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ABSTRACT

We propose and release a new vulnerable source code dataset. We
curate the dataset by crawling security issue websites, extracting
vulnerability-fixing commits and source codes from the correspond-
ing projects. Our new dataset contains 18,945 vulnerable functions
spanning 150 CWEs and 330,492 non-vulnerable functions extracted
from 7,514 commits. Our dataset covers 295 more projects than all
previous datasets combined.

Combining our new dataset with previous datasets, we present
an analysis of the challenges and promising research directions of
using deep learning for detecting software vulnerabilities. We study
11model architectures belonging to 4 families. Our results show that
deep learning is still not ready for vulnerability detection, due to
high false positive rate, low F1 score, and difficulty of detecting hard
CWEs. In particular, we demonstrate an important generalization
challenge for the deployment of deep learning-based models. We
show that increasing the volume of training data may not further
improve the performance of deep learning models for vulnerability
detection, but might be useful to improve the generalization ability
to unseen projects.

We also identify hopeful future research directions. We demon-
strate that large language models (LLMs) are a promising research
direction forML-based vulnerability detection, outperformingGraph
Neural Networks (GNNs) with code-structure features in our ex-
periments. Moreover, developing source code specific pre-training
objectives is a promising research direction to improve the vulner-
ability detection performance.
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1 INTRODUCTION

Detecting software vulnerabilities is crucial to prevent cybercrimes
and economic losses, but to date it remains a hard problem. Tradi-
tional static and dynamic vulnerability detection techniques suffer
from shortcomings. Given the tremendous success of deep learn-
ing in image and natural language applications, it is natural to
wonder if deep learning can enhance our ability to detect vulner-
abilities [4, 15, 18, 25, 33]. However, as we show in this paper, we
still need to overcome many challenges before deep learning can
achieve great performance for vulnerable source code detection.

For deep learning to be successful, we need a large dataset of
vulnerable source code. We release a new open vulnerability dataset
for C/C++, DiverseVul. To curate the dataset, we crawl security
issue websites, collect vulnerability reports, extract vulnerability-
fixing commits for each vulnerability, clone the corresponding
projects, and extract vulnerable and nonvulnerable source code
from them. Our dataset contains 18,945 vulnerable functions and
330,492 nonvulnerable functions extracted from 7,514 commits, cov-
ering 150 CWEs. This is more than twice the size of the C/C++ data
from the previous largest and most diverse dataset CVEFixes [2].
Our dataset is more diverse and covers almost 50% more projects
than the combination of all previously published datasets. We pub-
licly release the DiverseVul dataset to the community at https:
//github.com/wagner-group/diversevul.

Our new dataset has enabled us to study the state-of-the-art
deep learning methods and gain new insights about promising
research directions as well as the challenges for ML-based vulner-
ability detection. In particular, we study several questions. Does
more training data help, or are models saturated? Does the model
architecture make a big difference? Is it better to use the state-of-
the-art model that relies on code-structure features, or better to use
large language models? Is a larger LLM better than a smaller LLM?
What are the most promising directions for further improving deep
learning for vulnerability detection?

To study the effect of model architectures, we experiment with
11 different deep learning architectures from 4 representative model
families: Graph Neural Networks (GNN) [13], RoBERTa [10, 11, 16],
GPT-2 [17, 23, 30], and T5 [3, 24, 29]. Much work on deep learning
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Figure 1: An overview of several of our results. When trained

on only the CVEFixes dataset, ReVeal has comparable per-

formance as large language models. If we have enough data

(Previous + DiverseVul), large language models (e.g., Nat-

Gen) are superior to previous-generation models (e.g., Re-

Veal, a GNN model with code-structure features), but we

need large datasets to see these benefits. LLMs are better able

to take advantage of larger datasets than previous-generation

models (blue bars vs gray bars). The best LLMs for this task,

CodeT5 andNatGen, have been pre-trainedwith code-specific

tasks.

for vulnerability detection used GNNs with code-structure fea-
tures [4, 18, 33]. We also explore applying large language models
(LLMs) to vulnerability detection, as LLMs have achieved state-of-
the-art results for natural language processing and code understand-
ing, even though they don’t use code-structure features. We study
the performance of these models on three datasets: (1) CVEFixes [2],
the largest previously published dataset of C/C++ vulnerabilities; (2)
the combination of all previously published datasets (Devign [33],
ReVeal [4], BigVul [9], CrossVul [19], CVEFixes [2]), deduplicated;
(3) the combination of those previous datasets and our DiverseVul
(details in Table 3).

Our experiments show that, when evaluating on a prior dataset
CVEFixes [2], the model architecture has little effect and LLMs
perform about the same as GNNs. In particular, on CVEFixes, the
largest previously released dataset, the ReVeal model (a GNN)
achieves 12.8 F1 score, vs F1 scores of 8.5–16.3 for LLMs (see Fig-
ure 1). One might be tempted to conclude from this that the exact
architecture has little effect. However, when evaluating on larger
datasets, we can see that this conclusion is reversed: LLMs can
perform significantly better than GNNs. In particular, when we
combine all previously published datasets together with our Diver-
seVul, the best LLM achieves F1 score of 47.2, vs 29.8 for ReVeal.

These experiments show that we need large datasets to reliably
evaluate deep learning approaches to vulnerability detection, as the
relative performance of different architectures shifts radically as we
increase the amount of training data available: a 5× increase in the
amount of training data (from CVEFixes to all datasets) improved
the performance of our best model from 10.5 to 48.9 F1 score. They
suggest that LLMs are better able to make use of large datasets
than GNNs: larger datasets improve the performance of ReVeal
only modestly, but improve the performance of LLMs significantly.

However, our experiments suggest that the performance gain from
gathering more data may have stagnated. By adding our dataset to
the combination of previous datasets, we can improve the test per-
formance on 7 models out of 11. However, for the 3 best-performing
models, either we don’t see improvement or the improvement is
small (details in Section 4.2).

Unfortunately, the state-of-the-art deep learning techniques are
still not ready for vulnerability detection yet. Our best model has
47.2% F1 score, 43.3% true positive rate, and 3.5% false positive
rate. The false positive rate is still far too high for the model to
be practically useful. A project might contain tens of thousands of
functions, and this false positive rate corresponds to hundreds of
false positives, which is more than most analysts are likely to be
willing to wade through [1].

Despite the challenges, Figure 1 suggests that large language
models (LLMs) may be superior for deep learning based vulnera-
bility detection. In previous papers, researchers believe that GNN
with code-structure features is promising for vulnerability detec-
tion [4, 18, 33], since it combines domain knowledge with deep
learning. In contrast, our results show that large language models
(RoBERTa, GPT-2, and T5 families) significantly outperform the
state-of-the-art GNN, especially when training with more data. In
particular, CodeT5 models (CodeT5 Small, CodeT5 Base, NatGen)
are the best.

Contrary to the common belief that model size is the most impor-
tant factor for LLMs to perform well, our results show that the most
important factor may be how the LLM is trained. Pretraining on
code understanding tasks appears to offer large improvements. For
example, CodeT5 Small is pretrained to predict variable and func-
tion names, and it can achieve an average of 8 percentage points
higher F1 score than models that are twice its size but were not
pretrained on code. Surprisingly, we found that pretraining tasks
that are effective for natural language do not help vulnerability de-
tection much. Instead, it appears we need code-specific pretraining
tasks. We think that developing better code-specific pretraining
tasks is a promising research direction for improving deep learning
based vulnerability detection.

Moreover, we identify an important generalization challenge
for the deployment of deep learning based models. To deploy a
model we need to detect vulnerabilities from new software projects
that do not appear in the training set. We found that deep learn-
ing models perform very poorly in this setting. In particular, past
work has split data into training and test sets by a random split
of the vulnerabilities, without regard to which project each vul-
nerability appears in. However, in practice, we often want to run
a vulnerability detection tool on a new project, so there won’t be
any vulnerabilities from that project in the training set. To evaluate
the performance of deep learning in this setting, we set aside a
held-out set of projects, which we call “unseen projects”; we train
on vulnerabilities from the other projects (“seen projects”), and
then test on vulnerabilities from unseen projects. The performance
of all models on unseen projects decreases significantly, e.g., from
a F1 score of 49% on seen projects to only 9.4% on unseen projects.
The cause is unclear; perhaps the model is overfitting to patterns
or coding idioms that are specific to the particular projects that
appear in the training set. This generalization failure is likely to
be a significant barrier to deploying deep learning vulnerability
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detection in practice. We hope future research will explore how to
address this problem. We suggest a simple intervention to use class
weights in the training loss, that takes a small step in this direction,
but the gap remains very large and more work is needed.

Lastly, we quantify the label noise in our dataset as well as pre-
vious datasets. Label noise is a significant challenge for ML-based
vulnerability detection research. To extract vulnerable functions
from vulnerability-fixing commits, following the state-of-the-art ap-
proach (used by Devign [33], ReVeal [4], BigVul [9], CrossVul [19],
CVEFixes [2]), we label functions that were changed by these com-
mits as vulnerable. To understand the label accuracy of such labeling
approach, we randomly sample 50 vulnerable functions from our
dataset, and another 50 vulnerable functions from the union of
three datasets that collect commits from NVD (BigVul, CrossVul,
and CVEFixes). Then, we manually analyze the vulnerability and
the labeled vulnerable functions. Our results find that the vulner-
able function label in DiverseVul is 60% accurate, which is 24%
more accurate than the union of CVEFixes, BigVul and CrossVul
but still containing many label errors. The main challenges are vul-
nerabilities that are spread across multiple functions and changes
to non-vulnerable functions in vulnerability-fixing commits. We
hope our work takes the first step towards understanding the label
noise issue and highlights the need for deeper investigation of the
impact of label noise.

We make the following contributions in this paper:

• We release DiverseVul, a new C/C++ vulnerable source
code dataset. Our dataset is 60% larger than the previous
largest dataset for C/C++, and the most diverse compared to
all previous datasets.

• We study 11 model architectures from 4 different model fami-
lies. Our results show that large language models outperform
the state-of-the-art graph neural network for deep learning
based vulnerability detection, and developing source-code
specific pretraining objectives is a promising research direc-
tion.

• We identify challenges of deep learning for vulnerability
detection. In particular, we highlight the difficulty of gener-
alizing to unseen projects outside the training set.

• We assess label noise in our dataset and previous datasets
that rely on vulnerability-fixing commits.

2 RELATEDWORK

In this section, we analyze previous public vulnerable source code
datasets for C/C++, their labeling methods, and how they are used
by related works on deep learning for vulnerability detection.
Synthetic Datasets: SATE IV Juliet [22] and SARD [21] are com-
mon synthetic datasets used by previous papers [15, 18, 25]. SARD
expands on the Juliet v1.0 test suite and contains test cases for mul-
tiple programming languages. The test cases are highly accurate,
and contain a variety of CWEs. However, they are constructed in
isolation using known vulnerable patterns, which are designed to
evaluate static and dynamic analysis tools. They don’t fully capture
the complexities of vulnerabilities within the real-world projects.
The VulDeePecker [15] dataset focuses on only two CWEs. They
selected vulnerabilities from 19 projects according to CVE infor-
mation from the National Vulnerability Database (NVD) [20], and

also combined SARD [21] test cases from these two CWEs. Both
VulDeePecker and SARD are semi-synthetic datasets.
Static Analyzer Labels: The Draper [25] dataset generated la-
bels using alerts from three static analyzers: Clang, Cppcheck, and
Flawfinder. Some categories of alerts were labeled as vulnerable,
and some are mapped to non-vulnerable. The labeled dataset is at
the function granularity. The quality of the label is unknown, but
the label accuracy of static analyzers tend to be low. D2A [32] used
differential analysis on the static analyzer (Infer) output over six
open-source repositories. Given thousands of version pairs for a
github repository, if the static analyzer generates an alert for the
version before a git commit, but not after the commit, then D2A
treats the commit as fixing a vulnerability. For the remaining alerts,
D2A labels them as unrelated to vulnerabilities.
Manual Labeling: The Devign [33] dataset was labeled by three
security researchers. They first used keywords to find commits that
likely fixed vulnerabilities and commits unrelated to vulnerabilities
from four repositories. Then, for the first category, three security
researchers manually reviewed these commits by majority vote to
determine which fix security vulnerabilities. Given labels for each
commit, Devign extracts the changed function before the commit
as the data sample, and labels it as vulnerable or non-vulnerable
according to the label of the commit. The authors of Devign released
data for two repositories, FFMPeg and Qemu. This dataset has high
quality labels, but manual labeling was very expensive, costing
around 600 man-hours.
Security Issues: Several prior datasets were generated by crawling
security issues to identify vulnerability-fixing commits. The Re-
Veal [4] dataset was labeled using the patches to known security
issues at Chromium security issues and Debian security tracker.
ReVeal considers the changed functions before a security patch
(commit) as vulnerable, after the patch as non-vulnerable, and all
unchanged functions as non-vulnerable. In comparison, our dataset
DiverseVul has 18K vulnerable functions, which is 11× the size of
ReVeal (Table 3).

BigVul [9], CrossVul [19] and CVEfixes [2] collect vulnerability-
fixing commits from Common Vulnerabilities and Exposures (CVE)
records in the NVD [20]. In particular, CVEFixes covers all published
CVEs up to 27 August 2022. CVEfixes and CrossVul datasets cover
multiple programming languages, and we use their C/C++ data in
this paper. These three datasets cover a wide range of projects and
CWEs. In comparions, our dataset contains more projects, more
CWEs, and double the number of vulnerability-fixing commits.

A few other vulnerable source code datasets in C/C++ do not
provide vulnerable functions, and therefore we did not include them
in our experiments. For example, AOSP [5] collected commits fixing
CVEs from the security bulletin of Android Open Source Project
(AOSP), which contain patches to vulnerabilities in Android OS, the
Linux kernel, and system on chip manufacturers. PatchDB [28] pro-
vides patch information, i.e., code diffs, but does not provide enough
information to identify the project or git repository it came from
and thus does not let us reconstruct the full code of the changed
funcction.

Security issues are effective at identifying vulnerability-fixing
commits, as they are based on manual analysis from developers.
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They are also representative of in-the-wild vulnerabilities in real-
world projects. Therefore, we also collect our new dataset Diverse-
Vul by crawling security issues. Compared to all previous datasets,
DiverseVul is the most diverse one, covering the most number
of projects. In particular, DiverseVul has vulnerabilities from 295
new projects that have not been collected by any of the previous
real-world datasets (Table 3).
DL for Vulnerable Source Code Detection: Previous papers have
used LSTM [15], CNNs and RNNs [25], Bidirectional RNNS [14],
and Graph Neural Networks [4, 18, 33] to detect vulnerable source
code. A recent paper from Thapa et al. [27] shows that on the
VulDeePecker [15] dataset spanning two CWEs, large language
models outperform BiLSTM and BiGRU models. However, they did
not compare against Graph Neural Networks (GNN). GNNs rep-
resent programs as graphs that contain useful domain knowledge
for vulnerability detection. ReVeal [4] used features obtained from
the code property graph [31], and VulChecker [18] proposed a new
enriched program dependence graph. These papers used relatively
small datasets such as ReVeal and Juliet. If we train the models with
larger datasets, it is not clear whether GNN with code-structure
features is still effective compared to large language models.

3 DATA COLLECTION

Our goal is to collect high-quality vulnerability-fixing commits from
a diverse set of real-world projects. We focus on collecting data from
security issues, since they reflect high-quality labels from a com-
munity of developers and security analysts. We start by identifying
29 security issue websites, and then narrow it down to 2 websites
with most git system commits 1. From these websites, we crawl the
issue title, body, and relevant git commit URLs. Since developer’s
discussions may reference both vulnerability-fixing commits and
vulnerability-introducing commits, we use two heuristics to exclude
vulnerability-introducing commits. First, we exclude all commit
URLs mentioned in comments containing keywords “introduced"
and “first included"; and second, we manually go over all commits
that changed at least 10 functions and exclude ones that introduced
vulnerability. We keep the remaining commits in our dataset.

Next, we parse the git commit URLs to extract the projects and
commit IDs. We clone the projects and extract the commits from
these projects. We identify the C/C++ related code files in the
commits. Then, we extract all functions that were changed in these
commits, and also functions that did not change in the files. Same
as ReVeal [4], we label the before-commit version of a changed
function to be vulnerable, and the after-commit version to be non-
vulnerable.We label all unchanged functions in the related code files
to be non-vulnerable. Like prior work, we deduplicate functions
by their MD5 hashes, and we do not normalize the code before
deduplication. We keep track of the set of unique MD5s when
processing the functions. We process all the vulnerable functions
before the nonvulnerable ones. If the MD5 of a function already
exists in this set, we do not include the function again in the data.
In total, we have collected 7,514 commits from 797 projects, which
result in 18,945 vulnerable functions and 330,492 non-vulnerable
functions, covering 150 CWEs. Table 1 shows the top 10 projects
and the top 10 CWEs in DiverseVul with the most number of

1snyk.io and bugzilla.redhat.com.

Project # Commits

linux 1,458
ImageMagick 330
php-src 301
openssl 261
tensorflow 243
qemu 205
linux-2.6 179
vim 134
FFmpeg 134
tcpdump 112

(a)

CWE # Commits

CWE-787 2,896
CWE-125 1,869
CWE-119 1,633
CWE-20 1,315
CWE-703 1,228
CWE-416 1,005
CWE-476 975
CWE-190 783
CWE-200 747
CWE-399 509

(b)

Table 1: Top 10 projects and CWEs in DiverseVul and the

corresponding number of vulnerability-fixing commits.

vulnerability-fixing commits. Note that CWE-703 “Improper Check
or Handling of Exceptional Conditions" is not on the list of MITRE
top-25 CWEs.

For issue titles that mention the CVE number, we query the Na-
tional Vulnerability Database API to obtain the CWE information
for the issue and the corresponding commit. For issues with devel-
oper annotated vulnerability category, we manually map them to
top 25 most popular CWEs. About 85% of our data can be mapped
to 150 CWE categories. We do not specifically address hierarchical
CWEs. Depending on the query result from the NVD Database, a
CVE number could be mapped to multiple CWEs.

4 EXPERIMENTS

In this section, we study how our new dataset can improve the
performance of deep learning based vulnerability detection. We
study 11 model architectures from 4 model families. We also discuss
insights learned from these experiments.

4.1 Model Architectures

We study 4 model families, where 3 families are transformer-based
large language models (LLM). Within each LLM family, there are
different variants of the model pretrained using different objec-
tives. Table 2 summarizes the number of parameters for all model
architectures.

4.1.1 Graph Neural Network. Within the Graph Neural Network
(GNN) family, we choose to reproduce a representative previous
work ReVeal [4].

Given a function, the ReVeal model constructs a graph to repre-
sent the function, computes the embedding vector of the graph, and
classifies the vector as vulnerable or nonvulnerable. Specifically, the
graph representation for the function is a code property graph [31]
(CPG). CPG combines Abstract Syntax Tree (AST), Control Flow
Graph (CFG), Data Flow Graph (DFG), and Program Dependence
Graph (PDG). Each node has the corresponding source code and
type, and each edge has a type. The embedding of the graph is a
sum of embeddings of the nodes in the graph. To learn the node em-
beddings, ReVeal uses Gated Graph Neural Networks (GGNN) [13]
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Model Family Model Architecture # Parameters

GNN ReVeal 1.28M

RoBERTa
RoBERTa 125M

CodeBERT 125M

GraphCodeBERT 125M

GPT-2
GPT-2 Base 117M

CodeGPT 124M

PolyCoder 160M

T5

T5 Base 220M

CodeT5 Small 60M

CodeT5 Base 220M

NatGen 220M
Table 2: The number of parameters for different models.

to recursively update the embeddings of the nodes. The initial em-
bedding of a node is a concatenation of Word2Vec embedding of
the code and the categorical type vector. Then, the GGNN training
procedure uses the message passing mechanism to update each
node embedding according to the node’s neighbors in the graph.
Finally, after training the GGNN, ReVeal adds two fully-connected
layers, rebalances the training set, to learn the final classifier. The
total number of parameters of the ReVeal model is 1.28M.

4.1.2 RoBERTa Family. We select three model achitectures from
the RoBERTa family: RoBERTa [16], CodeBERT [10], and Graph-
CodeBERT [11]. All of them have 12 layers of Transformer encoders,
768 dimenional hidden states, 12 attention heads, and 125M model
parameters in total. The common pretraining objective for this
family is masked language modeling (MLM). The MLM pretraining
process randomly masks a percentage of tokens within the input to-
kens, effectively removing them, and the training goal is to predict
the missing tokens.

RoBERTa [16] is an extension of BERT [8] that makes changes
to important hyperparameters, including removing the pretraining
objective of predicting the next sentence, as well as using larger
mini-batches and learning rates during training. RoBERTa was pre-
trained on a union of five datasets: BookCorpus, English Wikipedia,
CC-News, OpenWebText, and Stories.

CodeBERT [10] pretrains themodel using the CodeSearchNet [12]
dataset containing 2.3M functions from six programming languages
(Go, Java, JavaScript, PHP, Python, and Ruby). CodeBERT performs
MLM pretraining and replaced token detection pretraining. During
pretraining, each input is a pair of natural language description and
source code, where the text describes the meaning of the code. The
MLM pretraining in CodeBERT makes sure that tokens from both
the natural language part and the source code part are masked out,
and the replaced token detection corrupts both parts of the input as
well. CodeBERT outperforms RoBERTa on two downstream tasks,
natural language code search and code documentation generation.

GraphCodeBERT [11] also uses the CodeSearchNet [12] training
datasets. In addition to having the natural language description
and the source code parts of the input, GraphCodeBERT pretrain-
ing also constructs a third part of the input that captures the data
flow between variables in the source code. In addition to MLM
pretraining, GraphCodeBERT proposes two new pretraining ob-
jectives: edge prediction and node alignment. The edge prediction
task maximizes the dot product between embeddings of two nodes
if there is an edge, and the node alignment task maximize the dot
product between embeddings of the code token and variable token
if the variable represents the code token. Over benchmark datasets,
GraphCodeBERT outperforms CodeBERT and RoBERTa on code
clone detection, code translation, and code refinement tasks.

Note that the training dataset of CodeBERT andGraphCodeBERT
does not have programs written in C/C++.

4.1.3 GPT-2 Family. We select three model architecures from the
GPT-2 family: GPT-2 Base [23], CodeGPT [17], and PolyCoder [30].
They have 12 layers of Transformer decoders, 768 dimentional
hidden embeddings, and 12 attention heads. The size of the models
are in Table 2, ranging from 117M to 160M. The common pretraining
objective for this family is causal language modeling, i.e., next
token prediction. How well a model is pretrained on the causal
language modeling is measured by perplexity. A lower perplexity
value indicates a better model.

GPT-2 [23] was pretrained on an unreleased WebText dataset,
which was collected by scraping web page links on Reddit.

CodeGPT [17] uses the same training objective and architecture
of GPT-2, but different training data. The authors select Python and
Java codes from CodeSearchNet [12] as the training set, and release
several variants of the pretrained CodeGPT models. In this paper,
we use an adapted version of CodeGPT pretrained on Java codes.
The CodeGPT model was initialized from GPT-2 weights, and then
pretrained using Java codes from CodeSearchNet using the next
token prediction task. Note that there is no C/C++ programs in the
training set.

PolyCoder [30] uses the samemodel architecture and pretrianing
objective as GPT-2, but pretrains the model from scratch. The au-
thors pretrained the model with data from GitHub containing both
source code and natural language comments within the code files.
They cloned a total of 147,095 projects, that are the most popular
repositories of 12 popular programming languages with at least 50
stars. Their training data contains over 24K repositories in C/C++.
The authors curate an evaluation datasets of codes from unseen
repositories. On C programming language, PolyCoder achieves the
lowest perplexity value, compared to GPT-Neo, GPT-J, and Codex.

4.1.4 T5 Family. We select four model achitectures from the T5
family: T5 Base [24], CodeT5 Base, CodeT5 Small [29], and Nat-
Gen [3]. All models have encoder-decoder Transformer layers.
CodeT5 Small has 6 encoder layers and 6 decoder layers, 512 dimen-
sional hidden states, 8 attention heads, and 60M parameters. The
other models have 12 encoder layers and 12 decoder layers, 768 di-
mensional hidden states, 12 attention heads, and 220M parameters.

T5 [24] pretrains the model using the masked language mod-
eling objective. In particular, T5 pretraining procedure randomly
masks spans of tokens. The pretraining dataset is C4 (Colossal Clean
Crawled Corpus). The authors curate the C4 dataset by processing
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the Common Crawl dataset to get hundreds of gigabytes of clean
English text.

CodeT5 [29] uses the same underlying transformer architecture
as T5. We consider two model sizes in our experiments: CodeT5
Base and CodeT5 small. The CodeT5 Small is the smallest LLM, with
one third the model size of other T5 based models, and roughly half
the model size of RoBERTa and GPT-2 family models. CodeT5 was
pretrained on on both CodeSearchNet data and additional C/C#
projects from GitHub. In addition to the masked span prediction
objective, CodeT5 utilizes the knowledge about whether a token
is an identifer (a variabel name or a function name) and designs
two new pretraining tasks. The new pretraining tasks are, masked
identifier prediction (masking all identifiers) and identifier tagging
(predict whether a token is an identifier).

NatGen [3] proposes a new pretraining objective called “nat-
uralizing” pretraining. The naturalizing pretraining is similar to
a code editing process, that takes some weird synthetic code and
tranform that into developer-readable code. The authors gener-
ate un-natural code by semantic preserving code transformations
including adding dead code, changing a while loop to a for loop
without variable initialization, renaming variables, and inserting
confusing code element, etc. Then, the pretraining objective asks
the model to naturlize the code to the original developer-friendly
form. The NatGen model starts the pretraining from the CodeT5
Base weights, and then continues the pretraining process using
their new pretraining objective. Doing well on the naturalizing
pretraining objective requires the model to understand the code
well. Compared to CodeT5, NatGen improves the performance over
various downstream tasks such as code translation, text to code
generation, and bug repair.

4.2 Model Performance with More Data

4.2.1 Dataset Setup. Deep learning models perform well when
they are trained on a lot of data. Therefore, we combine non-
synthetic datasets with high-quality vulnerability labels from real-
world projects, including Devign, ReVeal, BigVul, CrossVul, and
CVEFixes. We then combine them with DiverseVul and remove
duplicate samples to create the Previous + DiverseVul dataset, as
shown in Table 3.

Table 3 presents the statistics for each of the previous five datasets,
as well as our dataset, DiverseVul, and the merged datasets. Com-
pared to all previous datasets, DiverseVul includes a larger num-
ber of projects, more CWEs, more vulnerable functions, and more
vulnerability-fixing commits. Specifically, DiverseVul contains
18,945 vulnerable functions, of which 16,109 have CWE informa-
tion, more than twice the number in any previous dataset. Having
more data associated with CWE information will provide us with
a more comprehensive understanding of model prediction results.
The last two rows in Table 3 show the unique new data provided
by DiverseVul in the merged datasets after deduplicating samples.
Comparing Previous and Previous + DiverseVul datasets, we can
see that DiverseVul contains 295 new projects that do not exist
in any of the previous datasets. Moreover, DiverseVul provides
10,845 unique new vulnerable functions.

For our experiments, we randomly select 80% of the samples
from the Previous + DiverseVul dataset as the training set, 10%

as the validation set, and 10% as the test set. We also construct
the Previous training and validation sets that only contain the
previous five datasets, and training and validation sets that only
contain CVEFixes data. This allows us to train models with different
amounts of data and evaluate how much adding more data helps
in improving the model’s performance to predict the same test set
from Previous + DiverseVul.

4.2.2 Results. For each model architecture in Table 2, we train
three models, using CVEFixes, Previous, and Previous + Diverse-
Vul training datasets. We train the ReVeal models from scratch,
and we fine tune the large language models (LLMs) for the vulnera-
bility detection task from pretrained model weights. This gives us
33 models in total. The detailed training setups in our experiments
can be found in Appendix A.

Table 4 shows the performance of the models over the same test
set from Previous + DiverseVul. The following summarizes the
results.

Result 1: When trained on all available data, large lan-

guage models significantly outperform the state-of-the-art

GNN-based ReVealmodel.When trained on all available data
(Previous + DiverseVul), LLMs perform significantly better than
the ReVeal model: the ReVeal model achieves a 29.76 F1 score,
while LLMs achieve F1 scores from 31.96 to 47.15. The best LLM
performs significantly better than ReVeal on this large training
set. Comparing between ReVeal and LLMs is arguably unfair since
ReVeal has 1–2 orders of magnitude fewer parameters than LLMs.
We do not know whether a larger GNN could be competitive with
LLMs. Unfortunately, even the best-performing model, NatGen, is
not yet suitable for deployment in vulnerability detection, with a
3.47% false positive rate and a 47.15% F1 score. This false positive
rate is still too high to be practical, and the F1 score is still low.
Nevertheless, we believe that large language models hold promise
for deep learning-based vulnerability detection.

Interestingly, LLMs require a large amount of training data to
surpass ReVeal. When trained solely on CVEFixes data, a much
smaller training set, there is no clear advantage of LLMs over GNN-
based ReVeal model, and ReVeal is even better than 6 LLMs (out of
10) in this setting.

Result 2: Within the three base LLM models, T5 Base per-

forms better than RoBERTa and GPT-2 Base for vulnerability

detection. RoBERTa only uses encoders, GPT-2 only uses decoders,
and T5 uses encoder-decoder Transformer layers. When trained on
Previous + DiverseVul, T5 Base has a test F1 score that is 7.35%
and 9.3% higher than RoBERTa and GPT-2 Base, respectively. Thus,
an encoder-decoder architecture might have an advantage over a
decoder/encoder only architecture.

Result 3: Pretraining on code does not lead to significant

improvements in vulnerability prediction, if we only use nat-

ural language pretraining tasks. The code models CodeBERT,
GraphCodeBERT, CodeGPT, PolyCoder are not significantly bet-
ter than the corresponding text models RoBERTa and GPT-2 Base.
Specifically, when trained on the Previous dataset, CodeBERT and
GraphCodeBERT perform similarly to RoBERTa. When trained on
the Previous + DiverseVul dataset, CodeBERT and GraphCode-
BERT improve the F1 score by up to 2.8% compared to RoBERTa. On
the other hand, when trained on Previous dataset, CodeGPT and
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Dataset # Projects # CWEs # Functions # Vul Func # Vul Func with CWE Info # Commits

Devign 2▽ N/A 26,037 11,888 N/A N/A

ReVeal 2^ N/A 18,169 1,664 N/A N/A

BigVul 348 91 264,919 11,823 8,783 3,754

CrossVul∗ 498 107 134,126 6,884 6,833 3,009

CVEFixes∗ 564 127 168,089 8,932 8,343 3,614

DiverseVul 797 150 330,492 18,945 16,109 7,514

Previous† 638 140 343,400 30,532 14,159 17,956

Previous + DiverseVul 933 155 523,956 41,377 22,382 21,949

†: We aggregate previous five datasets by combining and deduplicating samples from Devign, ReVeal, BigVul, CrossVul, and CVEfixes.
∗: CVEfixes and CrossVul are multi-language datasets. We report numbers for C/C++ code.
▽: Devign authors released data from two repositories: FFMPeg+Qemu. ^ : Chromium and Debian packages.

Table 3: Statistics about previous five datasets, DiverseVul, merged Previous dataset, and Previous + DiverseVul.

Figure 2: We visualize the performance of models that are

trained on CVEFixes, Previous, and Previous + DiverseVul.

Adding DiverseVul to the merged Previous dataset helps

improve the test performance for 7 models out of 11. It does

not help the CodeT5 models.

PolyCoder have up to 2.3% higher F1 scores than GPT-2; but when
trained on Previous + DiverseVul, PolyCoder performs worse
than GPT-2. Our findings suggest that pretraining models on code
using MLM or next token prediction techniques does not yield sig-
nificant improvements in detecting C/C++ vulnerabilities. While
CodeBERT, GraphCodeBERT, and CodeGPT have not pretrained on
C/C++, PolyCoder has pretrained over C/C++ code for next token
prediction, which still does not help detecting C/C++ vulnerabili-
ties.

Result 4: Code-specific pretraining tasks on C/C++ make a

big difference in improving vulnerability detection perfor-

mance. The two CodeT5 models and the NatGen model have the
best F1 scores. They are pretrained using code-specific pretraining
tasks on C/C++. CodeT5 models use identifier-aware pretraining
tasks: masked identifier prediction and identifier tagging. NatGen
does additional code naturalizing pretraining on top of CodeT5,
such as removing dead code and renaming variables. These pre-
training tasks ask the model learn about basic code understanding,

which significantly improves the fine-tuned model performance for
vulnerability detection task. Note that GraphCodeBERT also does
some code-specific pretraining to learn embeddings from a pair of
variables with data flow to have large dot product value. However,
since it did not train on C/C++ data, it is unknown whether such
pretraining task is effective for vulnerability prediction.

Result 5: Code-specific pretraining task is more important

than the model size. Among the best three models in Table 4
(CodeT5 Small, CodeT5 Base, NatGen), the CodeT5 Small model has
only 60M parameters, half of the size of RoBERTamodels and GPT-2
models, and less than one third the size of other T5models. However,
CodeT5 Small performs very similar to the largest CodeT5 Base and
NatGen models, and it performs better than all the other models.
Contrary to the belief that larger models tend to produce better
performance, our results show that code-specific pretraining task
is more important than the model size for vulnerability detection.

Result 6: Performance gain from collecting more datasets

may have saturated. Figure 2 visualizes how much training on Di-
verseVul + Previous data helps improve the vulnerability detection
performance, compared to Previous data. AddingDiverseVul to the
training set improves the F1 score for 7 models by 2.4% on average,
compared to only training with the Previous dataset. However, it
does not help the best performing CodeT5 models, and it only helps
NatGen modestly. Even though we see a big improvement to model
performance by training on the merged Previous datasets compared
to only training on CVEFixes, collecting a different dataset may not
further improve that.

4.3 Dataset Volume

4.3.1 Dataset Setup. We want to measure the effect of data volume
on model performance for vulnerability detection. We run the fol-
lowing experiment ten times. For each run, we randomly split the
Previous +DiverseVul into training, validation, and test sets. Then,
we simulate the effect of different data volume by subsampling the
training and validation sets. Specifically, we randomly sample 10%
to 90% of the training and validation data from the full training
and validation data of Previous + DiverseVul. Then, we train the
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Model

Family

Model Pretrain Pretrain Code-Specific

Training Set

Test on Prev + DiverseVul (%)
Arch on Code on C/C++ Pretrain Task Acc Prec Recall F1 FPR

GNN ReVeal
CVEFixes 82.12 11.56 14.37 12.81 11.06
Previous 86.30 25.35 25.63 25.49 7.59

Prev + DiverseVul 82.81 23.75 39.83 29.76 12.87

RoBERTa

RoBERTa
CVEFixes 91.71 34.24 4.85 8.50 0.80
Previous 90.98 40.97 31.11 35.37 3.86

Prev + DiverseVul 91.68 46.02 28.22 34.98 2.85

CodeBERT ✔

CVEFixes 91.62 35.64 6.98 11.67 1.09
Previous 91.07 41.83 32.20 36.39 3.86

Prev + DiverseVul 90.48 39.25 36.54 37.85 4.87

GraphCodeBERT ✔ ✔

CVEFixes 91.76 38.28 6.35 10.89 0.88
Previous 91.65 45.71 27.61 34.43 2.83

Prev + DiverseVul 90.32 38.18 35.51 36.79 4.96

GPT-2

GPT-2 Base
CVEFixes 91.45 31.02 6.37 10.57 1.22
Previous 91.80 46.62 23.46 31.21 2.32

Prev + DiverseVul 91.73 46.18 25.71 33.03 2.58

CodeGPT ✔

CVEFixes 90.77 26.22 8.98 13.38 2.18
Previous 91.59 44.51 24.48 31.58 2.63

Prev + DiverseVul 91.36 43.48 29.62 35.23 3.32

PolyCoder ✔ ✔

CVEFixes 91.12 26.56 6.78 10.81 1.62
Previous 91.28 42.44 27.66 33.49 3.23

Prev + DiverseVul 91.97 48.76 23.78 31.96 2.15

T5

T5 Base
CVEFixes 91.57 32.23 5.65 9.61 1.02
Previous 92.15 50.80 32.15 39.38 2.68

Prev + DiverseVul 91.96 49.14 37.17 42.33 3.32

CodeT5 Small ✔ ✔ ✔

CVEFixes 90.89 30.03 11.18 16.29 2.24
Previous 91.98 49.34 42.53 45.68 3.76

Prev + DiverseVul 91.85 48.41 42.22 45.10 3.88

CodeT5 Base ✔ ✔ ✔

CVEFixes 91.41 34.76 9.39 14.79 1.52
Previous 92.16 50.68 42.46 46.20 3.56

Prev + DiverseVul 92.11 50.36 41.81 45.69 3.55

NatGen ✔ ✔ ✔

CVEFixes 91.64 36.17 7.07 11.83 1.08
Previous 92.30 51.81 42.92 46.94 3.44

Prev + DiverseVul 92.30 51.81 43.25 47.15 3.47

Table 4: We evaluate the models on the same test set from Previous + DiverseVul. There isn’t a big difference between model

performance across different architectures if we only train on the CVEFixes dataset. However, if we train on larger datasets,

large language models significantly outperform the GNN-based ReVeal model. Among them, CodeT5 Small, CodeT5 Base, and

NatGen models have the highest F1 scores. We highlight the row with the highest F1 score in bold. Pretraining the model using

code-specific pretraining task over C/C++ is very effective.

models, and evaluate them on the same original test set without
subsampling.

4.3.2 Results. We fine tune 100 CodeT5 Small models on differ-
ent dataset setups from 10 experiment runs. Within each run, we
evaluate the models on the same final test set from the Previous +
DiverseVul, and train 10 models by using different percentages
of training and validation data. Figure 3 plots the average and 95%

confidence interval for the test F1 score, when a model is fine tuned
from a corresponding dataset setup.

Result 7: Increasing the volume of the training dataset

from the same distribution helps vulnerability detection.

Our results show that training on a larger dataset from the same
distribution can improve the test performance. Figure 3 shows an
upward trend of better test F1 score as the volume of training data
increases. If we know the test data distribution ahead of the model
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Model

Family

Model Pretrain Pretrain Code-specific

Training Set

Test on Unseen Projects (%)
Arch on Code on C/C++ Pretrain task Acc Prec Recall F1 FPR

GNN ReVeal Previous 82.88 5.06 20.92 8.15 14.78
Prev + DiverseVul 85.88 5.67 18.46 8.67 11.58

RoBERTa

RoBERTa Previous 94.69 6.20 3.23 4.25 1.85
Prev + DiverseVul 95.59 10.46 2.78 4.40 0.90

CodeBERT ✔
Previous 94.94 9.53 4.57 6.17 1.64

Prev + DiverseVul 94.19 13.34 10.80 11.94 2.65

GraphCodeBERT ✔ ✔
Previous 95.32 4.64 1.45 2.21 1.12

Prev + DiverseVul 94.74 12.48 7.35 9.25 1.95

GPT-2

GPT-2 Base Previous 94.92 6.19 2.78 3.84 1.60
Prev + DiverseVul 95.06 9.82 4.34 6.02 1.51

CodeGPT ✔
Previous 94.32 5.98 3.79 4.64 2.25

Prev + DiverseVul 94.47 9.86 6.35 7.72 2.19

PolyCoder ✔ ✔
Previous 95.41 8.54 2.67 4.07 1.08

Prev + DiverseVul 92.73 10.25 12.81 11.39 4.24

T5

T5 Base Previous 95.67 20.21 6.35 9.66 0.95
Prev + DiverseVul 96.16 34.00 5.68 9.73 0.42

CodeT5 Small ✔ ✔ ✔
Previous 95.02 12.21 5.90 7.96 1.60

Prev + DiverseVul 94.91 13.35 7.24 9.39 1.78

CodeT5 Base ✔ ✔ ✔
Previous 96.21 32.32 3.56 6.42 0.28

Prev + DiverseVul 95.56 18.03 6.12 9.14 1.05

NatGen ✔ ✔ ✔
Previous 95.48 17.86 6.68 9.72 1.16

Prev + DiverseVul 95.49 17.38 6.35 9.30 1.14
Table 5: We randomly choose 95 projects as unseen projects for testing. The remaining projects are used for training. We

train each model on seen projects and test them on unseen projects. We highlight the row with the highest F1 score in bold.

Overall, the F1 scores show that these models have poor generalization performance on unseen projects. Adding DiverseVul

to Previous training set helps improve the generalization performance for all models except NatGen.

deployment time, collecting more training data from that distri-
bution might further improve the performance on vulnerability
detection.

4.4 Generalization

4.4.1 Dataset Setup. In a real-world deployment scenario, a vul-
nerability detection model needs to predict vulnerable source code
in new developer projects that it has not been trained on. Therefore,
we would like to test a model’s performance on unseen projects.

We randomly select 95 unique projects from the merged Previous
dataset as the unseen projects test set, to evaluate all models in
this experiment. Then, the remaining projects are treated as seen
projects in both training set and validation set. For both Previous
and Previous + DiverseVul datsets, we randomly sample 90% of
the seen projects as the training set, and 10% remaining projects
are the validation set. The training and validation sets of Previous
+ DiverseVul are supersets of these from Previous.

4.4.2 Results. We train ReVeal and fine tune each LLM on the seen
projects training set from Previous and Previous + DiverseVul,

resulting in 22 models in total. Wemake sure that these models have
been trained well, since they have achieved validation performance
similar to training performance. Table 5 shows the test performance
of these models over unseen projects.

The F1 scores of all models on unseen projects are very low.
The best models are CodeBERT, PolyCoder, CodeT5 Small, CodeT5
Base models trained on Previous + DiverseVul, and NatGen model
trained on Previous seen projects. Adding DiverseVul to Previ-
ous training set helps improve the generalization performance for
all models except NatGen. One recent, concurrent work [26] also
observed a significant performance drop when testing on unseen
projects. In our experiment, we have included hundreds of more
projects in the training set than [26], but we still observe the poor
generalization results.

Result 8: There is a significant challenge for deep learning

models to generalize to unknown test projects on the vulner-

ability detection task. A popular use case of AI for Code is the
GitHub CoPilot, where the AI model suggests ways to complete
code to developers when they are writing code. If AI for deep learn-
ing detection is also a coding assistant, it needs to suggest potential
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Model Arch Scheme

Train on Seen Projects Train on Random Samples

Test on Unseen Projects (%) Test on Random Samples (%)
Acc Prec Recall F1 FPR Acc Prec Recall F1 FPR

CodeBERT

No weight 94.19 13.34 10.8 11.94 2.65 90.48 39.25 36.54 37.85 4.87
Project Balanced 95.09 11.6 5.23 7.21 1.51 90.7 34.43 18.97 24.46 3.11

Weighted Soft F1 Loss 91.38 11.41 20.16 14.57 5.92 90.72 34.55 18.9 24.43 3.08
Class Weight 92.16 12.21 18.6 14.74 5.06 89.39 36.97 47.89 41.72 7.04

PolyCoder

No weight 92.73 10.25 12.81 11.39 4.24 91.97 48.76 23.78 31.96 2.15
Project Balanced 94.37 8.33 5.46 6.59 2.27 90.77 30.08 12.33 17.49 2.47

Weighted Soft F1 Loss 93.17 11.24 12.69 11.92 3.79 89.88 36.07 35.72 35.9 5.46
Class Weight 89.76 9.84 22.16 13.63 7.68 86.48 29.19 49.36 36.68 10.32

CodeT5 Small

No Weighting 94.91 13.35 7.24 9.39 1.78 91.85 48.41 42.22 45.10 3.88
Project Balanced Batch Sampler 95.3 14.52 5.90 8.39 1.31 90.69 39.36 31.96 35.27 4.24

Weighted Soft F1 Loss 96.34 48.18 5.90 10.52 0.24 91.31 44.69 39.78 42.09 4.24
Class Weights for Cross Entropy Loss 93.87 16.95 17.48 17.21 3.24 89.57 39.80 61.33 48.28 7.99

Table 6: Using class weights for cross entropy loss improves the generalization performance of models, when they are trained

on seen projects and tested on unseen projects. Using class weights improves the unseen project test F1 score of CodeBERT

from 11.94% to 14.74%, PolyCoder from 11.39% to 13.63%, and CodeT5 Small from 9.39% to 17.21%. Moreover, if the training and

testing samples are drawn from the same distribution, using class weights also improves the test F1 score. We highlight the row

with the highest F1 score in bold.

Figure 3: Deep learning for vulnerable source code detection

benefits frommore data collected from the same distribution

as the test data. We fine-tune CodeT5 Small models on differ-

ent amounts of vulnerable source code data with different

volume and report the test F1 score. We run each dataset

setup 10 times. The lines are the average, and the region de-

notes 95% confidence interval. This figure shows that a larger

training set improves the F1 score on vulnerability detection

on test data from the same distribution.

vulnerable functions a developer is writing, in a new project it has
not been trained on. Alternatively, static analyzers can be used to
examine vulnerabilities in different projects. In a similar use case,
deep learning based detection model needs to analyze a new project
(after development) it has not seen before. Both of these use cases

require the deep learning model to have strong generalization per-
formance to new projects, and it is an open research problem for
the community to tackle.

4.5 Weighting

In this section, we investigate whether three simple weighting
schemes can potentially improve the model’s generalization per-
formance to unseen test projects. The weighting schemes are the
following.

4.5.1 Project Balanced Batch Sampler. Our idea is to make the
model perform equally well on different projects. Therefore, we
propose a batch sampler that is equally likely to sample from any
project in the training set. If a project is picked, it then randomly
sample from all functions belonging to the project.

4.5.2 Weighted Soft F1 Loss. Since we care about F1 score as the
final performance metric, we would like explore if a different loss
function helps with improving the generalization performance. We
use normalized prediction probabilities (between 0 and 1) from the
training samples to calculate true positives, true negatives, false
positives, and false negatives, as in floating point numbers. Then,
we use these to compute two F1 scores of predicting the positive
label (vulnerable function) and the negative label (nonvulnerable
functions) separately. The loss for the positive label is 1 - positive
F1 score, and the loss for the negative label is 1 - negative F1 score.
Finally, we give a higher weight to the first loss value, proportional
to the ratio of nonvulnerable to vulnerable functions in the data.
Then, we choose the corresponding loss value according to the
ground truth class label as the final training loss.

4.5.3 Class Weights for Cross Entropy Loss. In this scheme, we still
use cross entropy loss for training. We upweight the loss value for
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Figure 4: Using class weights in the training loss function im-

proves the generalization performance over unseen projects

for CodeT5 Small, and it slightly improves the performance

on seen projects as well. The test F1 score on unseen projects

is still quite low.

the positive class (vulnerable class), proportional to the ratio of
nonvulnerable samples over vulnerable samples. We use the same
loss value for the negative class.

4.5.4 Results. We follow the same project split dataset setup de-
scribed in Section 4.4. We fine tune CodeBERT, PolyCoder, and
CodeT5 Small models over the seen projects training set from Pre-
vious + DiverseVul dataset, and test them on 95 unseen projects.
For each model architecture, we use four schemes to fine tune four
models: no weighting, project balanced batch sampler, weighted
soft F1 loss, and class weights for cross entropy loss. In addition,
we fine tune another four models for each architecture using these
schemes over a different data split, the random data split described
in Section 4.2.

Result 9: Using class weights for cross entropy loss can

improve the model’s generalization performance to unseen

projects, but there is a lot of room for further improvements.

Class weights also improve the model’s performance if train-

ing / testing samples are drawn from the same distribution.

Table 6 shows the evaluation results of models fine tunedwith differ-
ent schemes. For the seen / unseen projects experiment, using class
weights increases the F1 score for all three model architectures. The
project balanced batch sampler does not help with generalization.
The weighted soft F1 loss helps CodeBERT and CodeT5 Small with
generalization, but it hurts performance on seen projects. Overall,
class weights is the best scheme, as it improves performance on
both seen and unseen projects. CodeT5 Small trained with class
weights has the best test F1 score (17.21%) on unseen projects.

Figure 4 shows the gap between the F1 score on seen projects vs
unseen projects for two CodeT5 Small models, one fine tuned with
noweighting scheme and one fine tunedwith class weights for cross
entropy loss. From the bars, we observe that using class weights
reduces the gap between F1 score on seen vs unseen projects, with
slight improvement to F1 score on seen projects and significant im-
provement for unseen projects. This means that using class weights
improves the performance of the model over samples drawn from
the same distribution as well as from a different distribution of new
projects. However, there is still a large gap between 49.9% F1 on
seen projects vs 17.21% F1 on unseen projects. As future research
directions of the generalization problem, there is a lot of potential to
further improve the model’s performance over unknown projects.

4.6 Performance on CWEs

To understand the difficulty of learning different CWEs, we select
37 CWEs to examine the CodeT5 Base model’s prediction perfor-
mance when it is trained on Previous + DiverseVul. The 37 CWEs
include the top-25 CWEs according to MITRE [6], and the 12 most
common CWEs in DiverseVul outside the top 25. We select vulner-
able functions belonging to these 37 CWEs and all nonvulnerable
functions from the Previous + DiverseVul test set obtained from
the random split in Section 4.2.

Result 10: Some CWEs are easier to learn than others re-

gardless of the training data size. Table 7 shows the CodeT5
Base model’s prediction performance across the 37 CWEs. We have
highlighted the 10 most prevalent CWEs in the training set and
10 highest True Positive Rate (TPR) numbers in bold. Note that all
CWEs have the same False Positive Rate (FPR) since FPR is only
related to nonvulnerable functions. We observe that having more
samples for a particular CWE in the training set does not neces-
sarily result in the model learning it better than CWEs with fewer
training samples. Moreover, some CWEs with very few training
samples are well-detected by the model. For example, CWE-502,
CWE-79, CWE-89, all of which account for less than 2% of the train-
ing data, have the highest TPRs. This suggests that some CWEs
are easier to learn and do not require a large amount of training
data, while others are more challenging to learn, even with more
training samples. For instance, CWE-416 had 5.46% of the training
samples, but its TPR was only 17.86%.

For some CWEs, we do not have enough test samples, resulting
in extremely low TPR numbers. The “Test #” column shows the
number of vulnerable functions belonging to that CWE in the test
set. For CWEs with 0% TPR, most have less than 10 samples in the
test set.

5 LABEL ERROR ANALYSIS

While our dataset is designed to be as accurate as possible, some
functions may be labelled erroneously. To label vulnerable func-
tions, we follow the methodology used in Devign [33], ReVeal [4],
BigVul [9], CrossVul [19], and CVEFixes [2], which considers a
function vulnerable if it was changed by a commit that is identified
as fixing a vulnerability, based on security issue trackers. Although
our labeling technique is state-of-the-art and can scale effectively,
we cannot guarantee that every function changed by each such
commit is vulnerable, so some labels may be inaccurate.

To quantify the amount of label noise as a result of this labeling
methodology, we manually assess the accuracy of labels for the
DiverseVul, CVEFixes, BigVul, and CrossVul datasets. Among pre-
vious datasets, we chose CVEFixes, BigVul, and CrossVul because
they provide the commit ID that changed the vulnerable function,
which allows us to verify whether a function is vulnerable in that
specific version of the project.

We randomly sample 50 vulnerable functions from Diverse-
Vul, and 50 vulnerable functions from the union of previous three
datasets (CVEFixes ∪ BigVul ∪ CrossVul). Then, we manually ana-
lyze whether the vulnerable function has the correct label or wrong
label. We inform this decision by examining the code of the function
labelled vulnerable, both before and after the commit, the commit
it was supposedly fixed in, the CVE description, and developer
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CWE Train (%) Test # TPR (%) FPR (%)

CWE-119 15.16 313 39.30 3.55 Improper Restriction of Operations within the Bounds of a Memory Buffer
CWE-120 2.29 49 40.82 3.55 Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow’)
CWE-125 11.08 239 27.20 3.55 Out-of-bounds Read
CWE-189 2.97 57 31.58 3.55 Numeric Errors
CWE-190 4.77 100 21.00 3.55 Integer Overflow or Wraparound
CWE-200 5.10 131 31.30 3.55 Exposure of Sensitive Information to an Unauthorized Actor
CWE-20 10.76 224 32.59 3.55 Improper Input Validation
CWE-22 1.13 20 25.00 3.55 Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal’)
CWE-264 3.55 73 28.77 3.55 Permissions, Privileges, and Access Controls
CWE-269 1.14 23 8.70 3.55 Improper Privilege Management
CWE-276 0.19 3 0 3.55 Incorrect Default Permissions
CWE-284 3.35 77 25.97 3.55 Improper Access Control
CWE-287 0.58 10 10.00 3.55 Improper Authentication
CWE-306 0.00 0 N/A 3.55 Missing Authentication for Critical Function
CWE-310 1.95 44 25.00 3.55 Cryptographic Issues
CWE-352 0.10 1 0 3.55 Cross-Site Request Forgery (CSRF)
CWE-362 2.62 61 16.39 3.55 Race Condition
CWE-369 1.26 31 29.03 3.55 Divide By Zero
CWE-399 5.29 110 41.82 3.55 Resource Management Errors
CWE-400 2.38 34 5.88 3.55 Uncontrolled Resource Consumption
CWE-401 1.83 33 24.24 3.55 Missing Release of Memory after Effective Lifetime
CWE-415 1.55 30 30.00 3.55 Double Free
CWE-416 5.46 112 17.86 3.55 Use After Free
CWE-434 0.07 1 0 3.55 Unrestricted Upload of File with Dangerous Type
CWE-476 5.00 106 17.92 3.55 NULL Pointer Dereference
CWE-502 0.05 3 66.67 3.55 Deserialization of Untrusted Data
CWE-611 0.09 3 0 3.55 Improper Restriction of XML External Entity Reference
CWE-703 6.39 133 10.53 3.55 Improper Check or Handling of Exceptional Conditions
CWE-77 0.18 6 16.67 3.55 Command Injection
CWE-78 0.38 7 0 3.55 OS Command Injection
CWE-787 15.57 311 33.76 3.55 Out-of-bounds Write
CWE-79 0.47 12 50.00 3.55 Cross-site Scripting
CWE-798 0.01 0 N/A 3.55 Use of Hard-coded Credentials
CWE-862 0.26 6 16.67 3.55 Missing Authorization
CWE-89 0.31 9 33.33 3.55 SQL Injection
CWE-918 0.02 4 0 3.55 Server-Side Request Forgery (SSRF)
CWE-94 0.69 15 0 3.55 Improper Control of Generation of Code (‘Code Injection’)

Table 7: We evaluate the prediction performance of the CodeT5 Base model across top-25 CWEs and 12 most popular CWEs in

DiverseVul. We highlight the 10 highest training sample percentages and 10 highest TPR numbers in bold. Having more

training samples for a specific CWE does not necessarily improve the model’s prediction performance, and some CWEs are

harder to learn than others. Most CWEs with 0% TPR have under 10 samples in the test set.

Dataset Correct Label

Wrong Label

Vulnerability Spread
Across Multiple Functions Relevant Consistency Irrelevant

DiverseVul 60% 10% 12% 18%
CVEFixes ∪ BigVul ∪ CrossVul 36% 12% 12% 40%

CVEFixes 51.7% 10.3% 17.3% 20.7%
BigVul 25% 15.6% 9.4% 50%
CrossVul 47.8% 13% 21.8% 17.4%

Table 8: Label accuracy of four datasets, evaluated on a random sample of vulnerable functions.
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discussions in the security issue tracker. We confirm a function
as correctly labelled vulnerable if the vulnerability exists in that
function, and is not spread across multiple functions. We observed
three categories of label errors: 1) the vulnerability is spread across
multiple functions, 2) the function is not vulnerable, but changing
the function is relevant to fixing the vulnerability (e.g., to adjust
calling parameters), and 3) the function is not vulnerable and ir-
relevant to the vulnerability (e.g., a vulnerability-fixing commit
changes the spaces in some nonvulnerable functions, or makes
irrelevant functionality changes to nonvulnerable functions).

Table 8 shows our analysis results. The vulnerable function la-
bels are 60% accurate in DiverseVul, which is 24 percentage points
higher than the previous three datasets (CVEFixes ∪ BigVul ∪
CrossVul). Within these three datasets, CVEFixes is the most accu-
rate one, whereas BigVul has very low label accuracy, only 25%. We
observe that many commits included in BigVul from the Chromium
and Android projects are not relevant to fixing vulnerabilities at
all. We also found that the percentage of irrelevant functions is
surprisingly high, ranging from 17.4% to 50% in four datasets. These
functions are not related to the vulnerability, but since they were
changed by the vulnerability-fixing commits, the automatic labeling
process labels them as vulnerable.

Concurrent work also examined label noise and also found signif-
icant label errors in the BigVul and Devign datasets [7]. Compared
to their categorization, we have a stricter criteria to label a function
as vulnerable: we consider the caller of a vulnerable function as
non-vulnerable; they considered it vulnerable. Also, if a function
is only part of the vulnerability, and if the vulnerability cannot
be recognized from the code of this function alone, we consider
that a wrong label; they considered it correct. Taking into account
the differences in categorization, our findings for BigVul (the only
dataset common to their and our work) are largely consistent with
their findings.

6 LIMITATIONS

The label noise in our dataset and prior datasets may introduce
errors into our measurement of the performance of all models on
the test set. We hope that releasing our dataset will enable the
community to explore methods to remediate the effects of label
noise in the future.

In retrospect, the de-duplication procedure in our dataset and
prior datasets could be improved. As part of the label noise analysis,
we discovered that 4% of DiverseVul labels and 6% of (CVEFixes
∪ BigVul ∪ CrossVul) labels were erroneous because the commit
made whitespace-only changes to some functions, and these were
treated as security fixes during labelling. Therefore, normalizing
the whitespace in all functions before de-duplication could slightly
improve label accuracy, and might have other benefits.

There is a risk of contamination, i.e., test data leaking into pre-
training data, as LLMs are pre-trained on text and code, which
could conceivably include blog articles or code patches related to
security vulnerabilities included in our test set. Many of our models
(CodeBERT, GraphCodeBERT, PolyCoder, CodeT5 Small, CodeT5
Base, NatGen) were only pre-trained on code, not on other text or
code changes, so could have been exposed to code in our test set
but were unlikely to be exposed to a description of which code is

vulnerable. This could potentially affect our results in ways that we
cannot measure. Other models (RoBERTa, GPT-2 Base, CodeGPT,
T5 Base) were pre-trained on text, and so could possibly have been
exposed to blog articles that describe vulnerable source code. We
suspect that this is very rare, but we cannot measure it, so we cannot
rule out the possibility of test set contamination. The latter models
(RoBERTa, GPT-2 Base, CodeGPT, T5 Base) performed relatively
poorly in our experiment in any case.

There is also a risk that cloned code could cause test set contami-
nation, if the cloned code was subsequently modified slightly (thus
evading our de-duplication efforts).

7 CONCLUSION

This paper presents a new dataset, DiverseVul, for detecting soft-
ware vulnerabilities using deep learning. The dataset contains
18,945 vulnerable functions spanning 155 CWEs and 330,492 non-
vulnerable functions, extracted from 7,514 commits, which is more
diverse and twice the size of the previous largest and most diverse
dataset, CVEFixes. We use this new dataset to study the effective-
ness of various deep learning architectures in detecting vulner-
abilities. We have experimented with 11 different deep learning
architectures from four model families: Graph Neural Networks
(GNN), RoBERTa, GPT-2, and T5. The results suggest that the in-
creased diversity and volume of training data examined in this
paper is beneficial for vulnerability detection, especially for large
language models, but it is unclear whether even larger datasets
would help or not. Code-specific pretraining tasks appear to be a
promising research direction for deep learning based vulnerabil-
ity detection. Our results highlight a major challenge for future
research: improving deep learning models so they generalize to
unknown projects. We release the DiverseVul dataset to the com-
munity at https://github.com/wagner-group/diversevul.
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A MODEL TRAINING SETUPS

A.1 ReVeal Setup

We use Joern on GitHub 2 to obtain the Code Property Graphs. This
is a newer version than what ReVeal used, because if we use the
same old version of Joern as in the ReVeal paper, almost half of
the functions in all datasets cannot be extracted into graphs.

For the Gated Graph Neural Network, we set maximum training
epochs to be 50 for Previous + DiverseVul dataset and 100 for Pre-
vious dataset, and pick the model with the best validation F1 score,
for experiments in Section 4.2. We set maximum training epochs to
be 60 for experiments in Section 4.4. We follow the original setting
in ReVeal source code to use Adam optimizer with learning rate
0.0001, and weight decay 0.001.

To train the classification layers in ReVeal, we set the maximum
number of epochs to be 100 and follow authors’ set up: we stop the
training procedure if F1-score on validation set does not increase in
5 epochs. We follow the original setting in ReVeal source code to
use Adam optimizer with learning rate 0.001, and no weight decay.

A.2 Fine Tuning Setup

To fine tune LLM models, we apply a linear classification head over
the Tranformer model, following standard methods. For RoBERTa,
CodeBERT, and GraphCodeBERT, we apply the linear layer over
the embedding that represents the first token ([CLS]). For GPT-2-
Base, CodeGPT, and PolyCoder, we apply the linear layer over the
embedding of the last token. For the T5 Base, CodeT5 Small, CodeT5
Base, and NatGen, we apply the linear layer over the embeddings
of the last decoder state.

We use training batch size 32, learning rate 2e-5, Adam optimizer,
and train for 10 epochs. We use a linear learning rate decay with
warm up of 1,000 steps. We check the model’s validation perfor-
mance every 1,000 steps, and save themodel with the best validation
performance for testing. We use the same learning rate for all mod-
els and all training data setups with one exception. When we train
RoBERTa on Previous + DiverseVul from the random data split
(in Section 4.2), we use learning rate 1e-5, since a larger learning

2After commit a6aa08ee9842eedb52e149695e3a34500b6ceab0 on Oct 11, 2022.
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rate results in a degenerate model that always predicts a function
as nonvulnerable.
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