executed. However, main cannot return to foo, as foo’s
label, 1, is not present in the active set when main returns.
Before returning all functions remove their label from the
active set to ensure future returns cannot target the function.

HAFIX also includes two additional instructions for han-
dling recursive function calls. HAFIX does not support nested
recursion. Our attacks (§ V) do not use recursion.

We emphasize that our results apply only to Davi et al.’s
x86 implementation of HAFIX, but not to their SPARC imple-
mentation [13]. Their x86 implementation uses the active-set

Forward-edge policy
Backward-edge policy Coarse-grained Fine-grained
Coarse-grained broken [18], [20], [11] broken [19]
Active set broken (this paper)
Shadow stack broken [21], [19] partially broken [19]

TABLE I
ATTACKS AGAINST VARIATIONS OF CFI

policy for return instructions, while their SPARC implementa-
tion uses a full shadow stack for return instructions. Other
researchers have studied shadow stacks; this paper focuses
solely on the active-set policy.

C. Attacks on CFI Implementations

Coarse-grained CFI has been bypassed [18], [11]. Carlini
et al. found that fine-grained forward-edge CFI with a weak
backward-edge policy (no shadow stack; allow returns to
target any call-preceded instruction) can be bypassed [19].
Even a shadow stack (the strongest possible policy for back-
ward edges) can be vulnerable to code-reuse attacks in some
cases [19]. Table 1 summarizes attacks on various CFI policies.
Although HAFIX was not studied by Carlini et al., their
findings imply that coarse-grained forward-edge CFI with an
active set for backwards edges can be bypassed, as that policy
is strictly weaker than coarse-grained forward-edge CFI with a
shadow stack. Previous research has not evaluated the active-
set policy for backwards edges with a fine-grained forward-
edge policy. We evaluate this combination in this paper.

III. THREAT MODEL

Attacker Goal. Our adversary seeks to use a vulnerability to
execute arbitrary code with all program permissions.
Threat Model. In our model an attacker (1.) has full writable
control of memory from a vulnerability at one point during
program execution, (2.) has access to the program’s code, and
(3.) can bypass code randomization (ASLR). We verify that
an attacker has control of memory in our case studies.
System Assumptions. We assume x86 HAFIX’s active-set
policy is deployed with the following additional defenses:

1) All indirect calls must follow the most restrictive static
CFG for forward edges that still allows all feasible non-
malicious execution [15]. (Thus, our attacks apply no
matter what policy is applied to forward edges.)

2) Returns are restricted by the active-set policy: they can
only target call-preceded instructions in active functions.

3) Data is non-executable and code is non-writable.

IV. ATTACKS AGAINST ACTIVE-SET POLICY

We present three general attacks on the active-set policy.

A. Return-to-Active-Function Attack

The active-set policy allows return instructions to target any
active function on the call stack. This property can be used by
an attacker to directly return to any function in the call stack,
bypassing any code residing in intermediate functions on the
stack. These intermediate functions may contain code that is
critical for secure execution. We show an example below.



int main(int argc, char *argv[]) {
char *path;
...
foo(path, argv);
execl(path, argv); // (*)
...

}
int foo(char* path, char *argv[]) {

...
vulnerable();
if (validate(path) != 0) { exit(1); }
...

}
int vulnerable(char * argv[]) {

char buf[1024];
...
memcpy(buf, argv[1], strlen(argv[1]));
...

}

An attacker can leverage the vulnerability in vulnerable() to
overwrite the return address to point to the statement marked
(*) in main and overwrite the path variable to refer to a
program of their choosing. By returning directly to main, the
attacker bypasses the path variable validation that would have
caused the program to exit.

B. Return-to-Parent-After-Fork Attack

Event loops and forked processes are common in server
software. Servers often have a main process that waits for
requests and forks a child process on each new request. In
benign execution it is usually not possible to execute code
that was designed for the parent process in the child process.
The active-set policy allows an attacker who has compromised
a child process to return to a function higher in the call stack
(in the parent’s region of the call stack) and execute code
designed for the parent within the child process. This may
enable a powerful attack, as often many unsafe library calls
occur in code designed to be executed by the parent.

Davi et al.’s x86 HAFIX implementation is intended for
bare metal code and does not support multiple processes or
fork. This attack is not applicable to that implementation, but
it is applicable to any system that uses the active-set policy
and supports multiple processes.

C. Back-Call-Site Attack

A consequence of assigning unique labels to functions as
opposed to individual call sites is that attackers who control
a return address can return to call sites that appear earlier
than the original call site if they are in the same function.
This enables attackers to reach points in active functions that
have already completed execution and are not intended to be
re-executed. We show an example below.

int main() {
char path[1024];
...
strcpy(path, "/usr/bin/whoami");
execl(path, arg);
...
vulnerable();

}
int vulnerable() {

Fig. 1. The active set for the Exim mail server during execution of the
vulnerability with the execv call in main.

char buf[1024];
...
memcpy(buf, input, strlen(input));

}

The vulnerability in the vulnerable function can enable an
attacker to execute execl in main with malicious arguments by
overwriting the path variable and return address to target the
execl in main.

An attacker can also return directly to call sites that occur
later in an active function than the original call site, bypassing
code occurring in between the original call site and the
attacker’s chosen call site.

D. Return-to-Main Attack

The back-call-site attack can be combined with a return-to-
active-function attack targeting the main function. Programs
typically start and complete execution in the main function.
As a result, main is marked active throughout the duration of
the program, and all code (other than dead code) is reachable
via some path starting in main. Suppose an attacker wants to
reach code in function g, g is reachable via some path from
function f, and main calls f. Then an attacker controlling any
return address can always return to any call site in main that
precedes the call to f and from there reach g.

V. EVALUATION AND CASE STUDIES

A. Motivation and Methodology

To understand the applicability of our attacks to real pro-
grams we select three programs with reported memory vul-
nerabilities and attempt to develop attacks on these programs
under HAFIX. We select our programs by searching CVE
databases for CVEs of open-source programs. We reproduce
the vulnerabilities inside gdb to obtain an accurate backtrace
and identify which functions are active at the point of the
vulnerability. We also use gdb to write to memory and emulate
an attacker’s control over memory, and to verify that an
attacker has full-writable control of memory for all programs.

B. Exim Mail Server

We examine a buffer overflow in the Exim mail server [22].
The vulnerability results from a heap based buffer overflow in
the gethostbyname functions in glibc 2.2–2.18.
Control over Memory. A security advisory [22] explains
how an attacker can turn the gethostbyname buffer overflow
into a write-anything-anywhere primitive. This satisfies our
requirement that an attacker has full control of memory.



Fig. 2. The active set for Nginx is shown on the left. The ngx spawn process function contains a call to ngx execute proc which calls execve. ngx execute proc
is called using the proc variable which can reference ngx execute proc when ngx spawn process is called from ngx execute.

Exploitation. We found that an attacker can bypass active-
set CFI and perform an exec with an arbitrary command. We
successfully spawned a shell while monitoring the program
in gdb to ensure the active-set policy is respected. Our attack
works by invoking an execv call in the main function. Because
main is active when the gethostbyname vulnerability occurs,
an attacker can use their control over memory to (1.) overwrite
the return address to target the execv and (2.) overwrite the
argument that is supplied to execv. Figure 1 shows the active
functions at the point where the attacker controls memory and
the call-preceded execv call in main.

C. Nginx Web Server

We study a integer overflow vulnerability in Nginx server
1.4.0 that was reported in CVE-2013-2028 [23].
Control over Memory. An integer signedness vulnerability in
the decoding stage of Nginx allows an attacker to overflow an
integer and trigger a stack-based buffer overflow. The overflow
can be used to control arguments of a memcpy call, allowing
an attacker to write arbitrary values to arbitrary locations [19].
Memory can be arranged after executing memcpy to return the
process to accepting further requests without a crash.
Exploitation. We find an attacker can execute arbitrary code
in the presence of active-set CFI. One of the functions
in the active set when the memory vulnerability occurs,
ngx spawn process, invokes a function pointer, proc, which
can be overwritten by any value of the attacker’s choice. An
attacker with control over memory can (1.) overwrite the return
address to target the proc function call in ngx spawn process,
(2.) overwrite the proc function pointer to reference the
ngx execute proc function, and (3.) overwrite the structure
in memory used to hold the arguments for the execve call
in ngx execute proc. Figure 2 summarizes our exploit and
shows the active functions during the exploit. Overwriting
the proc function pointer to reference the ngx execute proc
function does not result in a forward-edge CFI exception as
there exists another function, ngx execute, that sets proc to
ngx execute proc in non-malicious execution.

D. PHP: Stack Buffer Overflow

We investigate a stack buffer overflow in the sockets exten-
sion of PHP 5.3.6 that was reported in CVE-2011-1938 [24].

Control over Memory. An attacker has full writable control
of memory in the presence of active-set CFI. A memcpy call
in the sockets function of php allows an attacker to trigger a
stack overflow. The overflow can (1.) overwrite the arguments
to a memcpy call in main and (2.) overwrite the return address
to target the memcpy in main. The memcpy call in main is
followed by an error condition check that returns when errors
are detected. Memory can be overwritten to force a return
through this error path to create a write-what-where gadget.
Exploitation. We found that an attacker can execute arbitrary
code despite active-set CFI. An attacker can leverage their
control over memory to inject a php script of their choosing.
The stack overflow occurs during execution of a php script, so
the active set contains the required functions for execution of
a php script. To execute an arbitrary php script, an attacker
(1.) overwrites the existing php script in memory and (2.)
overwrites the return address to target the php execute script
function that executes php scripts.

E. Results

Table II summarizes our results. We believe the attacks we
demonstrate are general and can be applied to other software.

VI. ENHANCING HAFIX

A. Adoption of Call-Site Labels

To prevent the back-call-site attack, we propose assigning
unique labels to individual call sites instead of functions. A
compiler would then insert CFIBR instructions immediately
before call sites instead of inserting CFIBR instructions at the
beginning of functions. This modification restricts returns to
target only the original call site in an active function. The
attacks we demonstrate on Nginx and Exim servers are not
possible under this modification.

B. Deactivation of Parent Function upon Fork

To prevent the return-to-parent-after-fork attack, we propose
augmenting fork to clear the child process’s active set before
executing the child’s code. The programs we evaluate do not
contain programmer-intended paths in a child process that lead
to functions made active in the parent process. We believe
this holds true for most programs, however for compatibility
we propose implementing this feature as an opt-out compiler
option with a default of deactivating active parent functions.



Application Attack techniques used Exploitable with active set Exploitable with shadow stack
Nginx web server Return-to-parent, back-call-site Yes No
Exim mail server Return-to-main, back-call-site Yes No
PHP - Yes Undetermined (No write-what-where gadget found)

TABLE II
A SUMMARY OF OUR ATTACKS. THE SECOND COLUMN INDICATES THE ATTACK METHODS WE USE IN OUR EXPLOITS.

Our proposed compiler option can be modeled after the -fno-
stack-protector option used in gcc to disable canaries.

C. Replacement of Active Functions with a Shadow Stack

We were unable to find exploits that work in the presence
of a shadow stack for the three programs in our case studies.
Therefore we believe the adoption of a LIFO shadow stack
will be significantly stronger than an active set. Fortunately
Intel plans to add hardware support for shadow stacks in their
upcoming Control-flow Enforcement Technology (CET) [25].
Recent research projects, including a successor to HAFIX, also
present hardware support for shadow stacks [14], [26].

VII. CONCLUSION

Many variants of CFI have been considered in the research
literature. Our work shows that the active set policy for
backward edges can be defeated, no matter what forward-edge
policy is used. These results suggest that the active set policy
is too permissive and CFI needs to use a full shadow stack.

ACKNOWLEDGMENT

We thank Nicholas Carlini and the anonymous reviewers for
feedback that improved the paper. This work was supported by
the AFOSR under MURI award FA9550-12-1-0040, by Intel
through the ISTC for Secure Computing, and by the Hewlett
Foundation through the Center for Long-term Cybersecurity.

REFERENCES

[1] B. Martin, M. Brown, A. Paller, D. Kirby, and S. Christey, “2011
CWE/SANS top 25 most dangerous software errors,” Common Weakness
Enumeration, vol. 7515, 2011.

[2] PAX-TEAM, “PaX SEGMEXEC documentation,” 2004. [Online].
Available: https://pax.grsecurity.net/docs/segmexec.txt

[3] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Transactions
on Information and System Security (TISSEC), vol. 15, no. 1, p. 2, 2012.

[4] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks.” in USENIX Secu-
rity, 1998, pp. 63–78.

[5] PAX-TEAM, “PaX ASLR (adress space layout randomization),” 2003.
[Online]. Available: http://pax.grsecurity.net/docs/aslr.txt
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