
The Joe-E Language Specification, Version 1.1

Adrian Mettler David Wagner

{amettler,daw}@cs.berkeley.edu

September 18, 2009

1 Introduction

We describe the Joe-E language, a capability-based subset of Java intended to make it easier to build secure
systems. The goal of object capability languages is to support the Principle of Least Authority (POLA), so
that each object naturally receives the least privilege (i.e., least authority) needed to do its job. Thus, we
hope that Joe-E will support secure programming while remaining familiar to Java programmers everywhere.

2 Goals

We have several goals for the Joe-E language:

• Be familiar to Java programmers. To minimize the barriers to adoption of Joe-E, the syntax
and semantics of Joe-E should be familiar to Java programmers. We also want Joe-E programmers
to be able to use all of their existing tools for editing, compiling, executing, debugging, profiling, and
reasoning about Java code.

We accomplish this by defining Joe-E as a subset of Java. In general:

Subsetting Principle: Any valid Joe-E program should also be a valid Java program, with
identical semantics.

This preserves the semantics Java programmers will expect, which are critical to keeping the adoption
costs manageable. Also, it means all of today’s Java tools (IDEs, debuggers, profilers, static analyzers,
theorem provers, etc.) will apply to Joe-E code.

In this document, we define the Joe-E language by specifying constraints that will be verified by a Joe-
E verifier. These checks may be performed at the source level, or possibly upon bytecodes produced
by a compliant compiler.

• Include as much of Java as possible. Some Java constructs must be omitted from Joe-E, because
they are incompatible with capability programming. However, we ideally want to retain as much of
Java’s expressiveness as possible.

Maximal Subset Principle: Choose the largest subset of Java that is compatible with se-
cure capability programming. Forbid only language constructs that render capability-style
programming or reasoning impossible or error-prone.

Thus, Joe-E will permit construction of secure programs, but it will not guarantee that programs in
this subset will be secure.

1



• Enable capability-style reasoning about Joe-E code. To ensure that objects receive the least
authority needed, the language must allow capability-style reasoning. Capability-style reasoning in-
volves thinking about the directed graph of object references: if object O has a reference to O′, then
we draw an edge O → O′ in the graph. To characterize how O can causally affect the outside world (its
authority), we examine the set of capabilities that O might obtain. An upper bound for this set is the
bidirectional transitive closure of this graph, i.e., the set of objects reachable from O via backward and
forward edges in the reference graph. If the code is constructed appropriately, it is often possible to
improve upon this approximation by verifying that the program semantics for some methods prevent
the transitive closure worst-case from occurring; it should be easy to write code like this (e.g., facets),
and it should be easy to verify the correctness of this code through purely local reasoning.

Note that this style of reasoning assumes that references are unforgeable and that references are the
only thing that convey authority—in particular, that there is no ambient authority.

• Unforgeable references. It must be impossible to manufacture a reference to an arbitrary ob-
ject. Java’s memory-safety ensures that objects can only obtain references through specific controlled
mechanisms. Specifically, references held by an object O can originate only in the following ways.

1. Endowment: When O is instantiated, it receives as its birthright any references passed to its
constructor and (if it is a non-static inner class) anything visible as part of its lexical scope
(including a reference to itself, via this);

2. Parenthood: When O creates a new object, it receives a reference to that object.

3. Introduction: References can be introduced to an object in a variety of ways, namely:

(a) By field access: If O has a reference to O′, then O can obtain any references stored in the
accessible fields of O′.

(b) By field mutation: If O has a field accessible to another object, O receives any references
stored into this field by that object.

(c) By invoking: When O calls a method on some other object, O receives any reference returned
or thrown by that method.

(d) By being invoked: When a method is called on O, O receives any references passed as the
arguments to this method call.

• No ambient authority. A precondition for capability-style reasoning is that the only way for
an object O to affect the outside world is through the references it possesses. To ensure least au-
thority and support capability-style reasoning, the references that O possesses should be limited by
lexical scoping rules: e.g., limited to its fields, with no “global variables” allowed. For instance,
java.lang.System.out violates this principle, because it is available to every object and allows
causally affecting the outside world.

Avoiding ambient authority is important for POLA. It should be easy to limit the amount of authority
given to an object to only those capabilities necessary to perform its function, and to do so in a way
that is foolproof and easy for an human auditor to recognize. In particular, the rule should be that
no object receives a capability unless it has been explicitly granted that capability in one of the ways
described above. Authority-bearing variables that are defined in a location distant from some code that
can use them should be avoided, because they violate this rule. In addition to this static (code-based)
constraint, sharing of state between objects associated with different flows of control or protection
domains should be avoided as much as possible, even if they share some source code. In general, since
ambient authority is available to all objects, ambient authority is incompatible with POLA and must
be avoided at all costs.

• Support local reasoning about Joe-E programs. A closely related goal is that it should be
possible to reason about Joe-E programs through only local analysis. Suppose we are given a Joe-E
program, consisting of many objects. If we are given the code to one object O, we would like to be

2



able to reason about the capabilities that O might have access to and might pass on to others. It
should be possible to reason about this just by looking at the code of O and the objects it interacts
with (possibly continuing transitively as far as is needed).

For instance, suppose method C.m() creates a new object T . If T never escapes from the method, then
we would like to be able to conclude that no other object can affect T . Moreover, we would like to be
able to verify, just by looking at the code of the class C, that T cannot escape. This is an example of
local reasoning, a kind of reasoning about composition, and the language should support this kind of
reasoning. Such reasoning might assume nothing about the rest of the program, other than that it is
valid Joe-E code; the benefit is that a programmer does not have to keep the entire program or system
in his head in order to reason about local properties of his code.

As another important example of this, it must be possible (preferably with very little effort) to bound
the capabilities granted to any object O. This should be possible even when the code of object O has
not been analyzed; typically, it is done by reasoning about the capabilities that are passed to O when
it is created and thereafter. This task allows for the creation of systems that are secure in the face of
unknown, possibly adversarial code.

• Unforgeable types. If we invoke a method on object O, we may be relying on it to behave as we
expect. Therefore, we may need some way to verify that O is the correct entity before we invoke
method calls on it. In the E language, this is accomplished with guards, auditors, and introspection;
in Joe-E, we use types. Some classes are part of the base system and hence trustworthy; other classes
are provided by the programmer and thus trusted. Joe-E programs should be able to check that the
type of O is the expected one before invoking method calls on O. This ability is provided by Java’s
type system.

Without this feature, masquerading attacks are a serious risk. Suppose that method m() accepts an
object O and uses it to perform various operations. If m() does not validate the type of O, then an
attacker might be able to call m() and pass a malicious object OM . For instance, OM might unde-
tectably emulate the expected behavior while simultaneously observing information that m() passes to
its argument, leaking these secrets back to the attacker. Or, OM might behave in unexpected ways:
e.g., if m() expects its argument to behave like an Integer, then m() might be surprised if two attempts
to read its contents return different results (this can lead to TOCTTOU attacks, for instance). It is
essential for there to be a way to avoid this kind of masquerade attack.

• Permit use of capability discipline. Capability discipline refers to a set of guidelines for writing
programs in a way that maximizes the chances that the program will be secure and respect POLA.
Suppose I want to give Alice access to a file on the filesystem. I can give her a reference to a File

object F . Of course, in doing so, I have given Alice all of the authority that can be invoked through
the interface of this object. If every File object has a formatHardDrive() method that erases the
entire hard disk, then in giving Alice access to F , I have also given her the ability to re-format the
hard disk, a violation of POLA. In this case, we say that F fails to respect capability discipline.

It is a goal of Joe-E that it should be natural and easy to build classes that respect capability discipline.
It is not a goal of Joe-E to somehow guarantee that every Joe-E class will respect capability discipline;
capability discipline requires knowledge of application semantics and the desired security policy, and
hence cannot be enforced at the language level.

Our general stance in defining Joe-E is include everything that is not outright incompatible with
capability-style reasoning (see the Maximal Subsetting Principle). One can identify many syntactic
source code patterns that are suspicious and often correspond to violation of capability discipline (e.g.,
public fields), but that are not inherently incompatible with security. We do not attempt to forbid
such syntax in the Joe-E language. One might build a separate “capability-style lint” to check for
suspect language constructs that are risky but not necessarily incompatible with capability reasoning;
however, such considerations are out of scope for this document.

3



• Provide a set of capability-friendly base classes. Joe-E should provide a set of library classes that
enable programming in the capability style. At a minimum, this collection should contain the minimum
necessary to build useful Joe-E programs. These base classes should respect capability discipline and
should be constructed to maximize the likelihood that programs built using the base classes will respect
POLA and will be secure.

3 Definitions

The Joe-E Language is a subset of the Java source language as defined in the Java Language Specification,
3rd Edition.

3.1 Power and Tokens

The Joe-E language is designed to facilitate reasoning about a conservative approximation to authority that
we denote power. In order to simplify reasoning, we consider the object identity only of a specific subclass of
objects we call tokens, and conservatively assume that any authority made available from the object identity
of other objects is available everywhere in the program.

A class is a token class if it is the class org.joe e.Token or any of its subclasses. An instance of any
such class is a token.

3.2 The Overlay Type System

Joe-E defines interfaces (most with no members) that are used as inherited annotations on Java classes.
These are called marker interfaces and are used to indicate properties of importance to the Joe-E language
and verifier. In many cases, it would be appropriate for classes in the standard Java libraries to implement
these interfaces. However, we cannot modify the existing Java class libraries. Instead, Joe-E defines an
extended type system consisting of additional interface-implementation relationships overlaid on top of the
Java type system.

The base type system is the type system defined by the Java language; it defines certain subtyping
relationships. In addition, Joe-E provides a way to declare a Java library class to honorarily implement

a specified interface, and this defines some additional subtyping relationships. The overlay type system

is defined as the union of the subtyping relationships from these two sources, along with their transitive
closure. Note that since honorary components of the type system only add interfaces to classes, the overlay
type system will be a consistent, “legal” typing relation (no circular subtyping, etc).

All type checking performed as part of the standard Java compilation process and JVM runtime en-
forcement uses the base type system, as required to preserve Java semantics. However, Joe-E’s additional
restrictions are defined in terms of the overlay type system.

3.3 Compliance and Deeming

Each marker interface is associated with a set of restrictions that must hold for all classes implementing
that interface. The obligation to satisfy these restrictions is automatically inherited by any subclasses of a
class declared to implement the interface, as these subclasses also implement the associated interface. The
inheritance of restrictions is necessary to conclude that any object assignable to a variable of some type
fulfills that type’s restrictions.

These restrictions are automatically checked as described in Section 4; the decision procedure used is
sound but not complete. Because there will be classes that satisfy the contracts associated with a marker
interface, but which cannot be automatically verified to do so, a Joe-E implementation may deem certain
classes to satisfy the interface, exempting them from automated verification. Such deemings must be made
with care, and are restricted to classes in the Java and Joe-E libraries that have been manually verified
to satisfy the deemed interfaces. Note that being deemed to implement an interface is distinct from being

4



declared to implement that interface honorarily. Neither implies the other: A class can explicitly implement
an interface but not be automatically verifiable to meet its contract and thus require deeming. On the
other hand, a class that implements an interface honorarily might automatically be verified to satisfy its
requirements.

Each class considered to satisfy a marker interface without requiring automatic verification must be
individually deemed to implement that interface; deeming decisions are not automatically inherited. This is
because a subclass may fail to meet some obligations that its superclass was manually verified to maintain.

The following invariants will hold for the set of honorary interface implementations and deemings made
in a Joe-E implementation:

1. A class can only be deemed to implement an interface I if it implements I in the overlay type system
(i.e., either in the base type system or honorarily.)

2. If classes C and D are both library classes, if C honorarily implements an interface I, and class D

extends C, D must also honorarily implement I.

3.4 Immutable Types

A type T is immutable if and only if it implements the marker interface org.joe e.Immutable according
to the overlay type system. The (empty) org.joe e.Immutable interface must be provided by the Joe-E
implementation.

The intuition behind an immutable object is that such an object cannot be changed (mutated) in any
observable way, nor can any objects reachable by following the fields of the immutable object. The contents
of an immutable objects’ fields and any objects reachable from an immutable object must not change once
the object is constructed. With the exception of library classes explicitly deemed to implement Immutable,
an immutable class must satisfy additional linguistic restrictions enforced by the verifier (§4.4) to ensure this
property. Library classes that cannot be automatically verified and are deemed immutable must be carefully
manually verified to expose no possibility for modification of their contents.

Note that immutability does not place any restrictions on any local variables defined within the immutable
class. It also says nothing about the mutability of the arguments passed to methods. It only applies to the
values stored in and objects reachable from the immutable class’s fields.

3.5 Powerless Types

A type T is powerless if and only if it implements the marker interface org.joe e.Powerless according to the
overlay type system. The org.joe e.Powerless interface must be provided by the Joe-E implementation,
and it must be declared to extend the org.joe e.Immutable interface. This ensures that every powerless
type is also immutable (but not necessarily vice versa). A powerful type is one that is not powerless.

A Joe-E implementation must ensure that the following types honorarily implement org.joe e.Powerless:

• the primitive scalar types (boolean, byte, short, int, long, char, float, and double)

• java.lang.Throwable

• java.lang.Enum.

(These types are designated powerless using the honorary mechanism, since they cannot be declared to
implement this interface explicitly.)

A Joe-E implementation may declare specific additional types from the standard Java libraries and from
the Joe-E library to implement org.joe e.Powerless, so long as their behavior can be verified (manually,
in the case of classes deemed Powerless) to be that of a transitively immutable object that does not reveal
the identity of any tokens.

Rationale: A powerless object conveys no inherent or identity-based power and thus can be excluded from
the object reference graph without loss of soundness. Any authority granted to the holder of the object

5



is solely a product of the data it contains; this authority could be “forged” by anyone with knowledge of
this data and thus does not reflect a type of capability that can be guarded by our system. (Note that
cryptographic keys fall into this category; our system is not able to reason about cryptography.) Any
authority vested in the object identity of a non-Token object is not modeled in our view of authority and is
conservatively assumed to be available to anyone.

The Powerless interface can be used to assert that all instances of a user class are powerless. This
assertion is checked at compile time by the Joe-E verifier, as described in Section 4.4.

An immutable object contains no mutable state and has no references to mutable state. A reference
to an immutable object cannot be used to enact any state change visible to another entity that holds a
reference of the same object. An immutable object conveys no power except for the unforgeable identity of
any tokens it may contain. This potential form of power distinguishes a powerless object from one that is
merely immutable. (By definition, all powerless objects are also immutable.) In practice, most immutable
objects are likely to also be powerless. The exceptions are tokens and objects containing tokens.

3.6 Selfless Types

A type T is selfless if and only if it implements the marker interface org.joe e.Selfless in the overlay
type system. The org.joe e.Selfless interface must be provided by the Joe-E implementation and must
declare a hashCode() method.

A Joe-E implementation may declare specific types from the standard Java libraries and from the Joe-E
library to implement org.joe e.Selfless. Such classes must not inherit Object’s hashCode() method; it
must be overriden either in the class itself or in some parent class. The behavior of an instance of the class
must be verified (manually, in the case of classes deemed Selfless) to conceal object identity.

Rationale: An instance of a selfless type does not have visible object identity. Any two instances of the
same selfless type with indistinguishable field values will be programmatically identical. A (shallow) clone
of any selfless object will thus be indistinguishable from the original. One requirement for this condition to
hold is that the selfless object be shallowly immutable: the fields of selfless objects cannot be allowed to
change, otherwise the indistinguishability between instances is lost if one of them is changed. The objects
pointed to by its reference-typed fields do not have this restriction, however, as any change made to them
would be equally visible from all objects that reference them.

This is useful for ensuring that serialization and deserialization of objects is an identity operation. A
selfless object can be serialized without having to worry about maintaining its identity. We anticipate that
this will make serialization easier to perform using unprivileged code. The requirement that hashCode() be
overridden is included to allow for hash codes to be taken when the concrete type for an object is not known,
but it is known that the object is selfless.

The Selfless interface can be used to assert that all instances of a user class can be considered selfless.
This assertion is checked at compile time by the Joe-E verifier, as described in Section 4.5. Also see the
following section on Equatable.

3.7 Equatable Types

A type T is equatable if and only if it implements the marker interface org.joe e.Equatable in the overlay
type system. The (empty) org.joe e.Equatable interface must be provided by the Joe-E implementation.

An instance of an equatable type allows comparison with another object using the == and != operators.
In the case of object types, this is pointer comparison, which is disallowed unless one of the objects being
compared is equatable or null.

The following types are honorarily declared to implement org.joe e.Equatable:

• the primitive scalar types (boolean, byte, short, int, long, char, float, and double)

• all array types

• java.lang.Enum

6



Rationale: Primitive types are equatable because they have no object identity to expose; == simply com-
pares their scalar values. Arrays are equatable because the equals() method on arrays already does a
pointer-identity comparison. Enumerations, which are the only types that Java allows to extend Enum, are
not constructed like ordinary objects; instead a fixed number of instances are constructed when the class
is initialized and are made available to everyone as static members. Enum’s implementation of equals() is
final and is equivalent to ==, so making the class equatable is harmless, and only serves to make enumera-
tions more convenient to use.

The Equatable interface can be used to allow pointer equality comparisons on objects of a type (See
§4.9). This prevents the type or any of its subtypes from being declared selfless (§4.5).

4 Restrictions on Joe-E classes

4.1 Threads

For now, we are restricting Joe-E to the single-threaded subset of Java. This is reflected in taming decisions
and the use of finalizers; see Sections 4.11 and 5. It is not necessary to prohibit the use of the synchronized
keyword; since monitor locks are reentrant in Java, it simply becomes meaningless if no threads are created
aside from the primary application thread.

Rationale: Unrestricted synchronization could allow a set of threads otherwise effectively isolated from each
other to communicate, as every object becomes a communications channel through its associated lock. In the
absence of such primitives, one can provide stricter guarantees of confinement, as immutable objects do not
provide a communications channel. Any type of mutable shared state between threads allows observation
of the nondeterminism inherent in thread scheduling, and would greatly complicate our efforts to make
nondeterministic behavior require a capability.

4.2 Overlay Type System

Any class which implements an interface in the overlay type system must implement the type in the base
type system if able to do so. For example, every user-defined exception type must implement Powerless in
the base type system.

Rationale: This allows for efficiently determining whether an object implements a type in the overlay type
system. The set of types that have honorary implements relationships is limited to types in the libraries,
and traversal of type heirarchies is not necessary at runtime.

4.3 Static Fields

All static fields must be declared final and be of a powerless type. (Enumeration instances always satisfy
this restriction, since java.lang.Enum is honorarily Powerless.)

Rationale: A reference to an object of any powerful type may convey authority. A mutable field conveys
the authority to change its value. A public static variable in either of these categories provides ambient
authority. While less obvious, this reasoning also applies to private static fields. In general, since any piece
of code can create an object of the type in question, the object thus created has privileged access to the
private static state. It is possible that this could be used to modify non-final static fields. Similarly, if
the static field is of a powerful type, a newly-created object of the corresponding type could provide the
authority to utilize this capability. This is a likely source of ambient authority which could be difficult to
spot if non-powerless static fields were allowed. Fortunately, simple alternatives to the use of static fields
nearly always exist.

7



4.4 Immutable and Powerless

If a class C implements org.joe e.Immutable in the overlay type system, the following properties must
hold:

1. every instance field f of C is both declared final and of an immutable type. No such field may be
declared transient.

2. if C or any of its superclasses is a non-static inner class, every enclosing class is immutable

3. any local variables in the scope of C that are observable by C are immutable.

Any violation of these constraints is a verification-time error.
If C is a library class that does not meet the requirements above, it can be manually deemed to be

immutable. In this case, neither C nor any other library class may expose via its taming-allowed members
any mutable state C may contain. Mutability must be hidden from subclasses if their creation is not
prevented by the class being final or having no accessible constructor.

If a class C implements org.joe e.Powerless in the overlay type system, the following properties must
hold:

1. every instance field f of C is both declared final and of a powerless type. No such field may be
declared transient

2. if C or any of its superclasses is a non-static inner class, every enclosing class is powerless

3. any local variables in the scope of C that are observable by C are powerless

4. C is not a subclass of org.joe e.Token.

Any violation of these constraints is a verification-time error.
If C is a library class that does not meet the requirements above, it can be manually deemed to be

powerless. In this case, neither C nor any other library class may expose via its taming-allowed members
any mutable state or tokens that C may contain. Mutability and tokens must be hidden from subclasses if
their creation is not prevented by the class being final or having no accessible constructor.

The org.joe e.Token class must be provided by the Joe-E implementation, and neither org.joe e.Token

itself nor its sole superclass java.lang.Object may implement org.joe e.Powerless.
For the restrictions above, “every instance field of C” includes fields of any superclasses (whether acces-

sible to C or not; this includes, for instance, all private fields of all superclasses).
A local variable v is observable by a class C if any of the following are true:

1. v is referenced by any code belonging to class C

2. an instance of D is constructed by any code in class C and v is observable to class D

3. D is the superclass of C and v is observable to class D

(This corresponds to the synthetic member fields the Java compiler must add to C in order to allow it, one
of its superclasses, or another class constructed by it (possibly transitively) to make use of v.)

4.5 Selfless

The following restrictions are imposed on a class C that implements Selfless:

1. All instance fields of C must be final and may not be transient.

2. The class must not be equatable.

3. The object identity of instances of the class must not be visible. This can be satisfied by one of:

8



(a) C’s superclass is a selfless type.

(b) C’s superclass is java.lang.Object, C overrides equals(), and C doesn’t call super.equals().

For the first restriction above, “all instance fields of C” includes fields of any superclasses, whether
accessible to C or not.

Note that no explicit checks are necessary to guarantee that a Selfless class provides a deterministic
hashCode() implementation, just the general checks to ensure that interfaces are satisfied with methods
that are not banned via taming (see §5)

4.6 Final Fields

Java guarantees that the final fields of an object are only uninitialized while the initialization of the object is
taking place, and have all been initialized when the constructor exits. An object’s initialization includes the
execution non-static initializer blocks and initialization expressions of non-static fields; these are executed
in lexical order before the body of hte invoked constructor is run, but after any superconstructor. Any
expression within a constructor, non-static initializer, or non-static field initializer expression is executed
during initialization.

The initialization process can call arbitrary methods during its execution, making its fields visible in an
uninitialized state to those methods. In these methods (possibly from other classes) default values that may
later change are visible for the object’s final fields. This can allow for time-of-check-to-time-of-use attacks
as the values of these fields can be observed to change. In order for the final qualifier on fields to ensure
that the field value will not change, allowing Joe-E programs to trust in the finality of fields, Joe-E prevents
any code other than the constructor itself from viewing an object in a partially-constructed state. This is
accomplished by placing the following restrictions on instance initialization code, to ensure that a reference
to the partially-constructed object cannot escape during its execution:

1. Instance initialization can’t call any instance methods on the object being constructed. These are calls
that resolve to instance methods (defined or inherited) that are invoked implicitly or explicitly on this.
This includes supermethod invocations (those of the form super.f()).

2. Initialization cannot call the constructor of any non-static inner class of itself, i.e. any anonymous class
or non-static member class that is defined within itself or any of its superclasses. (Non-static inner
class instances have a reference to their containing object and thus its fields; this restriction ensures
that no code from such an inner class executes during construction.)

3. Initialization can’t make any references to the this pointer corresponding to object being constructed,
except as a way to name fields (e.g., a use or definition of the field f using the expression this.f is
permitted). This restriction ensures that this cannot become aliased. For inner classes, references to
enclosing objects’ this pointers are unrestricted.

4.7 Throwables

Note that making java.lang.Throwable a powerless type (see § 3.5) ensures that no Throwable can contain
any powerful capabilities or any object of type org.joe e.Token or any of its sub- or superclasses.

Rationale: Exceptions can implicitly communicate capabilities across security boundaries. This propaga-
tion can be hard to reason about, because the exceptional flow might not be immediately apparent in the
source code. To see how this can cause unpleasant surprises, suppose Alice calls Bob. Bob has some special
capability that she lacks, and Bob wants to avoid leaking this to her. At some point, Bob might need to
invoke Chuck to perform some operation, passing this capability to Chuck. If (unbeknownst to Bob) Chuck
can throw an exception that Bob doesn’t catch, this exception might propagate to Alice. If this exception
contains Bob’s precious capability, this might cause Bob’s capability to leak to Alice, against Bob’s wishes.
Example:

9



class E extends RuntimeException {

public Object obj;

public E(Object o) { obj = o; }

}

class Bob {

// a capability, intended to be closely held

private Capability cap;

...

void m() {

new Chuck().f(cap);

}

}

class Chuck {

void f(Capability cap) {

... do some work ...

throw new E(cap);

}

}

class Alice {

void attack() {

Bob bob = ...;

try {

bob.m();

} catch (E e) {

Capability stolencap = (Capability) e.obj;

doSomethingEvil(stolencap);

}

}

}

The problem is that it is hard to tell, just by looking at the code of Bob, that Bob’s private capability can
leak to the caller of m(). This is a barrier to local reasoning about the flow of capabilities. By requiring that
all throwables be powerless, we ensure that exceptions cannot convey authority or communicate capabilities
across security boundaries.

4.8 Try-Catch-Finally Clauses

A catch clause is not allowed to specify a type of java.lang.Throwable, java.lang.Error, or any subtype
of java.lang.Error. In addition, finally clauses are not permitted.

Rationale: These restrictions exist to deny Joe-E programs access to nondeterminism. Also, they provide
a way to throw an exception that Joe-E code cannot catch.

If any source of nondeterminism is considered a capability, one can reason that any method called on an
immutable object (provided it doesn’t include an authority-bearing argument) will deterministically return
the same result every time it is invoked. Unfortunately, the unmodified Java language provides ambient access
to nondeterminism via virtual machine errors (subtypes of java.lang.VirtualMachineError), which can
be caught by any class. In particular, a class can behave nondeterministically based on the amount of
memory available by keeping track of how much memory it must allocate before it receives and recovers
from an out-of-memory error. Alternately, one can determine the amount of stack space available as in the
following example.

class IntException extends Exception implements Powerless {

final int number;

10



IntException(int n) { number = n; }

}

class Nondeterministic {

static void f(int[] count) {

count[0]++;

f(count);

}

static void xx() throws IntException {

int[] max = {0};

try {

f(max);

} catch (StackOverflowError) {

throw new IntException(max[0]);

}

}

static int nondet() {

try {

xx();

return 0;

} catch (IntException ie) {

return ie.number;

}

}

}

We take the approach that the core problem is that the nondeterministic virtual-machine errors such
as StackOverflowError are visible to user code. If these errors were instead irrecoverable and caused
immediate shutdown of the virtual machine, the program’s view would be deterministic. Joe-E enforces the
restrictions on exception handling listed above to prevent such errors from being recoverable by Joe-E code.

Finally clauses are forbidden because they can be used to “catch” any type of throwable and prevent
the propagation of the original exception by throwing a new exception that masks it. For instance, in the
example above, the catch (StackOverflowError) clause could be replaced by a finally clause without
changing its behavior. This demonstrates that it is not enough to restrict the types of exceptions that can
be caught using catch clauses; we must also restrict finally clauses as well. The cleanest solution we have
been able to find involves forbidding finally clauses entirely.

In addition, if Joe-E code were able to catch errors, such as StackOverflowError, this would make it
unreasonably difficult to build secure abstractions that can maintain their own object invariants in the face
of hostile clients. For instance, a malicious client could arrange to use almost all available stack space, then
invoke the object-under-attack. This might cause a StackOverflowError to be thrown at an unpredictable
point in the code of the object-under-attack, possibly at a time when the object’s invariants are (temporarily)
violated. If the caller can catch this error and then make additional method invocations on the object-under-
attack, the caller will be able to interact with the object after its object invariants have been invalidated.
This may enable subtle, hard-to-predict attacks. It is unreasonable to expect programmers to write code
in a way that defends against such attacks. Therefore, forbidding Joe-E code from catching errors makes it
easier to preserve encapsulation and write code that can defend itself against hostile clients.

These rules suffice to deny Joe-E programs access to nondeterministic errors and also allow a Joe-E
method to throw an exception that its invoker cannot catch. This is useful as it allows a way to guarantee
that clients of a class cannot view inconsistent state, even if the class enters a condition from which it cannot
recover to a consistent state. An Error that propagates to top level will by default halt the virtual machine,
but in transactional Joe-E systems, it could roll back to a previous checkpoint.

Technically, the prohibition on finally clauses does not limit expressivity: there are several possible
workarounds that allow one to achieve the same semantics or similar semantics, by transforming the code to

11



eliminate the finally keyword, though these transformations may increase code size or harm code clarity.
There are several possible goals we might have for such a transformation:

1. No code duplication: The transformed version of the code should not require duplicating any of the
original code (e.g., the code originally in the finally block).

2. No effect on callers: The transformed version of the code should not require us to modify the signature
of the containing method—in particular, it should not require any changes to the list of exceptions
thrown.

3. Equivalent semantics: The semantics of the transformed example should be exactly identical to the
original code, except that if an error is thrown no Joe-E code should execute after the error is thrown.

4. Clarity: The transformed code should be as pleasant to read and write as possible. The transformed
code should be as concise and clear as possible.

We list next several transformations that meet different subsets of these goals to varying degrees.
We describe first a general semantics-preserving transformation. For instance, suppose we have the

following Java code:

void foo() {

try {

dosomething();

} finally {

cleanup();

}

}

This code is illegal in Joe-E, but it can be transformed to comply with the Joe-E prohibition on finally,
as follows:

void foo() {

try {

dosomething();

} finally {

cleanup();

}

}

−→

void foo() {

RuntimeException e = null;

try {

dosomething();

} catch (RuntimeException re) { e = re; }

cleanup();

if (e != null) { throw e; }

}

It is also possible to handle an arbitrary try-catch-finally block, by introducing a nested try block:

void foo() {

try {

dosomething();

} catch (ParseException pe) {

handle(pe);

} finally {

cleanup();

}

}

−→

void foo() {

RuntimeException e = null;

try {

try {

dosomething();

} catch (ParseException pe) {

handle(pe);

}

} catch (RuntimeException re) {

e = re;

}

cleanup();

if (e ! null) { throw e; }

}

12



The nested try block is unnecessary if the catch clause performs any needed cleanup itself (i.e., if the code
in the finally block is redundant in this case). If the original try block might throw a checked exception,
which also appears in the signature of the containing method, then we can add an extra catch clause to the
transformed version, as follows:

void foo() throws IOException {

InputStream in = ...;

try {

use(in);

} finally {

in.close();

}

}

−→

void foo() throws IOException {

InputStream in = ...;

Exception e = null;

try {

use(in);

} catch (IOException ie) {

e = ie;

} catch (RuntimeException re) {

e = re;

}

in.close();

if (e instanceof IOException) {

throw (IOException)e;

} else if (e instanceof RuntimeException) {

throw (RuntimeException)e;

}

}

Of course, if the original code contains both a try block that might throw a checked exception (which
appears in the signature of the containing method) and a catch clause for some other exception, it is possible
to combine the two ideas listed above. This transformation preserves the type signature of the containing
method and does not introduce any code duplication. This provides a way to handle arbitrary try-catch-
finally sequences, transforming away the finally clause, while satisfying goals 1–3. We will let the reader
judge whether the resulting code is sufficiently clear.

If goal 2 is considered unimportant, the above transformation can be simplified a bit:

void foo() throws IOException {

InputStream in = ...;

try {

use(in);

} finally {

in.close();

}

}

−→

void foo() throws Exception {

InputStream in = ...;

Exception e = null;

try {

use(in);

} catch (Exception e2) { e = e2; }

in.close();

if (e != null) { throw e; }

}

This transformation may be slightly clearer. It also achieves all of goals 1–3 in some special cases, e.g.,
where the try block can not throw any checked exception, or where the containing method’s signature
already contains a throws Exception clause.

Tyler Close has reported that he applied a related transformation when developing the Waterken server:

13



void foo() throws IOException {

InputStream in = ...;

try {

use(in);

} finally {

in.close();

}

}

−→

void foo() throws Exception {

InputStream in = ...;

try {

use(in);

} catch (Exception e) {

try { in.close(); }

catch (Exception e2) {}

throw e;

}

in.close();

}

This transformation makes no attempt to achieve goals 1 or 2: it duplicates the finally clause, and if the
original method was declared to throw any checked exceptions, it changes the method signature by modifying
the throws clause. It also does not preserve the exact semantics of the original code (goal 3). However,
the transformed code on the right is possibly better than the original: if the finally clause (the in.close()

operation) throws an exception of its own while it is executing, that may mask the original exception; the
replacement code avoids masking the original exception. Tyler reports that, in his experience, it was not a
problem to use the replacement code shown above, instead of using finally clauses.

In summary, there are a rich variety of workarounds that allow one to write useful code without using
finally clauses. The existence of alternative coding patterns exist helped to support our decision to prohibit
finally clauses.

We also made an attempt to evaluate how often finally clauses would be used in existing Java. We
examined the 126 code samples found in Effective Java, a popular book on Java programming, and found
that 2 of them used a finally clause. Both of these had a similar flavor to the InputStream examples
above, where the code allocates a resource and then uses the finally clause to clean up after the resource
is no longer used. They both also had the property that the finally clause is a single line and that there
probably is no benefit to masking the original exception if the finally clause throws an exception—hence
the transformation used in Waterken might be applicable to both of those examples as well.

4.9 Object Identity

The == and != operators can only be applied to:

• two values of primitive type (this includes the case where one of these values is a boxed type that will
be auto-unboxed);

• any object being compared with null; or

• two references, one or more of which is declared to be of a type that implements org.joe e.Equatable

in the overlay type system.

Any other use of == or != is a compile-time error.

Rationale: The ability to uniquely identify an immutable object independent of the value that it contains
can imbue an object that otherwise contains “just data” with a form of authority. For example, a locked
box class can recognize whether it has been supplied the right key by keeping a private reference to the
key object used only to test if a supplied key is the same one. An object used for this purpose must be an
instance of org.joe e.Token or one of its subclasses. A reference to an enumeration type does not convey
any authority, not even by its identity, since all such objects are global, universally exported via static fields.
For such values, == and it’s “safer” possibly-selfless alternative, equals(), are equivalent.

4.10 Parameterized Types and Heap Pollution

The Java language only guarantees the safety of type parameters up to erasure. For backwards compatibility
reasons, it is possible for a variable containing an instance of a parameterized type to have qualifiers that do

14



not match the runtime instance. This results from the erasure of the qualifiers at compile time and is known
as “heap pollution”. The consequence of this is that we must be cautious about trusing the syntactic type
of expressions as inferred by the Java type checker when they get their type from a type parameter.

For checks as to whether an instance field implements a marker interface such as Powerless, the erased
type of the field is used. In particular, this means that a Joe-E Powerless class with an instance field of
parameterized type must declare the type parameter with Powerless as its first type bound. (Subsequent
type bounds are not reflected in the erased type of the field.)

For explicit method invocations, expressions whose type derives from a type parameter do not require
special handling because the call is compiled to reference the method determined by the expression’s static
type.

The implicit method call resulting from string conversion, however, causes problems. The Java Language
spec is vague about how string conversion works; it only says that it is “as if by an invocation of the
toString method of the referenced object” but does not specify what happens if the type of the object
is not as expected. Both compilers tested treated this case as different from an explicit invocation of
toString() on the expression; the call succeeded without error even if the actual type of the object was
not as expected. (This would be consistent with compiling string conversion to always invoke toString()

on Object; equivalent to the source construction ((Object) x).toString() for reference types.) In order
to prevent this anomaly providing a way around taming policy for toString(), the verifier uses the erased
type of expressions subject to implicit string conversion when checking the implicit toString() call. A
verification failures resulting from this can be fixed by inserting an explicit cast to the expected type of the
expression.

It is unclear exactly when a particular expression may have the wrong type due to heap pollution. While
it would be easy to just insert an implicit cast to the expected type as soon as a value of a parameterized type
occurs in an expression with an inferred concrete type, it appears that compiler implementations instead
do nothing to ameliorate the effects of heap pollution and instead rely on the error being caught by the
runtime checks of the JVM. These appear to occur when the value is assigned to another variable, either
implicitly or explicitly. It appears that a ?: expression always results in a temporary variable used to store
the result, which is typed to correspond with the expected type of the expression. This means that only a
type parameter literal, a field whose type is a type parameter, or a return value that is a type parameter
might be corrupted; though it may be surrounded by any number of parentheses. When checking string
conversions, the Joe-E verifier currently assumes that the type-checker-inferred type is correct for all other
cases. Unfortunately, it is unclear whether this assumption is guaranteed to hold.

The enhanced for loop does not have this problem, as it is defined to be exactly equivalent to an idiom
that invokes iterator() on the collection expression without any casts, which will ensure that the invocation
will fail with a class cast exception if the object is of a different type than that inferred by the type checker.

4.11 Finalizers

Custom finalizers (methods that override java.lang.Object’s default finalize() method) are not allowed.

Rationale: When the garbage collector invokes finalize() methods, it does so at unpredictable times
and likely in a separate Java thread. Allowing user code to be executed in this manner would provide
opportunities for nondeterminism and would violate reasoning based on single-thread semantics for Joe-E
programs.

Also, finalize() can be used to get access to an incompletely-initialized object instance that should
not be available. For instance, consider:

public class Uninstantiable {

public Uninstantiable() {

throw new SecurityException("not allowed");

}

}

15



It should be impossible to obtain a reference to an Uninstantiable object. Unfortunately, finalize()
allows an attacker to gain access to such an object:

public class Thief extends Uninstantiable {

public static Uninstantiable u = null;

public void finalize() {

this.u = this;

}

public static Uninstantiable make() {

new Thief();

// ... wait a while for GC and finalizers to execute

return u;

}

}

The ability to gain access to an object whose constructor has completed unsuccessfully is surprising. It also
violates the semantics of final fields. Consider this variation:

public class Uninstantiable2 {

public final int i;

public Uninstantiable2() {

die();

i = 42;

}

private static void die() {

throw new SecurityException("not allowed");

}

}

Now an attacker can use the same trick to gain access to an incompletely-constructed Uninstantiable

instance whose field i has the value 0.
Custom finalizers are thus prohibited.

4.12 Serialization

Custom serialization behavior of Joe-E classes (methods with signatures readObject(java.io.ObjectInputStream)
or writeObject(java.io.ObjectOutputStream) is similarly prohibited.

Rationale: Serialization methods are expected to have properties that are not verified and which are
difficult to verify automatically. The default serialization behavior provides that the reconstituted object’s
field values are equivalent to the original, but this equivalence can be violated with custom serialization
behavior. This could allow an object, for example, to “remember” when it is serialized. In order to support
the development of persistence mechanisms that provide a stricter serialization consistency guarantee, for
example ensuring an object’s behavior is independent of whether it has been serialized and revived, Joe-E
code must be prevented from writing its own serialization methods.

4.13 Native Methods

Native methods are forbidden.

Rationale: Native methods bypass the memory- and type-safety checks of the Java language that are
necessary to ensure the unforgeability of capabilities. Therefore, they are forbidden.

16



4.14 Library Protection

Optional: A Joe-E implementation may impose restrictions to ensure that Joe-E user code does not declare
itself to be a member of a library package. These checks are required if any user code is loaded using the
same classloader as any library code not protected by the classloader (e.g. by package sealing).

These checks are not required for a standard Java environment, at least not for Java classpath code. The
standard classpath libraries are loaded by the native primordial class loader, while all user code is loaded
with a Java-language class loader that extends java.lang.ClassLoader. These checks may be necessitated
if a Joe-E implementation uses the same classloader for Joe-E user code and the Joe-E library.

5 Taming

Code that is written entirely in Joe-E in accordance with the rules above is verifiably capability-safe. While
the ability to use Java syntax and the Java toolchain would add some value even if all code must be written
from the ground up in Joe-E, this is not enough. Much of the utility of the Java language comes from its
libraries. Technically, it’s not possible to write a Java program at all without using at least one library class:
java.lang.Object.

Unfortunately, many library classes (including Object) were not designed with capability-security in
mind, and so contain some methods that expose nondeterminism or allow access to privileged operations
without requiring a capability. Allowing indiscriminate use of the Java class library can thus subvert some of
Joe-E’s linguistic restrictions. Especially problematic are reflective facilities that could violate the intended
security discipline of classes defined in Joe-E.

5.1 Policy

Since the library can’t (and shouldn’t) be completely prohibited, nor can it all be allowed, we use a taming

mechanism to allow some library facilities and disable others. This takes the form of a whitelist of classes
and class members (library methods and fields) that are allowed to be named and invoked by Joe-E code.
Any class or method not in the whitelist cannot be referenced; any Joe-E program should be able to compile
against a hypothetical version of the library in which the method did not exist. The taming-related checks
in the verifier, detailed below, ensure that no method or field that is “tamed away” can be directly invoked
by Joe-E code. Note that other methods in the Java or Joe-E library may be allowed to access the member
in question, by a mechanism yet to be formally specified but roughly analagous to deeming for marker
interfaces. This essentially makes it a separate policy decision to determine whether their access is safe. It
could be that they only provide a safe subset of the functionality that would be exposed by enabling the
member directly. An example of this are wrappers provided in the Joe-E library which provide a mediated,
capability-compatible interface to underlying Java library classes that are not capability-safe.

A comprehensive approach to philosophy and specific policies for taming the Java class libraries is forth-
coming. Some notes follow.

Nondeterminism means that java.lang.Object’s hashCode() and and toString() implementations
must be disabled. Selfless indicates that a class has a safe hashCode() method, but we may also want a
marker interface (or a reflective method?) to allow for printing out object’s string representations for objects
that are safe to convert to strings.

We will need to tame java.lang.Throwable to ensure it meets the semantics of a powerless class, since
Section 3.5 requires it to be honorarily powerless. We may also need to tame some existing exception classes
defined in the standard Java libraries and then explicitly deem them to implement org.joe e.Powerless,
so that their behavior will indeed be consistent with what one would expect of a powerless type (since all
throwables are required to be powerless).

A number of invariants must hold in the taming decisions in order for them to be consistent and enforce-
able.

17



• If a class is disabled, all subtypes of that class must also be disabled. Otherwise the “tamed” type
hierarchy has holes in it, which may cause problems.

• If a method is enabled, all methods that override that method must also be enabled. Otherwise one
could simply upcast to the supertype and call the method anyway. This is a result of the static nature
of the taming enforcement; if the method dispatch was mediated dynamically (as it is in E-on-Java),
a policy that allows a method in the superclass but not in the subclass would in fact be enforceable.
Note that this requirement is of particular concern for non-final methods of class Object: if any class
provides a capability-unsafe version of these methods, we must either disable the methods from Object

or ensure (through other taming decisions) that no instance of that class is ever obtainable by Joe-E
code.

Any Serializable library class must be tamed such that the obervable behavior of a serialized and revived
instance is indistinguishable from the original with the possible exception of object identity.

Classes implementing the Iterable interface as well as non-final classes providing methods named next()

or hasNext() raise special issues for taming. If the implementation provided of either of these methods is
determined to be unsafe, Joe-E code must be prevented from ever obtaining an instance of the class, as it
could otherwise declare an iterator() method that returns it.

Classes that call hashCode(), toString(), or Class.getName() should be carefully examined to ensure that
their behavior does not visibly depend on the result of these method calls, which can be nondeterministic.

Any method providing information about real time must be suppressed or require a capability.
Methods dependent on the current locale should be suppressed.
The behavior of a program can be dependent on the current version of Java (or at least any things that

change between versions, e.g. the set of characters defined by the Unicode standard), the current taming
decisions, whether assertions are enabled. Policy may change on these if there is a good reason.

5.2 Mechanism

Taming policy is enforced by ensuring that no identifier in the program resolves to a type or member that
is disabled. Potentially disabled class types can appear in:

1. the formal argument types of a method or constructor

2. the formal bounds of a type variable

3. the actual type arguments to a generic type, method, or constructor

4. class instance creation expressions, including anonymous class definitions.

5. extends and throws clauses

6. field and local variable declarations

7. parameters to catch clauses

8. class import declarations

9. return types

10. cast expressions

Potentially disabled members (fields, methods, and constructors) can appear in:

1. field and superfield accesses

2. method and supermethod invocations

3. superconstructor invocations

18



4. class instance creation expressions, including anonymous class definitions.

5. static import declarations

The last three of the locations for disabled classes are benign, as creating an instance of the class requires
the use of a constructor, all of which are disabled for a disabled class. We don’t see any reason to allow
these uses, however, so it is simpler to prohibit any mention of the type of a disabled class. This approach
likely to avoid confusion by consistently indicating that the type is disabled. Static import declarations of
disabled fields and methods could also be allowed without violating soundness, but are prohibited for the
same reason.

In addition to explicit expressions that resolve to a disabled member, it is also necessary to check for
implicit invocation of disabled members in the following circumstances:

1. implicit superconstructor invocations, either as the default superconstructor for a constructor that does
not specify one, or if no explicit constructor is provided.

2. implicit calls to toString() resulting from string conversion in assertion expressions and when evalu-
ating + and += expressions.

3. implicit calls to iterator() resulting from the use of enhanced for loops. The verifier does not check
the implicit next and hasNext() calls performed on the iterator itself, since the concrete type of the
iterator is not available to the verifier. This has the unfortunate effect of requiring special attention
be made when taming if any class provides unsafe versions of these methods. Joe-E code must be
prevented from obtaining a reference to any such class, as it could otherwise declare an iterator()

method that returns it. This open-ended requirement is tractable because (a) most (possibly all)
iterators are safe and (b) any unsafe iterator is likely to be obtainable in a limited number of ways, all
of which can be disabled.

Another wrinkle with taming verification is that Java’s interface implementation checks are unaware of
taming decisions. This can be a problem when one calls the method on an object that is known only to
belong to the interface. In this case, the verifier is only able to resolve the method to the interface rather
than a concrete implementation, and so it will be unable to tell if the concrete implementation is supposed
to be tamed away. In order to prevent a loss of soundness in this case while still allowing methods to be
called in this manner, Joe-E requires that classes only implement interfaces consistent with taming decisions.
Specifically, it requires that each method defined in an interface implemented by a class resolves to a concrete
implementation that isn’t disabled by taming.

6 Malicious bytecode

This specification requires that Joe-E programs be written in source form, compiled using a Java compiler,
passed through the Joe-E verifier, and then executed with a JVM. In particular, we require that every
classfile be produced by a correctly operating Java compiler; no part of a Joe-E program is permitted to
contain bytecode obtained from untrusted sources or generated by hand.

Rationale: Java compilers perform many checks that are not duplicated by the JVM. These checks include1:
exception safety; access control for inner classes; isolation of user code from classpath code; in-range checks
for short types. Since these checks are performed only by the compiler, malicious bytecode can evade these
checks. This means that if any part of the program includes bytecode not produced by a legitimate Java
compiler, Joe-E programmers will be unable to rely upon exception safety, access control for inner classes,
etc.

In principle, one could duplicate all these checks in the Joe-E verifier, and then raw bytecode would not
need to be forbidden since programmers could rely upon these language features even in the presence of
malicious bytecode. However, the benefit of adding this into the verifier seems to be questionable given the
costs, so we omit this (for now, anyway).

1See Appendix A for further discussion.

19



7 Work in Progress

Further documentation will be forthcoming about the taming framework and philosophy as it is developed,
as well as documentation on taming decisions.

This specification currently does not prevent the reading of an uninitialized value for a static final field;
this protection may be provided in the future.

A Issues with malicious bytecode

If we were to accept (possibly maliciously constructed) bytecode from an unknown source and link it into
our program (after checking that it is accepted by the Joe-E verifier), there would be many pitfalls to worry
about. These include:

• Java’s visibility modifiers (private, protected, etc.) can be subverted in the presence of inner classes.
The Java compiler inserts synthetic getter/setter methods; while the compiler checks that Java source
cannot use these synthetic methods, the JVM does not, so malicious bytecode could exploit them to
to gain access to private state. Consequently, Java programmers cannot count on visibility modifiers
on inner classes, in the presence of malicious bytecode.

Joe-E code compiled from source can ensure that these protections are enforced. A more sophisticated
implementation of the Joe-E verifier would be able to make the same guarantees for arbitrary bytecode.
Extension of the verifier to handle arbitrary bytecode is nontrivial but quite feasible, and may be
considered for a version subsequent to the first prototype.

• Exception-safety can be subverted in the presence of malicious code. The Java compiler checks a
property that one might call exception-safety : if the program calls a method m(), and if m() terminates
abruptly, it can only do so with an exception that is (1) (a subclass of) a class declared in m()’s clause;
(2) (a subclass of) a RuntimeException; or, (3) (a subclass of) an Error. This property is enforced
only by the Java compiler, and not by the JVM. Consequently, maliciously constructed Java bytecode
can throw checked exceptions not declared in its throws clause.

Just as in Java, Joe-E programmers cannot rely on exception-safety in the presence of malicious
bytecode. While it would be possible to re-implement the exception-safety checks in the Joe-E verifier,
it seems this would require more effort than it is worth.

• Final fields can be assigned to multiple times, in the presence of malicious bytecode. The Java compiler
performs so-called “definite assignment” checks to ensure that every final field is assigned to exactly
once by the time the constructor exits, and is never assigned after that point. This check is not
necessarily duplicated by the JVM; consequently, malicious bytecode might be able to modify final

fields, subvert our immutability analysis, and potentially violate other security properties.

• Since generic types are implemented by erasure, malicious bytecode can partially subvert type-checking
for type parameters. The correct use of type parameters is only checked at compile time, and then is
erased. Consequently, though the JVM does check basic type system, the JVM does not and cannot
check that type parameters are used correctly. Further details: http://portal.acm.org/citation.

cfm?id=997144 (§5).

• It seems the intuitive range limits for short types can possibly be violated by malicious bytecode.
Consider the following method:

boolean isByte(byte b) {

return (-128 <= bb) && (bb <= 127);

}

20



One might naively expect that isByte() can only return true. However, it’s not clear that this is actu-
ally guaranteed, in the presence of malicious bytecode. The JVM stores byte values in 32-bit registers,
and handles them almost exactly the same way as int values. No range checks are performed. It may
be possible for malicious bytecode to pass a full 32-bit value to isByte(), causing the method to return
false. Similar risks may apply to boolean, byte, short, and char. We have not yet evaluated this
risk. References: http://groups.yahoo.com/group/java-spec-report/message/756?threaded=1

http://archives.java.sun.com/cgi-bin/wa?A2=ind9802&L=java-security&P=2691

• It might be possible to subvert some of the access checks for protected members. Let x be a protected
non-static field of class C, and let S be a subclass of C from a different package. The Java compiler
enforces a special check that S can access obj.x only if obj’s class is in the inheritance subtree rooted
at S (and not, for instance, if obj is of class C). This check is a little bit tricky in the presence of
overriding, and there have been reports that malicious bytecode can bypass this check. We haven’t
investigated this in any detail. http://www.kestrel.edu/home/people/coglio/ftjp04.pdf

• There may also be some potential danger spots with monitors. What if malicious bytecode fails to
follow a stack discipline with its monitorenter/monitorexit instructions? What if the bytecode fails
to call monitorexit before returning? What a security-critical library acquires a lock and calls our
malicious bytecode, which then uses monitorexit to release the library’s lock? It is unclear what may
be possible here.

• The ACC SUPER bit may allow to subvert the semantics of overridden methods. Suppose class C defines a
method m(), which is overridden by some subclass S. With current Java semantics, holding a reference
to S, you aren’t supposed to be able to invoke the body of C.m() on this object. However, malicious
bytecode could reset the ACC SUPER bit in its classfile and get access to the hidden method, so that
it can get an instance of S to execute the code specified in C.m(). If S was relying on overriding to
prevent access to C’s implementation of m(), then malicious bytecode could falsify this assumption.

• The Java language requires that the first line of any construct must either call the superclass constructor
or must call some other constructor for the same class. The Java compiler will insert an implicit call
to the superclass constructor if this rule is not followed. In contrast, the JVML bytecode verifier does
not check this rule, so a constructor written in JVML bytecode could violate this rule.

We make no claims that this is the complete list of pitfalls associated with malicious bytecode. The simplest
way to avoid these pitfalls is to compile everything from source using a trusted Java compiler and refrain
from accepting raw bytecode from unknown sources; this is exactly what we require when writing Joe-E
programs.

21


