
MOPS∗User’s Manual

Hao Chen David Wagner David Schultz
Computer Science Division, UC Berkeley
{hchen,daw,dschultz}@cs.berkeley.edu

October 8, 2002

1 Introduction

MOPS is a tool for finding security bugs or verifying their absence in C programs. These bugs violate
temporal safety properties, which require that the program must perform certain operations in specific or-
ders. For example, a setuid-root process on Unix systems should not execute an untrusted program (e.g., by
making the system callexecv()) before dropping theroot privilege in its effective user ID (e.g., by calling
seteuid(getuid())); otherwise, a malicious user may ask the process to execute a program of her choice and
then gain theroot privilege through the program. In another example of prudent coding practice, the call
strncpy(dst, src, n)in a C program should be followed immediately by the statementdst[n]=’ \0’; otherwise,
the arraydst may not be null-terminated, which makes it vulnerable to buffer overrun attacks. As in these
examples, many security properties may be described by temporal safety properties. If a program violates
such properties, it is often vulnerable to attacks. Manually checking these properties on every path in a
program, however, is often tedious or impossible. MOPS automates this process using model checking, a
static analysis technique. MOPS is sound, i.e., it is able to verify that no path in a program may violate a
security property, under some mild assumptions (Section 6).

The usage of MOPS is straight forward. First, the user describes a security property by a Finite State
Machine (FSA) (Section 5). Then, he runs MOPS to check this property on a C source program. If MOPS
determines that the program may violate the property, it prints out an offending path in the program.

This manual is organized as follows. Section 2 describes how to install and build MOPS. Section 3
provides a quick example on how to use MOPS. Section 4 describes the MOPS process in details. The
current release of MOPS contains just the software for checking properties. In the future, we hope to collect
a database of properties of common interest, but at present, such properties must be identified and codified
manually by the user of MOPS. Section 3.3 gives a tutorial on how to express security properties as FSAs
and section 5 provides the specification of FSAs. Finally, Section 6 discusses the soundness of MOPS and
provides further readings on MOPS.

2 Installation

2.1 System Requirements

MOPS consists of a C program parser and a model checker. The parser is derived fromgccand is written
in C. It has been tested on sparc/solaris (Solaris 2.6 and Solaris 7) and x86/Linux machines (Redhat 6.2 and
Redhat 7). The model checker is written in Java and has been tested on Java 1.3.1 and Java 1.4.

∗MOPS: MOdel checking Programs for Security properties

1

2.2 Installation

1. untar/unzip

tar zxvf mops.tar.gz

2. compile

cd mops
make

3. test

cd test
make

3 A Quick Example

In this section, we will show how to use MOPS through a quick example. First, we will describe a
security property. Then, we will use MOPS to check this property in a program. Since MOPS requires the
security property to be described by an FSA, we will show how to construct such an FSA finally.

3.1 Security Property

In this example, we consider a security requirement at the time when a privileged process executes an
untrusted program in Unix systems. Each Unix process has three user IDs: the real user ID (realuid), the
effective user ID (effectiveuid), and the saved user ID (saveduid). The real user ID identifies the owner of
the process and the effective user ID carries access permission1. When a process has a zero effective uid,
it is privileged (e.g., it has full access to the file system). When a user executes an ordinary (non-setuid)
program, both the real uid and the effective uid of the process assume the user’s ID. However, when a user
executes asetuid-rootprogram, the real uid of the process is still the user, but the effective uid of the process
becomes zero. Since a setuid-root process is privileged, it should be scrupulous when doing potentially
dangerous operations, such as callingexecv()to execute an untrusted program.

A security property requires that a setuid-root process with effective uid zero should not callexecv()to
run an untrusted program. This is because the effective uid is often inherited duringexecv(). If a process
violates this property, it may allow the untrusted program to run with privilege and to eventually compromise
the system. This property is described by the FSAs in Figure 1. We will show how to create such FSAs in
Section 5.

3.2 Running MOPS

The program in Figure 2 runs as a setuid-root process. It tries to drop the root privilege before executing
an untrusted program. We will now use MOPS to check if the program satisfies the security property
in Figure 1. To run the following commands, you should be in the directorymops/test and set the
environment variableCLASSPATHto :../src/class:../lib/java-getopt-1.0.9.jar .

1. Parse the C programhello.c into a Control Flow Graph (CFG)hello.cfg :

gcc -B ../rc/ -S -o hello.cfg hello.c

1We won’t discuss the saved user ID here and we refer the interested users elsewhere [1].

2

t euid 0 euid 1 { function call { identifier seteuid } { function call {
identifier getuid } } }
t euid 0 euid 0 { other }
t euid 1 euid 0 { function call { identifier seteuid } { lexical cst 0 } }
t euid 1 euid 1 { other }

(a) An FSA describing the transition of the effective user ID in a setuid-root process

euid_1 other

euid_0

seteuid(0) seteuid(getuid())

other

(b) Graphical representation of the FSA in Figure 1(a)

t before exec after exec { function call { identifier execv } { ellipsis } }
t before exec before exec { other }
t after exec after exec { function call { identifier execv } { ellipsis } }
t after exec before exec { other }

(c) A FSA describing a process callingexecv

after_exec execv(...)

before_exec

other execv(...)

other

(d) Graphical representation of the FSA in Figure 1(c)

setuid.fsa exec.fsa
q euid 0 before exec
f euid 0 after exec

(e) A meta-FSA describing the composition of the FSAs in figure 1(a) and Figure 1(c)

Figure 1: Formal representation of the security property that a setuid-root process should not callexecvwith
the effective uid zero

3

void drop_priv()
{

struct passwd *passwd;

if ((passwd = getpwuid(getuid())) == NULL)
{

printf("getpwuid() failed");
return;

}
printf("Drop user %s’s privilege\n", passwd->pw_name);
seteuid(getuid());

}

int main(int argc, char *argv[])
{

drop_priv();
printf("About to exec\n");
execv(argv[1], argv + 1);

}

Figure 2: A program violating the security property in Figure 1

This command instructsgcc to: (1)preprocesshello.c usingcpp; and (2) parsehello.c using
MOPS’s parsercc1 in the directory../rc/ and write the CFG intohello.cfg . Don’t forget the
trailing slash after the directory name in../rc/ ; it is needed. The-B option specifies the directory
where MOPS’s parsercc1 is located. The-S option tellsgccto stop after parsing.

2. Compact the CFGhello.cfg into a smaller CFGhello.s.cfg :

java CfgCompact setuidexec.mfsa hello.cfg main hello.s.cfg

Often we can drastically reduce the size of a CFG by removing most statements from its C program
that are irrelevant to a security property. This is called compacting a CFG. The above command does
just that, wheresetuidexec.mfsa is the security property illustrated in Figure 1 andmain is the
entry function in the CFG.

3. Model check the security propertysetuidexec.mfsa on the compacted CFGhello.s.cfg :

java Check setuidexec.mfsa hello.s.cfg main hello.s.tra

In the above command,main specifies the entry function in the CFG. If the model checker finds a pro-
gram path that violates the security property (often called anerror trace), it outputs the message “The
property is violated in the program ” and writes the error trace intohello.s.tra .
The best way to understand the violation is to inspect the trace; however, since the trace is from the
compacted CFG (because the model checker runs on the compacted CFG), we have to transform it
into the corresponding trace in the C program.

4. Transform the trace from the compacted CFG (hello.s.tra) into a trace in the C program (hello.tra):

java Transform hello.cfg hello.s.tra hello.tra

The transformed trace file (hello.tra) look like the following:

4

...
hello.c:19: <euid_0 , before_exec> 1
hello.c:21: <euid_0 , before_exec> 1
hello.c:6: <euid_0 , before_exec> 2
hello.c:8: <euid_0 , before_exec> 2
...

Each line consists of three fields, which describe the execution of a statement in the program. The first
field shows the location of the statement by its file name and line number. For example,hello.c:19
refers to the statement on Line 19 in the filehello.c . The second field shows the state of the
program just before the statement is executed. For example, the state<euid 0 , before exec>
refers to the state with the same name in the FSAsetuidexec.mfsa (Figure 1(e)). The third field
shows the depth of the call stack just before the statement is executed – the depth is 1 inside the entry
function of the program.

5. View the error trace (hello.tra):

emacs hello.tra

For convenience, the error trace is written in the same format as a compilation log. The user can
load the trace intoemacsand use the commandnext-errorto step through each line of it whileemacs
displays the corresponding statement in the source file.

If you’re not familiar with emacs, this means that typingC-x ‘ repeatedly steps you through the
lines of the error trace. (Here the notationC-x ‘ represents typing Control-x followed by the back-
apostrophe key.) The top half of the window will show the trace file (with the current line at top), and
the bottom half of the window will show the C source file (with the cursor positioned on the current
line of source code).

If you follow the execution trace in this example, you will see that this trace represents an execution
wheredrop priv() is called, the else branch of theif statement is followed, the code returns back
to main() , and then theexec() statement is executed. This is a violation of the security property,
because we have never dropped privilege, as is indicated by the fact that the last line of the trace file
hello.tra indicates we have entered state<euid_0 , after_exec> . In short, we have found
a security vulnerability in the example program: if the program fails to get apasswd entry, then it
fails to drop privilege before callingexec, which is probably not what was intended.

Note that the model checker is imprecise: it might sometimes yield false alarms. This typically
happens whereCheck outputs a path that appears to violate the security property but in fact is not
a feasible path in the program. Thus, when viewing the path, keep an eye out to watch whether the
resulting path is feasible, or whether it represents a false alarm. In this example, the path represents a
real bug.

3.3 Constructing an FSA

We will now show how to use tell MOPS about a security property of interest to us. If we want to check
a program for some class of bugs, the general strategy will be to identify a security property that correct
programs should satisfy. Then, we negate the property and write down a regular expression expressing the
set of all traces that violate the security property, and we convert this into an FSA. Finally, we encode the
FSA using the MOPS syntax, as described below.

We will motivate this process by way of an example: we will construct an FSA for the security property
that a setuid-root process should not callexecv()while its effective uid is zero. Each FSA has a set of states

5

and a set of transitions. We create an FSA to describe the transition of the effective uid between zero and
non-zero in a setuid-root process, shown in Figure 1(b). The FSA has two states, one representing the value
zero and the other a non-zero value in the effective uid. The FSA makes transitions between these two states
by the system callsseteuid(0)andseteuid(getuid()). Note the transitions with the special labelother. They
are a form of wildcard: if the FSA is at the states and the C program is about to execute a statemente,
but no label on any outgoing transition from the states matches the statemente, then the FSA follows the
transition labeledother from the states.

Similarly, we create another FSA to describe whether a process has just calledexecv, as shown in
Figure 1(d). The FSA has two states, one representing that the process has just calledexecvand the other
representing otherwise.

To describe the security property, we combine the two FSAs above to create ameta-FSAshown in
Figure 1(e). A meta-FSA describes an FSA that is the product of multiple FSAs. The state space of the
meta-FSA is the Cartesian product of the state spaces of all the FSAs. A meta-FSA file has three sections.
The first section specifies the names of FSAs whose product is this meta-FSA. The second section specifies
the initial states of the meta-FSA, and the third section specifies the final states of the meta-FSA. In this
example, the meta-FSA filesetuidexec.mfsa consists of the following lines:

• setuid.fsa exec.fsa

This line specifies the FSAs,setuid.fsa andexec.fsa , whose product is this meta-FSA.

• q euid 0 before exec

This specifies that an initial state of the meta-FSA is a tuple consisting of the stateeuid 0 from the
first FSA (setuid.fsa) and the statebeforeexecfrom the second FSA (exec.fsa).

• f euid 0 after exec

This specifies that a final state of the meta-FSA is a tuple consisting of the stateeuid 0 from the first
FSA (setuid.fsa) and the stateafter execfrom the second FSA (exec.fsa). The final state of
the FSA corresponds to the accept state, i.e., the resulting meta-FSA will accept all traces that end at
the final state, and the idea is that these traces should be exactly the bad ones that violate the desired
security property.

4 Using MOPS

The MOPS process consists of the following steps: parse each source file into a CFG, merge multiple
CFGs into a single one, compact the merged CFG, model check the compacted CFG, and transform the error
traces, if any, into a more user-friendly format.

4.1 Parse Source Program

Whengcccompiles a file, it calls the following programs sequentially:

• cpp: The C preprocessor transforms a C source filefoo.c into a preprocessed filefoo.i .

• cc1: The parser transforms a preprocessed filefoo.i into an assembly filefoo.s .

• as: The assembler transforms an assembly filefoo.s into an object filefoo.o .

6

MOPS’s parsercc1 is derived fromRC’s parser [2], which is derived fromgcc’s cc1. As such, MOPS’s
cc1accepts most command line options to GCC’scc1and is able to parse most programs thatgccparses.
MOPS’scc1accepts a C source file and outputs the CFG of the file. If the user supplies a-o filename
option, the CFG file is namedfilename ; otherwise, the CFG file is named after the C source file with the
suffix .s replacing the suffix.c (e.g. the CFG file for the source filefoo.c will be namedfoo.s).

The user can parse a C source filefoo.c into a CFG filefoo.cfg using MOPS in two alternative
ways:

• First, preprocessfoo.c into foo.i :

cpp foo.c

Then, parsefoo.i using MOPS’s cc1:

rc/cc1 -o foo.cfg foo.c

• Alternatively, the user may letgcccall cppand MOPS’scc1automatically:

gcc -B rc/ -S -o foo.cfg foo.i

The -B option suppliesgccwith additional paths to look for the executablescpp, cc1, andas. Since
only cc1 is in the directoryrc/ , gccwill use the defaultcpp to preprocess the C source file and then
use MOPS’scc1 in the directoryrc/ to parse it. Note that the directory argument to the-B option
must ends with the character/ . The-S option tellsgccto stop after parsing.

4.2 Merge Multiple CFGs

MOPS’s parser generates one CFG file for each C source file. If a program consists of multiple C source
files, their CFG files have to be merged into a single CFG file. MOPS offers a program,CfgMerge, for this
task. The following command merges the CFG filesfoo1.cfg, foo2.cfg, andfoo3.cfginto foo.cfg:

java CfgMerge foo.cfg foo1.cfg foo2.cfg foo3.cfg

4.3 Compact CFG

As C source files becomes larger, the sizes of their CFGs increase rapidly, which can easily overwhelm
the model checker in time and space requirements. Fortunately, most CFGs can be compacted into much
smaller ones in such a way that the model checker will always generate the same result on the CFGs before
and after compaction. The compaction is based on the observation that, for most CFGs and most security
properties, most statements in the CFG are irrelevant to the security property and therefore can be safely
removed. For example, if the security property checks only for theseteuidandexecvsystem calls, all the
other statements in the CFG are irrelevant. The programCfgCompact compacts a CFG. The following
command compacts the CFGfoo.cfg with regard to the security propertymodel.mfsa and writes the
compacted CFG tofoo.s.cfg (the argumentmain specifies the entry function of the CFG):

java CfgCompact model.mfsa foo.cfg main foo.s.cfg

Note: Compacting CFGs is mandatory, even if the CFG is small, because it does other transformations that
the subsequent steps depend on.

7

4.4 Model Check CFG

The model checker determines whether the C source program of a CFG satisfies a security property. It
achieves this by determining whether any final state in the FSA that describes the security property, called
thesecurity model, is reachable in the program — if so, the program may violate the security property. The
following command checks the CFGfoo.s.cfg for the security property described inmodel.mfsa :

java Check model.mfsa foo.s.cfg entry function name foo.s.tra

whereentry function name is the entry function of the program (usuallymain). If the program may
violate the property, the model checker writes an error trace intofoo.s.tra . Since often there are many
such traces, the model checker tries to find the shortest one.

In addition to an error trace, the model checker can provide another output: it can identity all the points
in the program where the program may be executed in a final state of the security model. In other words, it
will show all program statements where the security property might be violated, without producing an error
trace showing how to get there. To get all such program points into the filefoo.s.lst , run the following
command:

java -p Check model.mfsa foo.s.cfg entry function name foo.s.lst

4.5 Transforming the Trace

Since the error traces or program points generated by the model checker come from the compacted CFG,
the user needs to transform them into the ones in the original CFG to understand them.

To transform an error trace, run

java Transform foo.cfg foo.s.tra foo.tra

wherefoo.cfg is the original CFG,foo.s.tra is the error trace generated by the model checker, and
foo.tra is the corresponding trace in the original CFG. The transformed traces have the same format as
compilation logs from compilers.

The user can load the trace intoemacsand use the commandnext-error to step through each line of
it while emacsdisplays the corresponding statement in the source file. If you’re not familiar withemacs,
this means that typingC-x ‘ repeatedly steps you through the lines of the error trace. (Here the notation
C-x ‘ represents typing Control-x followed by the back-apostrophe key.) The top half of the window will
show the trace file (with the current line at top), and the bottom half of the window will show the C source
file (with the cursor positioned on the current line of source code).

If you usevim, run vim -q foo.tra" , and type:cn repeatedly to cycle through the lines in the
trace file. You may map the function keyF3 to thenext-line functionality by adding

map #3 :cnˆVˆM

to your /.vimrc file (herêX represents a control-X character, which can be entered invimby typing control-
V control-X). Type:h quickfix within avimwindow for more on thenext-line functionality.

To transform program points, run

java Transform -p foo.cfg foo.s.lst foo.lst

wherefoo.cfg is the original CFG,foo.s.lst contains the program points generated by the model
checker, andfoo.lst contains the corresponding program points in the original CFG.

8

4.6 Visualization Tools

MOPS offers tools for visualizing CFGs and FSAs.

4.6.1 Cfg2Dot

Cfg2Dottransforms a CFG into a graphical representation in thedot format, which can be transformed
into the postscript format by Graphviz [3].

java Cfg2Dot [-a] foo.cfg foo.dot

The option-a instructsCfg2Dotto also include ASTs in the graph.

4.6.2 Fsa2Dot

Fsa2Dottransforms an FSA into a graphical representation in thedot format.

java Fsa2Dot [-l] fsa file dot file

The option-l specifies that labels (ASTs) on the transitions in the FSA should be included in the graph.

5 FSA Representation of Security Properties

MOPS uses Finite State Automata to describe security properties.

5.1 Finite State Automaton

The user describes an FSA in a text file. When MOPS processes the file, it ignores empty lines, C style
comments (/* ...*/), and C++ style comments (//). A line in the file describes a transition in the FSA
using the following format:

t state before state after ast

wherestate before is the starting state,state after is the ending state, andast is the Abstract
Syntax Tree (AST) that represents the statement that triggers the transition (to be described in Section 5.3).

5.2 Meta-FSA

Often it is convenient to decompose a complex security property into a set of simpler ones. MOPS
allows the user to describe each simpler property by an FSA. Then, the user describes the complex property
by way of these FSAs in ameta-FSA.

A meta-FSA describes an FSA that is the product of multiple FSAs. The first line in the meta-FSA file
enumerates each of the multiple FSAs:

file1.fsa file2.fsa file3.fsa ...

After the first line, each subsequent line describes an initial state or final state of the meta-FSA. The state
space of the meta-FSA is the Cartesian product of the state spaces of the multiple FSAs. The following line
describes an initial state:

q state1 state2 state3 ...

9

wherestate1 is a state infile1.fsa , state2 is a state infile2.fsa , and so on. The following
line describes a final state:

f state1 state2 state3 ...

MOPS requires the user to build a meta-FSA in all cases, even if the security property can be simply de-
scribed in a single FSA, in which case the meta-FSA contains only one FSA.

5.3 Abstract Syntax Tree

An Abstract Syntax Tree (AST) represents a statement in a program. The following defines the grammar
of the AST:

ast ::= { kind content+ }

kind ::= real_kind | meta_kind

real_kind ::= function_decl | variable_decl | ...

meta_kind ::= not | or | any | ellipsis | var | other

content ::= ast | string

For example, the AST for the statementsetuid(0) is:

{ function_call { identifier setuid } { lexical_cst 0 } }

The fileAst.java in the directorysrc contains a list of all the values forreal kind .

5.3.1 Meta Kinds

MOPS allows the user to specifymeta kinds. Five of them,not, or, any, ellipsis , and
other , are discussed here. The last one,var , will be described in Section 5.3.2.

• not . It represents the logicalnot. For example, the following AST matchessetuid(x) wherex is
not0:

{ function_call { identifier setuid } { not { lexical_cst 0 } } }

• or . It represents the logicalor. The following AST matchessetuid(0) or seteuid(0) :

{ function_call { or { identifier setuid } { identifier seteuid } }
{ lexical_cst 0 } }

• any . It matches any single AST. The following AST matchesexecv(‘‘rm’’, x) wherex is an
arbitrary expression:

{ function_call { identifier execv } ‘‘rm’’ { any } }

• ellipsis . It matches zero or more ASTs. The following AST matchesprintf(...) :

{ function_call { identifier printf } { ellipsis } }

10

t closed opened { binary "=" { var x } { function call { identifier
"open" } } }
t opened closed { function call { identifier "close" } { var x } }

(a) An FSA that describes theopen andclose calls using a pattern variable

int main()
{

int fd1, fd2;
fd1 = open(“/etc/motd”, ORDONLY);
fd2 = open(“/etc/passwd”, ORDONLY);
close(fd1);
close(fd2);

}

(b) A C program that makes theopen andclose calls

Figure 3: An FSA and a C program that demonstrate the utility of pattern variables

• other . This is analogous to thedefault label in aswitchstatement in C. When a state has another
transition, a transition whose AST is{ other }, and no other transition from the same state matches
a statement, the FSA takes theother transition. For example, when the following FSA is in the state
euid 1, it will makes a transition to the stateeuid 0 if the statement issetuid(0) , because the
statement matches the first transition; however, the FSA will stay in same state for all other statements
because they match theother transition.

t euid_1 euid_0 { function_call { identifier setuid } { lexical_cst 0 } }
t euid_1 euid_1 { other }

5.3.2 Pattern Variables

The last meta-kind,var , is used forpattern variables. An AST {var x } is a pattern variable, which
matches any expression. For example, suppose we want to build an FSA that describes the opening and
closing of files. This FSA has two states: a stateopened and a stateclosed . The FSA makes a transition
from the stateclosed to the stateopened when the program executes a statementx = open(...)
wherex is a file descriptor. When the program closes the same file descriptor by callingclose(x) , the
FSA makes a transition fromopened to closed 2. Note that the special variablex in the two statements
x = open(...) andclose(x) serves as a wildcard — it doesn’t refer to a variable namedx in the
program. Rather, it is ready to match any expression in that position in the two statements in the program.
Such special variables are called pattern variables: their ASTs look like those of ordinary variables except
that their kind isvar (in contrast, the kind of ordinary variables isidentifier). Figure 3(a) shows the
FSA that we have just discussed.

2We do not consider variable aliasing, i.e. assign the file descriptor to another value, the alias, and then close the alias.

11

If an FSA contains pattern variables, MOPS instantiates the FSA by replacing the pattern variables
with the actual variables in the program that the pattern variables match, possibly resulting in multiple
instantiations of the FSA. For example, when MOPS instantiates the FSA in Figure 3(a) on the program
in Figure 3(b), it finds that the pattern variablex may match the variablesfd1 and fd2 in the program.
Therefore, MOPS instantiates the FSA into two FSAs. Then, MOPS checks the program against each FSA
instance separately.

The scope of a pattern variable is the FSA file. In other words, when a meta-FSA contains multiple
FSAs, pattern variables from different FSAs with the same name do not collide.

5.4 FSA Transitions

The user may specify multiple transitions from a state in an FSA. When MOPS determines which transi-
tion the FSA should take after a statement is executed in the program, it examines all the transitions from the
state except theother transition in the order that they are specified in the FSA file. During the process, if the
statement matches the AST on an transition, the FSA takes that transition. If the statement does not match
the AST on any transition, but if anothertransition is present, it is taken; if noothertransition is present, the
FSA stays in the same state. Therefore, although the user may specify multiple, arbitrary transitions from a
state, the FSA is deterministic.

The CFG compaction algorithm requires that no FSA should use the AST{ any }, because this AST
is superseded by theother transition, whose AST is{ other }. Furthermore, whenever the FSA fol-
lows multipleother transitions consecutively, it should end in the same state as if it follows just oneother
transition. In other words, every state that has one or more incomingother transitions should not have any
outgoingother transition.

5.5 Automatic Generation

Manual construction of FSAs may be tedious and error-prone for complex properties. Sometimes the
user may leverage the operating system to build FSAs automatically. The details are described elsewhere [1].

6 Discussion

6.1 Soundness

Thesoundnessof a program analysis tool means that it will not miss any bugs in a program that are of
the types specified by the user. MOPS is sound if the following requirements are satisfied:

• The program is a portable, single-threaded C program that has no implementation-defined behavior:
for example, no buffer overruns and no runtime code generation.

• The program has no function pointers, signal handlers, and non-local jumps via setjmp/longjmp, be-
cause MOPS ignores them when building CFGs. Although this approximation introduces unsound-
ness, it is not a fundamental limitation of the approach but rather a limitation of the current implemen-
tation. We can overcome this problem by manually transforming the control flow that MOPS ignores
to the equivalent ones that MOPS considers. We are working on automating this process and we hope
to add it to a future version of MOPS.

6.2 Further Readings

The internal mechanism of MOPS is described in two papers [4, 5].

12

7 Availability

MOPS is available athttp://www.cs.berkeley.edu/˜daw/mops/ .

References

[1] Hao Chen, David Wagner, and Drew Dean. Setuid demystified. InProc. of the Eleventh Usenix Security
Symposium, San Francisco, CA, 2002.

[2] David Gay. Region based compiler.http://www.cs.berkeley.edu/˜dgay/rc/ .

[3] AT&T Labs Research. Graphviz.http://www.research.att.com/sw/tools/graphviz/ .

[4] Hao Chen and David Wagner. MOPS: an infrastructure for examining security properties ofsoftware.
Technical Report UCB//CSD-02-1197, UC Berkeley, 2002.

[5] Hao Chen and David Wagner. MOPS: an infrastructure for examining security properties of software.
In Proceedings of the 9th ACM Conference on Computer and Communication Security, Washington,
DC, November 2002.

13

