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Abstract

Current machine learning models suffer from evasion at-
tacks (i.e., adversarial examples) raising concerns in security-
sensitive settings such as autonomous vehicles. While many
countermeasures may look promising, only a few withstand
rigorous evaluation. Recently, defenses using random trans-
formations (RT) have shown impressive results, particularly
BaRT (Raff et al. 2019) on ImageNet. However, this type
of defense has not been rigorously evaluated, leaving its ro-
bustness properties poorly understood. The stochasticity of
these models also makes evaluation more challenging and
many proposed attacks on deterministic models inapplicable.
First, we show that the BPDA attack (Athalye, Carlini, and
Wagner 2018) used in BaRT’s evaluation is ineffective and
likely overestimates its robustness. We then attempt to con-
struct the strongest possible RT defense through the informed
selection of transformations and Bayesian optimization for
tuning their parameters. Furthermore, we create the strongest
possible attack to evaluate our RT defense. Our new attack
vastly outperforms the baseline, reducing the accuracy by 83%
compared to the 19% reduction by the commonly used EoT
attack (4.3× improvement). Our result indicates that the RT
defense on Imagenette dataset (ten-class subset of ImageNet)
is not robust against adversarial examples. Extending the study
further, we use our new attack to adversarially train RT defense
(called AdvRT). However, the attack is still not sufficiently
strong, and thus, the AdvRT model is no more robust than
its RT counterpart. In the process of formulating our defense
and attack, we perform several ablation studies and uncover
insights that we hope will broadly benefit scientific communi-
ties studying stochastic neural networks and their robustness
properties.

1 Introduction
Today, deep neural networks are widely deployed in safety-
critical settings such as autonomous driving and cybersecu-
rity. Despite their effectiveness at solving a wide-range of
challenging problems, they are known to have a major vulner-
ability. Tiny crafted perturbations added to inputs (so called
adversarial examples) can arbitrarily manipulate the outputs
of these large models, posing a threat to the safety and privacy
of the millions of people who rely on existing ML systems.
The importance of this problem has drawn substantial atten-
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tion, and yet we have not devised a concrete countermeasure
as a research community.

Adversarial training (Madry et al. 2018) has been the fore-
most approach for defending against adversarial examples.
While adversarial training provides increased robustness, it
results in a loss of accuracy on benign inputs. Recently, a
promising line of defenses against adversarial examples has
emerged. These defenses randomize either the model parame-
ters or the inputs themselves (Lecuyer et al. 2019; He, Rakin,
and Fan 2019; Raff et al. 2019; Liu et al. 2019; Xie et al.
2018; Zhang and Liang 2019; Bender et al. 2020; Liu et al.
2018; Cohen, Rosenfeld, and Kolter 2019; Dhillon et al. 2018;
Guo et al. 2018). Introducing randomness into the model can
be thought of as a form of smoothing that removes sinuous
portions of the decision boundary where adversarial exam-
ples frequently lie (He, Li, and Song 2018). Among these
randomization approaches, Raff et al. (2019) propose Bar-
rage of Random Transforms (BaRT), a new defense which
applies a large set of random image transformations to clas-
sifier inputs. They report a 24× increase in robust accuracy
over previously proposed defenses.

Despite these promising results, researchers still lack a
clear understanding of how to properly evaluate random de-
fenses. This is concerning as a defense can falsely appear
more robust than it actually is when evaluated using sub-
optimal attacks (Athalye, Carlini, and Wagner 2018; Tramer
et al. 2020). Therefore, in this work, we improve existing
attacks on randomized defenses, and use them to rigorously
evaluate BaRT and more generally, random transformation
(RT) defenses. We find that sub-optimal attacks have led to
an overly optimistic view of these RT defenses. Notably, we
show that even our best RT defense is much less secure than
previously thought, formulating a new attack that reduces
its security (from 70% adversarial accuracy found by the
baseline attack to only 6% on Imagenette).

We also take the investigation further and combine RT
defense with adversarial training. Nevertheless, this turns out
to be ineffective as the attack is not sufficiently strong and
only generates weak adversarial examples for the model to
train with. The outcomes appear more promising for CIFAR-
10, but it still lacks behind deterministic defense such as
Madry et al. (2018) and Zhang et al. (2019). We believe
that stronger and more efficient attacks on RT-based models
will be necessary not only for accurate evaluation of the



stochastic defenses but also for improving the effectiveness
of adversarial training for such models.

To summarize, we make the following contributions:

• We show that non-differentiable transforms impede opti-
mization during an attack and even an adaptive technique
for circumventing non-differentiability (i.e., BPDA (Atha-
lye, Carlini, and Wagner 2018)) is not sufficiently ef-
fective. This reveals that existing RT defenses are likely
non-robust.

• To this end, we suggest that an RT defense should only
use differentiable transformations for reliable evaluations
and compatibility with adversarial training.

• We propose a new state-of-the-art attack for RT defense
that improves over EoT (Athalye et al. 2018) in terms of
both the loss function and the optimizer. We explain the
success of our attack through the variance of the gradients.

• Improve the RT scheme by using Bayesian optimization
for hyperparameter tuning and combining it with adver-
sarial training which uses our new attack method instead
of the baseline EoT.

2 Background and Related Works
2.1 Adversarial Examples
Adversarial examples are carefully perturbed inputs designed
to fool a machine learning model (Szegedy et al. 2014; Biggio
et al. 2013; Goodfellow, Shlens, and Szegedy 2015). An
adversarial perturbation � is typically constrained to be within
some ‘p-norm ball with a radius of �. The ‘p-norm ball is a
proxy to the “imperceptibility” of � and can be thought of as
the adversary’s budget. In this work, we primarily use p = ∞
and only consider adaptive white-box adversary. Finding the
worst-case perturbation �� requires solving the following
optimization problem:

xadv = x+ �� = x+ argmax
�:k�kp��

L(x+ �; y) (1)

where L : Rd × RC → R is the loss function of the target
model which, in our case, is a classifier which makes predic-
tions among C classes. Projected gradient descent (PGD) is
often used to solve the optimization problem in Eqn. 1.

2.2 Randomization Defenses
A number of recent papers have proposed defenses against
adversarial examples which utilize inference-time random-
ization. One common approach is to sample weights of the
network from some probability distribution (Liu et al. 2018;
He, Rakin, and Fan 2019; Liu et al. 2019; Bender et al. 2020).
In this paper, we instead focus on defenses that apply random
transforms to the input (Raff et al. 2019; Xie et al. 2018;
Zhang and Liang 2019; Cohen, Rosenfeld, and Kolter 2019),
many of which claim to achieve state-of-the-art robustness.
Unlike prior evaluations, we test these defenses using a wide
range of white-box attacks as well as a novel stronger at-
tack. A key issue when evaluating these schemes is that PGD
attacks require gradients through the entire model pipeline,
but many defenses use non-differentiable transforms. As we
show later, this can cause evaluation results to be misleading.

Figure 1: An illustration of a random transformation (RT)
defense against adversarial examples. Transformations of dif-
ferent types and parameters are sampled and applied sequen-
tially to multiple copies of the input. All of the transformed
inputs are then passed to a single neural network, and the
outputs are combined to make the final prediction.

Different works have tried applying different random trans-
formations to their inputs. Xie et al. randomly resize and pad
images (Xie et al. 2018). While this defense ranked second in
the NeurIPS 2017 adversarial robustness competition, their
security evaluation did not consider adaptive attacks where
the adversary has full knowledge of the transformations.

Zhang et al. (Zhang and Liang 2019) add Gaussian noise
to the input and then quantize it. They report that this defense
outperforms all of the NeurIPS 2017 submissions. For their
attack, Zhang et al. approximate the gradient of the transform,
which could lead to a sub-optimal attack. In this paper, we
use the exact gradients for all transformations when available.

More recently, Raff et al. (Raff et al. 2019) claim to achieve
a state-of-the-art robust accuracy 24× better than adversar-
ial training using a random transformation defense known
as Barrage of Random Transforms (BaRT). BaRT involves
randomly sampling a large set of image transformations and
applying them to the input in a random order. Because many
transformations are non-differentiable, BaRT evaluates their
scheme using an attack that approximates the gradients of the
transforms. In Section 4, we show that this approximation is
ineffective, giving overly optimistic impression of BaRT’s
robustness, and we re-evaluate BaRT using a stronger attack
which utilizes exact transform gradients.

3 Random Transformation Defense
Here, we introduce notations and the design of our RT de-
fense, formalizing the BaRT defense.

3.1 Decision Rules
RT repeatedly applies a randomly chosen transform to the
input, uses a neural network to make a prediction, and then
averages the softmax prediction scores:

g(x) := E��p(�) [� (f (t(x; �)))] (2)

where �(·) is the softmax function, f : Rd → RC a neural
network (C is the number of classes), and the transformation
t(·; �) : Rd → Rd is parameterized by a random variable �
drawn from some distribution p(�).

In practice, we approximate the expectation in Eqn. 2 with


