How Peer Effects Influence Energy Consumption

D.P. Zhou, M. Roozbehani, M.A. Dahleh, C.J. Tomlin

[datong.zhou, tomlin]@berkeley.edu, [mardavij, dahleh]@mit.edu

December 14, 2017
Introduction to Peer Effects

Background

- Social comparisons influence people's behavior:
 - Conform to a standard
 - Receive social acclaim
 - Other people's choices can be informative (recommender systems)

- Network effects in social networks and platforms
 - Positive externalities

- Impact of Peer Effects on energy consumption?¹
 - Various Randomized Controlled Trials (RCTs) to investigate such effects²
 - High consumers reduce most, efficient ones show “boomerang effect”

Question

- How can peer effects in energy networks be exploited for profit-maximization of the load serving entity?

Methodology

- Develop a game between utility and electricity users, introducing peer effects

Introduction to Peer Effects

Background

- Social comparisons influence people’s behavior:
 - Conform to a standard
 - Receive social acclaim
 - Other people’s choices can be informative (recommender systems)

- Network effects in social networks and platforms
 - Positive externalities

- Impact of Peer Effects on energy consumption?¹
 - Various Randomized Controlled Trials (RCTs) to investigate such effects²
 - High consumers reduce most, efficient ones show “boomerang effect”

Question

- How can peer effects in energy networks be exploited for profit-maximization of the load serving entity?

Methodology

- Develop a game between utility and electricity users, introducing peer effects

Introduction to Peer Effects

Background

- Social comparisons influence people’s behavior:
 - Conform to a standard
 - Receive social acclaim
 - Other people’s choices can be informative (recommender systems)
- Network effects in social networks and platforms
 - Positive externalities
- Impact of Peer Effects on energy consumption?¹
 - Various Randomized Controlled Trials (RCTs) to investigate such effects²
 - High consumers reduce most, efficient ones show “boomerang effect”

Question

- How can peer effects in energy networks be exploited for profit-maximization of the load serving entity?

Methodology

- Develop a game between utility and electricity users, introducing peer effects

Introduction to Peer Effects

Background
- Social comparisons influence people's behavior:
 - Conform to a standard
 - Receive social acclaim
 - Other people's choices can be informative (recommender systems)
- Network effects in social networks and platforms
 - Positive externalities
- Impact of Peer Effects on energy consumption?¹
 - Various Randomized Controlled Trials (RCTs) to investigate such effects²
 - High consumers reduce most, efficient ones show “boomerang effect”

Question
- How can peer effects in energy networks be exploited for profit-maximization of the load serving entity?

Methodology
- Develop a game between utility and electricity users, introducing peer effects

Introduction to Peer Effects

Background

- Social comparisons influence people’s behavior:
 - Conform to a standard
 - Receive social acclaim
 - Other people’s choices can be informative (recommender systems)
- Network effects in social networks and platforms
 - Positive externalities
- Impact of Peer Effects on energy consumption?\(^1\)
 - Various Randomized Controlled Trials (RCTs) to investigate such effects\(^2\)
 - High consumers reduce most, efficient ones show “boomerang effect”

Question

- How can peer effects in energy networks be exploited for profit-maximization of the load serving entity?

Methodology

- Develop a game between utility and electricity users, introducing peer effects

Two-Stage Game-Theoretic Model

Consumers
- Set of consumers $\mathcal{I} = \{1, \ldots, n\}$ with utility function
 \[u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right). \]
 - Interaction matrix $W \in [0, 1]^{n \times n}$
 - Each user observes price p_i^* and x_{-i} and maximizes utility:
 \[x_i^* = \arg \max_{x_i \geq 0} u_i(x_i, x_{-i}, \gamma_i, W). \]

Load-Serving Entity
- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i - c_i x_i^2$
- Utility determines optimal price p^* to maximize Π
- Takes into account users’ consumption decisions as a function of price p
 \[p^* = \arg \max_{p \geq 0} \sum_{i \in \mathcal{I}} p_i x_i(p) - c_i x_i^2(p). \]

Subgame-Perfect Equilibrium
- Nash Equilibria of second stage game and first stage game
- Can be determined with “backward induction”
Two-Stage Game-Theoretic Model

Consumers
- Set of consumers $\mathcal{I} = \{1, \ldots, n\}$ with utility function
 \[u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right). \]
- Interaction matrix $W \in [0, 1]^{n \times n}$
- Each user observes price p_i^* and x_{-i} and maximizes utility:
 \[x_i^* = \arg \max_{x_i \geq 0} u_i(x_i, x_{-i}, \gamma_i, W) \]

Load-Serving Entity
- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i - c_i x_i^2$
- Utility determines optimal price p^* to maximize Π
- Takes into account users’ consumption decisions as a function of price p
 \[p^* = \arg \max_{p \geq 0} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i) \]

Subgame-Perfect Equilibrium
- Nash Equilibria of second stage game and first stage game
- Can be determined with “backward induction”
Two-Stage Game-Theoretic Model

Consumers
- Set of consumers $\mathcal{I} = \{1, \ldots, n\}$ with utility function
 \[u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right). \]
- Interaction matrix $W \in [0, 1]^{n \times n}$
- Each user observes price p_i^* and x_{-i} and maximizes utility:
 \[x_i^* = \arg \max_{x_i \geq 0} u_i(x_i, x_{-i}, \gamma_i, W) \]

Load-Serving Entity
- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i - c_i x_i^2$
- Utility determines optimal price p^* to maximize Π
- Takes into account users’ consumption decisions as a function of price p
 \[p^* = \arg \max_{p \geq 0} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i) \]

Subgame-Perfect Equilibrium
- Nash Equilibria of second stage game and first stage game
- Can be determined with “backward induction”
Two-Stage Game-Theoretic Model

Consumers
- Set of consumers $\mathcal{I} = \{1, \ldots, n\}$ with utility function
 \[u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right). \]
- Interaction matrix $W \in [0, 1]^{n \times n}$
- Each user observes price p_i^* and x_{-i} and maximizes utility:
 \[x_i^* = \arg \max_{x_i \geq 0} u_i(x_i, x_{-i}, \gamma_i, W) \]

Load-Serving Entity
- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i - c_i x_i^2$
- Utility determines optimal price p^* to maximize Π
- Takes into account users’ consumption decisions as a function of price p
 \[p^* = \arg \max_{p \geq 0} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i) \]

Subgame-Perfect Equilibrium
- Nash Equilibria of second stage game and first stage game
- Can be determined with “backward induction”
Two-Stage Game-Theoretic Model

Consumers
- Set of consumers $\mathcal{I} = \{1, \ldots, n\}$ with utility function

$$u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right).$$

- Interaction matrix $W \in [0, 1]^{n \times n}$
- Each user observes price p_i^* and x_{-i} and maximizes utility:

$$x_i^* = \arg \max_{x_i \geq 0} u_i(x_i, x_{-i}, \gamma_i, W).$$

Load-Serving Entity
- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i - c_i x_i^2$
- Utility determines optimal price p^* to maximize Π

$$p^* = \arg \max_{p \geq 0} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i).$$

Subgame-Perfect Equilibrium
- Nash Equilibria of second stage game and first stage game
- Can be determined with “backward induction”
Two-Stage Game-Theoretic Model

Consumers
- Set of consumers $\mathcal{I} = \{1, \ldots, n\}$ with utility function
 \[
 u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right).
 \]
- Interaction matrix $W \in [0, 1]^{n \times n}$
- Each user observes price p_i^* and x_{-i} and maximizes utility:
 \[
 x_i^* = \arg \max_{x_i \geq 0} u_i(x_i, x_{-i}, \gamma_i, W).
 \]

Load-Serving Entity
- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i - c_i x_i^2$
- Utility determines optimal price p^* to maximize Π
- Takes into account users’ consumption decisions as a function of price p
 \[
 p^* = \arg \max_{p \geq 0} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i)
 \]

Subgame-Perfect Equilibrium
- Nash Equilibria of second stage game and first stage game
- Can be determined with “backward induction”
Two-Stage Game-Theoretic Model

Consumers
- Set of consumers $\mathcal{I} = \{1, \ldots, n\}$ with utility function
 \[u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right). \]
- Interaction matrix $W \in [0, 1]^{n \times n}$
- Each user observes price p_i^* and x_{-i} and maximizes utility:
 \[x_i^* = \arg \max_{x_i \geq 0} u_i(x_i, x_{-i}, \gamma_i, W) \]

Load-Serving Entity
- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i - c_i x_i^2$
- Utility determines optimal price p^* to maximize Π
- Takes into account users' consumption decisions as a function of price p
 \[p^* = \arg \max_{p \geq 0} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i) \]

Subgame-Perfect Equilibrium
- Nash Equilibria of second stage game and first stage game
- Can be determined with “backward induction”
Two-Stage Game-Theoretic Model

Consumers
- Set of consumers $\mathcal{I} = \{1, \ldots, n\}$ with utility function
 \[u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right) . \]
- Interaction matrix $W \in [0, 1]^{n \times n}$
- Each user observes price p_i^* and x_{-i} and maximizes utility:
 \[x_i^* = \arg \max_{x_i \geq 0} u_i(x_i, x_{-i}, \gamma_i, W) \]

Load-Serving Entity
- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i - c_i x_i^2$
- Utility determines optimal price p^* to maximize Π
- Takes into account users’ consumption decisions as a function of price p
 \[p^* = \arg \max_{p \geq 0} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i) \]

Subgame-Perfect Equilibrium
- Nash Equilibria of second stage game and first stage game
- Can be determined with “backward induction”
Two-Stage Game-Theoretic Model

Consumers
- Set of consumers $\mathcal{I} = \{1, \ldots, n\}$ with utility function
 $$u_i = a_i x_i - b_i x_i^2 - p_i x_i + \gamma_i x_i \left(\sum_{j \in \mathcal{I}} w_{ij} x_j - x_i \right).$$
- Interaction matrix $W \in [0, 1]^{n \times n}$
- Each user observes price p_i^* and x_{-i} and maximizes utility:
 $$x_i^* = \arg \max_{x_i \geq 0} u_i(x_i, x_{-i}, \gamma_i, W).$$

Load-Serving Entity
- Profit: $\Pi = \sum_{i \in \mathcal{I}} p_i x_i - c_i x_i^2$
- Utility determines optimal price p^* to maximize Π
- Takes into account users’ consumption decisions as a function of price p
 $$p^* = \arg \max_{p \geq 0} \sum_{i \in \mathcal{I}} p_i x_i(p_i) - c_i x_i^2(p_i)$$

Subgame-Perfect Equilibrium
- Nash Equilibria of second stage game and first stage game
- Can be determined with “backward induction”
Price and Consumption Equilibria

Perfect Price Discrimination

\[p^* = \frac{a}{2} + CZ\frac{a}{2} - W^\top \Gamma Z\frac{a}{4} + \Gamma WZ\frac{a}{4}, \]

\[x^* = \left(C + B + 2\Gamma - \frac{W^\top \Gamma}{2} - \frac{\Gamma W}{2} \right)^{-1} a, \]

\[Z = \left[2\Gamma + B + C - \left(\frac{W^\top \Gamma}{2} + \frac{\Gamma W}{2} \right) \right]^{-1}. \]

- Complete knowledge of \(a \) and \(b \)
- Incentive for strongly influential users \(W^\top \Gamma \)
- Additional cost for strongly influenced users \(\Gamma W \)

Single Price, Complete Information

\[\tilde{p}_u^* = \left[1 - \frac{1^\top A^{-1}1}{2 \cdot 1^\top (A^{-1} + A^{-1}CA^{-1}) 1} \right] \tilde{a}, \]

\[x^* = A^{-1} \left[a - \left(1 - \frac{1^\top A^{-1}1}{2 \cdot 1^\top (A^{-1} + A^{-1}CA^{-1}) 1} \right) \tilde{a} \right], \]

\[A = B + 2\Gamma - \Gamma W, \quad \tilde{a} = \sum_{i=1}^{n} a_i / n. \]

- Complete knowledge of \(a \) and \(b \)
- Utility can only set a single price \(p_u \) valid for all users

Single Price, Incomplete Information

\[\hat{p}_u^* \geq \frac{\mathbb{E}[a]}{2} \left[1 + \frac{c}{n} 1^\top [2\Gamma + (2\mathbb{E}[b] + c)I - \Gamma W]^{-1} 1 \right], \]

\[\mathbb{E}[\hat{x}_i] \geq \frac{\mathbb{E}[a] - \hat{p}_u^*,LB}{n} \cdot 1^\top (2\Gamma + 2\mathbb{E}[b]I - \Gamma W)^{-1} 1. \]

- Utility only knows expectations of \(a \) and \(b \): \(\mathbb{E}[a], \mathbb{E}[b] \)
- Utility can only set a single price \(p_u \) valid for all users
- Lower bound on profit-maximizing price
Price and Consumption Equilibria

Perfect Price Discrimination

\[
p^* = \frac{a}{2} + CZ - W^T \Gamma \left(\frac{a}{4} + \Gamma W \frac{a}{4} \right),
\]

\[
x^* = \left(C + B + 2\Gamma - \frac{W^T \Gamma}{2} - \frac{\Gamma W}{2} \right)^{-1} \frac{a}{2},
\]

\[
Z = \left[2\Gamma + B + C - \left(\frac{W^T \Gamma}{2} + \frac{\Gamma W}{2} \right) \right]^{-1}.
\]

Single Price, Complete Information

\[
p_u^* = \left[1 - \frac{\mathbf{1}^T A^{-1} \mathbf{1}}{2 \cdot \mathbf{1}^T (A^{-1} + A^{-1}CA^{-1}) \mathbf{1}} \right] \bar{a},
\]

\[
x_u^* = A^{-1} \left[a - \left(1 - \frac{\mathbf{1}^T A^{-1} \mathbf{1}}{2 \cdot \mathbf{1}^T (A^{-1} + A^{-1}CA^{-1}) \mathbf{1}} \right) \bar{a} \mathbf{1} \right],
\]

\[
A = B + 2\Gamma - \Gamma W, \quad \bar{a} = \sum_{i=1}^n a_i / n.
\]

Single Price, Incomplete Information

\[
\hat{p}_u^* \geq \frac{E[a]}{2} \left[1 + \frac{c}{n} \mathbf{1}^T [2\Gamma + (2E[b] + c) I - \Gamma W]^{-1} \mathbf{1} \right],
\]

\[
E[x_i] \geq \frac{\mathbb{E}[a] - \hat{p}_u^* \cdot \mathbf{1}^T (2\Gamma + 2E[b] I - \Gamma W)^{-1} \mathbf{1}}{n}.
\]
Price and Consumption Equilibria

Perfect Price Discrimination

\[p^* = \frac{a}{2} + C \frac{a}{2} - W^\top \Gamma \frac{a}{4} + \Gamma WZ \frac{a}{4}, \]
\[x^* = \left(C + B + 2\Gamma - \frac{W^\top \Gamma}{2} - \frac{\Gamma W}{2} \right)^{-1} \frac{a}{2}, \]
\[Z = \left[2\Gamma + B + C - \left(\frac{W^\top \Gamma}{2} + \frac{\Gamma W}{2} \right) \right]^{-1}. \]

Single Price, Complete Information

\[p_u^* = \left[1 - \frac{1^\top A^{-1} \mathbf{1}}{2 \cdot 1^\top (A^{-1} + A^{-1}CA^{-1}) \mathbf{1}} \right] \bar{a}, \]
\[x^* = A^{-1} \left[a - \left(1 - \frac{1^\top A^{-1} \mathbf{1}}{2 \cdot 1^\top (A^{-1} + A^{-1}CA^{-1}) \mathbf{1}} \right) \bar{a} \mathbf{1} \right], \]
\[A = B + 2\Gamma - \Gamma W, \quad \bar{a} = \frac{1}{n} \sum_{i=1}^{n} a_i. \]

Single Price, Incomplete Information

\[\bar{p}_u^* \geq \frac{\mathbb{E}[a]}{2} \left[1 + \frac{c}{n} 1^\top \left[2\Gamma + (2\mathbb{E}[b] + c)\mathbf{1} - \Gamma W \right]^{-1} \mathbf{1} \right], \]
\[\mathbb{E}[x_i] \geq \frac{\mathbb{E}[a] - \bar{p}_u^* \cdot \mathbb{L}B}{n} \cdot 1^\top \left[2\Gamma + 2\mathbb{E}[b]\mathbf{1} - \Gamma W \right]^{-1} \mathbf{1}. \]

- Complete knowledge of \(a \) and \(b \)
- Incentive for strongly influential users \(W^\top \Gamma \)
- Additional cost for strongly influenced users \(\Gamma W \)

- Complete knowledge of \(a \) and \(b \)
- Utility can only set a single price \(p_u \) valid for all users

- Utility only knows expectations of \(a \) and \(b \): \(\mathbb{E}[a], \mathbb{E}[b] \)
- Utility can only set a single price \(p_u \) valid for all users
- Lower bound on profit-maximizing price
Comparison of Pricing Schemes

Perfect Price Discrimination

\[
p^* = \frac{a}{2} + CZ\frac{a}{2} - W^T \Gamma Z\frac{a}{4} + \Gamma WZ\frac{a}{4},
\]

\[
x^* = \left(C + B + 2\Gamma - \frac{W^T \Gamma}{2} - \frac{\Gamma W}{2} \right)^{-1} \frac{a}{2},
\]

\[
Z = \left[2\Gamma + B + C - \left(\frac{W^T \Gamma}{2} + \frac{\Gamma W}{2} \right) \right]^{-1}.
\]

Single Price, Complete Information

\[
p^*_u = \left[1 - \frac{\mathbf{1}^T A^{-1} \mathbf{1}}{2 \cdot \mathbf{1}^T (A^{-1} + A^{-1}CA^{-1}) \mathbf{1}} \right] \bar{a},
\]

\[
x^* = A^{-1} \left[a - \left(1 - \frac{\mathbf{1}^T A^{-1} \mathbf{1}}{2 \cdot \mathbf{1}^T (A^{-1} + A^{-1}CA^{-1}) \mathbf{1}} \right) \bar{a} \mathbf{1} \right],
\]

\[A = B + 2\Gamma - \Gamma W, \quad \bar{a} = \sum_{i=1}^{n} a_i / n.\]

Single Price, Incomplete Information

\[
\bar{p}^*_u \geq \frac{\mathbb{E}[a]}{2} \left[1 + \frac{c}{n} \mathbf{1}^T [2\Gamma + (2\mathbb{E}[b] + c)I - \Gamma W]^{-1} \mathbf{1} \right],
\]

\[
\mathbb{E}[x_i] \geq \frac{\mathbb{E}[a] - \bar{p}^*_u, LB}{n} \cdot \mathbf{1}^T (2\Gamma + 2\mathbb{E}[b]I - \Gamma W)^{-1} \mathbf{1}.
\]
Comparison of Pricing Schemes

Perfect Price Discrimination

\[p^* = \frac{a}{2} + CZ\frac{a}{2} - W^T \Gamma Z\frac{a}{4} + \Gamma WZ\frac{a}{4}, \]
\[x^* = \left(C + B + 2\Gamma - \frac{W^T \Gamma}{2} - \frac{\Gamma W}{2} \right)^{-1} \frac{a}{2}, \]
\[Z = \left[2\Gamma + B + C - \left(\frac{W^T \Gamma}{2} + \frac{\Gamma W}{2} \right) \right]^{-1}. \]

Single Price, Complete Information

\[p_u^* = \left[1 - \frac{1^T A^{-1} 1}{2 \cdot 1^T (A^{-1} + A^{-1} CA^{-1}) 1} \right] \bar{a}, \]
\[x^* = A^{-1} \left[a - \left(1 - \frac{1^T A^{-1} 1}{2 \cdot 1^T (A^{-1} + A^{-1} CA^{-1}) 1} \right) \bar{a} \right], \]
\[A = B + 2\Gamma - \Gamma W, \quad \bar{a} = \sum_{i=1}^{n} a_i / n. \]

Single Price, Incomplete Information

\[\tilde{p}_u^* \geq \frac{E[a]}{2} \left[1 + \frac{c}{n} 1^T [2\Gamma + (2E[b] + c)I - \Gamma W]^{-1} 1 \right], \]
\[E[x_i] \geq \frac{E[a] - \tilde{p}_u^*,LB}{n} \cdot 1^T (2\Gamma + 2E[b]I - \Gamma W)^{-1} 1. \]
Comparison of Pricing Schemes

Perfect Price Discrimination

\[p^* = \frac{a}{2} + CZ \frac{a}{2} - W^T \Gamma Z \frac{a}{4} + \Gamma WZ \frac{a}{4}, \]
\[x^* = \left(C + B + 2\Gamma - \frac{W^T \Gamma}{2} - \frac{\Gamma W}{2} \right)^{-1} \frac{a}{2}, \]
\[Z = \left[2\Gamma + B + C - \left(\frac{W^T \Gamma}{2} + \frac{\Gamma W}{2} \right) \right]^{-1}. \]

Single Price, Complete Information

\[p_u^* = \left[1 - \frac{1^TA^{-1}1}{2 \cdot 1^T (A^{-1} + A^{-1}CA^{-1}) 1} \right] \bar{a}, \]
\[x^* = A^{-1} \left[a - \left(1 - \frac{1^TA^{-1}1}{2 \cdot 1^T (A^{-1} + A^{-1}CA^{-1}) 1} \bar{a} \right) \right], \]
\[A = B + 2\Gamma - \Gamma W, \quad \bar{a} = \sum_{i=1}^{n} a_i / n. \]

Single Price, Incomplete Information

\[\tilde{p}_u^* \geq \frac{\mathbb{E}[a]}{2} \left[1 + \frac{c}{n} 1^T [2\Gamma + (2\mathbb{E}[b] + c)I - \Gamma W]^{-1} 1 \right], \]
\[\mathbb{E}[\tilde{x}_i] \geq \frac{\mathbb{E}[a] - \tilde{p}_{u,\text{LB}}^*}{n} \cdot 1^T (2\Gamma + 2\mathbb{E}[b]I - \Gamma W)^{-1} 1. \]
Comparison of Pricing Schemes

Perfect Price Discrimination

\[p^* = \frac{a}{2} + CZ \frac{a}{2} - W^\top \Gamma Z \frac{a}{4} + \Gamma WZ \frac{a}{4}, \]
\[x^* = \left(C + B + 2\Gamma - \frac{W^\top \Gamma}{2} - \frac{\Gamma W}{2} \right)^{-1} \frac{a}{2}, \]
\[Z = \left[2\Gamma + B + C - \left(\frac{W^\top \Gamma}{2} + \frac{\Gamma W}{2} \right) \right]^{-1}. \]

Single Price, Complete Information

\[\tilde{p}_u^* = \left[1 - \frac{1^\top A^{-1} \mathbf{1}}{2 \cdot 1^\top (A^{-1} + A^{-1}CA^{-1}) \mathbf{1}} \right] \bar{a}, \]
\[x^* = A^{-1} \left[a - \left(1 - \frac{1^\top A^{-1} \mathbf{1}}{2 \cdot 1^\top (A^{-1} + A^{-1}CA^{-1}) \mathbf{1}} \right) \bar{a} \mathbf{1} \right], \]
\[A = B + 2\Gamma - \Gamma W, \quad \bar{a} = \frac{1}{n} \sum_{i=1}^n a_i / n. \]

Single Price, Incomplete Information

\[\tilde{p}_u^* \geq \frac{\mathbb{E}[a]}{2} \left[1 + \frac{c}{n} 1^\top (2\Gamma + (2\mathbb{E}[b] + c) \mathbf{1} - \Gamma W)^{-1} 1 \right], \]
\[\mathbb{E}[\bar{x}_i] \geq \frac{\mathbb{E}[a] - \tilde{p}_u^*,LB}{n} \cdot 1^\top (2\Gamma + 2\mathbb{E}[b] \mathbf{1} - \Gamma W)^{-1} 1. \]
Theoretical Statements

Theorem (Monotonicity of Consumption Equilibrium)

If \(a_i = a, b_i = b, \) and \(\gamma_i = \gamma \ \forall \ i \in \mathcal{I}, \) then \(x_i^* \) is strictly monotonically decreasing in \(\gamma \) independent of the network topology \(W. \)

Proof Sketch.

Take derivative \(\frac{dx}{d\gamma} = -\frac{1}{4\gamma(b+\gamma)} K^{-1} F^{-1} (a - p) \) and exploit diagonal dominance of \(K \) and \(F. \) Show that all elements \((K^{-1} F^{-1})_{ij}\) are positive.

Theorem (Influence of High Consumer)

Let \(w_{ij} = \left(\sum_{j \in \mathcal{I}} 1_{w_{ij} > 0} \right)^{-1}, b_i = b, \gamma_i = \gamma \) and \(a_i - p_i = \alpha \) for \(\mathcal{N} = \{i \in \mathcal{I} \setminus j\}. \) Let \(j \) be the “high” consumer. If \(a_j - p_j = \bar{\alpha} > n\alpha, \) then for each neighbor \(i \) of \(j, x_i^* \) is initially increasing in \(\gamma, \) whereas \(x_j^* \) is strictly monotonically decreasing in \(\gamma. \)

Proof Sketch.

Evaluate \(\frac{dx}{d\gamma} \) at \(\gamma = 0 \) and use definition of peer effects.
Theoretical Statements

Theorem (Monotonicity of Consumption Equilibrium)

If $a_i = a$, $b_i = b$, and $\gamma_i = \gamma \ \forall \ i \in \mathcal{I}$, then x_i^* is strictly monotonically decreasing in γ independent of the network topology \mathcal{W}.

Proof Sketch.

Take derivative $\frac{dx}{d\gamma} = -\frac{1}{4\gamma(b+\gamma)} K^{-1} F^{-1}(a - p)$ and exploit diagonal dominance of K and F. Show that all elements $(K^{-1} F^{-1})_{ij}$ are positive.

Theorem (Influence of High Consumer)

Let $w_{ij} = \left(\sum_{j \in \mathcal{I}} 1_{w_{ij} > 0} \right)^{-1}$, $b_i = b$, $\gamma_i = \gamma$ and $a_i - p_i = \alpha$ for $\mathcal{N} = \{i \in \mathcal{I} \setminus j\}$. Let j be the “high” consumer. If $a_j - p_j = \bar{\alpha} > n \alpha$, then for each neighbor i of j, x_i^* is initially increasing in γ, whereas x_j^* is strictly monotonically decreasing in γ.

Proof Sketch.

Evaluate $\frac{dx}{d\gamma}$ at $\gamma = 0$ and use definition of peer effects.
Theoretical Statements

Theorem (Monotonicity of Consumption Equilibrium)
If \(a_i = a, \ b_i = b, \) and \(\gamma_i = \gamma \ \forall \ i \in \mathcal{I}, \) then \(x_i^* \) is strictly monotonically decreasing in \(\gamma \) independent of the network topology \(\mathcal{W}. \)

Proof Sketch.
Take derivative \(\frac{dx}{d\gamma} = -\frac{1}{4\gamma(b+\gamma)} K^{-1}F^{-1}(a-p) \) and exploit diagonal dominance of \(K \) and \(F. \) Show that all elements \((K^{-1}F^{-1})_{ij} \) are positive.

Theorem (Influence of High Consumer)
Let \(w_{ij} = \left(\sum_{j \in \mathcal{I}} 1_{w_{ij} > 0} \right)^{-1} \), \(b_i = b, \ \gamma_i = \gamma \) and \(a_i - p_i = \alpha \) for \(\mathcal{N} = \{i \in \mathcal{I} \setminus j\}. \) Let \(j \) be the “high” consumer. If \(a_j - p_j = \bar{\alpha} > n\alpha, \) then for each neighbor \(i \) of \(j, \ x_i^* \) is initially increasing in \(\gamma, \) whereas \(x_j^* \) is strictly monotonically decreasing in \(\gamma. \)

Proof Sketch.
Evaluate \(\frac{dx}{d\gamma} \) at \(\gamma = 0 \) and use definition of peer effects.
Theoretical Statements

Theorem (Monotonicity of Consumption Equilibrium)

If \(a_i = a, \ b_i = b, \) and \(\gamma_i = \gamma \ \forall \ i \in I, \) then \(x_i^* \) is strictly monotonically decreasing in \(\gamma \) independent of the network topology \(W. \)

Proof Sketch.

Take derivative \(\frac{dx}{d\gamma} = -\frac{1}{4\gamma(b+\gamma)}K^{-1}F^{-1}(a - p) \) and exploit diagonal dominance of \(K \) and \(F. \) Show that all elements \((K^{-1}F^{-1})_{ij} \) are positive.

Theorem (Influence of High Consumer)

Let \(w_{ij} = \left(\sum_{j \in I} 1_{w_{ij}>0} \right)^{-1}, \) \(b_i = b, \ \gamma_i = \gamma \) and \(a_i - p_i = \alpha \) for \(N = \{ i \in I \setminus j \}. \) Let \(j \) be the “high” consumer. If \(a_j - p_j = \bar{\alpha} > n\alpha, \) then for each neighbor \(i \) of \(j, \) \(x_i^* \) is initially increasing in \(\gamma, \) whereas \(x_j^* \) is strictly monotonically decreasing in \(\gamma. \)

Proof Sketch.

Evaluate \(\frac{dx}{d\gamma} \) at \(\gamma = 0 \) and use definition of peer effects.
Theoretical Statements (cont’d.)

Theorem (Targeted Peer Effects)

For \(n = 2 \) users, the network effect reduces the sum of their consumptions iff

\[
b_1 \leq \frac{(a_1 - p)(4b_2 + 3\gamma)}{2(a_2 - p)} \quad \text{and} \quad b_2 \leq \frac{(a_2 - p)(4b_1 + 3\gamma)}{2(a_1 - p)}.
\]

This can be generalized to \(n \geq 3 \).

Proof Sketch.

Utility maximizing response of user \(i \) is \(x_i^* = \frac{a_i - p_i + \gamma_i \sum_{j \in I} w_{ij} x_j}{2(b_i + \gamma_i)} \). Result follows.

Theorem (Efficiency)

The consumption equilibrium \(x^* \) is inefficient as the social welfare \(S \) attained is suboptimal. Specifically, \(x_i^* < x_i^o \ \forall \ i \in I \), where \(x^o \) maximizes social welfare:

\[
x^o = \left(C + \frac{B}{2} + \Gamma - \frac{W^\top \Gamma}{2} - \frac{\Gamma W}{2} \right)^{-1} \frac{a}{2}.
\]

Allocating users per-unit subsidies \(s_i = (b_i + \gamma_i)x_i^2/2 \) can restore the social optimum.
Theoretical Statements (cont’d.)

Theorem (Targeted Peer Effects)

For \(n = 2 \) users, the network effect reduces the sum of their consumptions iff

\[
\begin{align*}
b_1 &\leq \frac{(a_1 - p)(4b_2 + 3\gamma)}{2(a_2 - p)} \\
b_2 &\leq \frac{(a_2 - p)(4b_1 + 3\gamma)}{2(a_1 - p)}.
\end{align*}
\]

This can be generalized to \(n \geq 3 \).

Proof Sketch.

Utility maximizing response of user \(i \) is

\[
x_i^* = \frac{a_i - p_i + \gamma_i}{2(b_i + \gamma_i)} \sum_{j \in I} w_{ij} x_j.
\]

Result follows.

Theorem (Efficiency)

The consumption equilibrium \(x^* \) is inefficient as the social welfare \(S \) attained is suboptimal. Specifically, \(x_i^* < x_i^o \) \(\forall i \in I \), where \(x^o \) maximizes social welfare:

\[
x^o = \left(C + \frac{B}{2} + \Gamma - \frac{W^\top \Gamma}{2} - \frac{\Gamma W}{2} \right)^{-1} \frac{a}{2}.
\]

Allocating users per-unit subsidies \(s_i = (b_i + \gamma_i)x_i^2 / 2 \) can restore the social optimum.
Theoretical Statements (cont’d.)

Theorem (Targeted Peer Effects)

For \(n = 2 \) users, the network effect reduces the sum of their consumptions iff

\[
\begin{align*}
 b_1 & \leq \frac{(a_1 - p)(4b_2 + 3\gamma)}{2(a_2 - p)} \\
 \text{and} \quad b_2 & \leq \frac{(a_2 - p)(4b_1 + 3\gamma)}{2(a_1 - p)}.
\end{align*}
\]

This can be generalized to \(n \geq 3 \).

Proof Sketch.

Utility maximizing response of user \(i \) is \(x_i^* = \frac{a_i - p_i + \gamma_i \sum_{j \in I} w_{ij}x_j}{2(b_i + \gamma_i)} \). Result follows.

Theorem (Efficiency)

The consumption equilibrium \(x^* \) is inefficient as the social welfare \(S \) attained is suboptimal. Specifically, \(x_i^* < x_i^o \ \forall \ i \in I \), where \(x^o \) maximizes social welfare:

\[
x^o = \left(C + \frac{B}{2} + \Gamma - \frac{W^\top \Gamma}{2} - \frac{\Gamma W}{2} \right)^{-1} \frac{a}{2}.
\]

Allocating users per-unit subsidies \(s_i = (b_i + \gamma_i)x_i^2 / 2 \) can restore the social optimum.
Network Uncertainty

Unknown Network Structure

- Let $W = W^\top$ and $\Gamma = \gamma I$
- Monopolist only has estimate \tilde{W}, where $\tilde{W} = \tilde{W}^\top$
- Lower bound on expected profit $\tilde{\Pi}^*$ under perfect price discrimination:

$$\frac{\tilde{\Pi}^*}{\Pi^*} \geq \frac{\lambda_{\text{min}}(C + B + 2\Gamma - \Gamma W)}{\lambda_{\text{max}}(C + B + 2\Gamma - \Gamma W) + \gamma \|W - \tilde{W}\|_2}$$

- Simulation for $n = 24$ fully connected users:
Network Uncertainty

Unknown Network Structure
- Let $W = W^T$ and $\Gamma = \gamma I$
- Monopolist only has estimate \tilde{W}, where $\tilde{W} = \tilde{W}^T$
- Lower bound on expected profit $\tilde{\Pi}^*$ under perfect price discrimination:

\[
\frac{\tilde{\Pi}^*}{\Pi^*} \geq \frac{\lambda_{\min}(C + B + 2\Gamma - \Gamma W)}{\lambda_{\max}(C + B + 2\Gamma - \Gamma W) + \gamma \|W - \tilde{W}\|_2}
\]

- Simulation for $n = 24$ fully connected users:

0
0.2
0.4
0.6
0.8
1.0
\|\tilde{W} \square W\|_2
Uncertainty of Interaction Matrix

0.90
0.92
0.94
0.96
0.98
1.00
$\tilde{\Pi}^*/\Pi^*$
Bounds on Monopolist Profit
Profit Ratio
Lower Bound
Network Uncertainty

Unknown Network Structure

- Let $\mathbf{W} = \mathbf{W}^\top$ and $\Gamma = \gamma \mathbf{I}$
- Monopolist only has estimate $\tilde{\mathbf{W}}$, where $\tilde{\mathbf{W}} = \tilde{\mathbf{W}}^\top$
- Lower bound on expected profit $\tilde{\Pi}^*$ under perfect price discrimination:

$$\frac{\tilde{\Pi}^*}{\Pi^*} \geq \frac{\lambda_{\min}(\mathbf{C} + \mathbf{B} + 2\Gamma - \Gamma \mathbf{W})}{\lambda_{\max}(\mathbf{C} + \mathbf{B} + 2\Gamma - \Gamma \mathbf{W}) + \gamma \|\mathbf{W} - \tilde{\mathbf{W}}\|_2}$$

- Simulation for $n = 24$ fully connected users:
User Selection Problem

Profit Maximization with User Selection

- Which users should be exposed to peer effects to maximize profit?
- Assume p is exogenously set (by the Public Utilities Commission)
- Formulate profit-maximizing problem:

$$\text{maximize} \quad \sum_{i=1}^{n} \delta_i x_i - c_i x_i^2$$

subject to

$$x = (B + 2\Delta \Gamma - \Delta \Gamma W)^{-1} (a - p1)$$

$$\sum_{i=1}^{n} \delta_i = m, \quad \delta_i \in \{0, 1\}$$

$$\Delta = \text{diag}(\delta_1, \ldots, \delta_n)$$

- MIQCP cannot be solved analytically
- Use heuristic for targeting: Only expose highest and lowest consumers to effects
User Selection Problem

Profit Maximization with User Selection

Which users should be exposed to peer effects to maximize profit?
Assume p is exogenously set (by the Public Utilities Commission)
Formulate profit-maximizing problem:

\[
\text{maximize} \quad \delta_1, \ldots, \delta_n \sum_{i=1}^{n} px_i - c_i x_i^2 \\
\text{subject to} \quad x = (B + 2\Delta \Gamma - \Delta \Gamma W)^{-1} (a - p1) \\
\sum_{i=1}^{n} \delta_i = m, \quad \delta_i \in \{0, 1\} \\
\Delta = \text{diag}(\delta_1, \ldots, \delta_n) \\
\]

- MIQCP cannot be solved analytically
- Use heuristic for targeting: Only expose highest and lowest consumers to effects
User Selection Problem

Profit Maximization with User Selection

- Which users should be exposed to peer effects to maximize profit?
- Assume \(p \) is exogenously set (by the Public Utilities Commission)
- Formulate profit-maximizing problem:

\[
\text{maximize} \quad \sum_{i=1}^{n} px_i - c_i x_i^2 \\
\text{subject to} \quad x = (B + 2\Delta \Gamma - \Delta \Gamma W)^{-1} (a - p1) \\
\sum_{i=1}^{n} \delta_i = m, \quad \delta_i \in \{0, 1\} \\
\Delta = \text{diag}(\delta_1, \ldots, \delta_n)
\]

- MIQCP cannot be solved analytically
- Use heuristic for targeting: Only expose highest and lowest consumers to effects
User Selection Problem

Profit Maximization with User Selection

- Which users should be exposed to peer effects to maximize profit?
- Assume p is exogenously set (by the Public Utilities Commission)
- Formulate profit-maximizing problem:

$$\begin{align*}
\text{maximize} & \quad \sum_{i=1}^{n} px_i - c_i x_i^2 \\
\text{subject to} & \quad x = \left(B + 2\Delta \Gamma - \Delta \Gamma W \right)^{-1} (a - p1) \\
& \quad \sum_{i=1}^{n} \delta_i = m, \quad \delta_i \in \{0, 1\} \\
& \quad \Delta = \text{diag}(\delta_1, \ldots, \delta_n)
\end{align*}$$

- MIQCP cannot be solved analytically
- Use heuristic for targeting: Only expose highest and lowest consumers to effects
User Selection Problem

Profit Maximization with User Selection

- Which users should be exposed to peer effects to maximize profit?
- Assume \(p \) is exogenously set (by the Public Utilities Commission)
- Formulate profit-maximizing problem:

\[
\begin{align*}
\text{maximize} & \quad \sum_{i=1}^{n} p x_i - c_i x_i^2 \\
\text{subject to} & \quad x = (B + 2\Delta \Gamma - \Delta \Gamma W)^{-1} (a - p \mathbf{1}) \\
& \quad \sum_{i=1}^{n} \delta_i = m, \quad \delta_i \in \{0, 1\} \\
& \quad \Delta = \text{diag}(\delta_1, \ldots, \delta_n)
\end{align*}
\]

- MIQCP cannot be solved analytically
- Use heuristic for targeting: Only expose highest and lowest consumers to effects
User Selection Problem

Profit Maximization with User Selection

- Which users should be exposed to peer effects to maximize profit?
- Assume p is exogenously set (by the Public Utilities Commission)
- Formulate profit-maximizing problem:

$$\text{maximize } \sum_{i=1}^{n} \delta_i p x_i - c_i x_i^2$$

subject to

$$x = (B + 2 \Delta \Gamma - \Delta \Gamma W)^{-1} (a - p 1)$$

$$\sum_{i=1}^{n} \delta_i = m, \quad \delta_i \in \{0,1\}$$

$$\Delta = \text{diag}(\delta_1, \ldots, \delta_n)$$

- MIQCP cannot be solved analytically
- Use heuristic for targeting: Only expose highest and lowest consumers to effects
Conclusion

Summary
- Setup of two-stage game-theoretic model for a network of electricity consumers
- Consumers seek to maximize individual utility function and derive utility from peer comparisons
- Investigated profit-maximizing pricing schemes (subgame-perfect equilibria)
- Heuristic approach for profit maximization problem of utility

Future Work
- Extend setting to sequential problem
- Incorporate fluctuating wholesale electricity prices
- Model peer effects in auction settings (incentive compatibility, ...)

10 / 11
Conclusion

Summary

- Setup of two-stage game-theoretic model for a network of electricity consumers
- Consumers seek to maximize individual utility function and derive utility from peer comparisons
 - Investigated profit-maximizing pricing schemes (subgame-perfect equilibria)
 - Heuristic approach for profit maximization problem of utility

Future Work

- Extend setting to sequential problem
- Incorporate fluctuating wholesale electricity prices
- Model peer effects in auction settings (incentive compatibility, ...)

Conclusion

Summary

- Setup of two-stage game-theoretic model for a network of electricity consumers
- Consumers seek to maximize individual utility function and derive utility from peer comparisons
- Investigated profit-maximizing pricing schemes (subgame-perfect equilibria)
- Heuristic approach for profit maximization problem of utility

Future Work

- Extend setting to sequential problem
- Incorporate fluctuating wholesale electricity prices
- Model peer effects in auction settings (incentive compatibility, ...)

Conclusion

Summary

- Setup of two-stage game-theoretic model for a network of electricity consumers
- Consumers seek to maximize individual utility function and derive utility from peer comparisons
- Investigated profit-maximizing pricing schemes (subgame-perfect equilibria)
- Heuristic approach for profit maximization problem of utility

Future Work

- Extend setting to sequential problem
- Incorporate fluctuating wholesale electricity prices
- Model peer effects in auction settings (incentive compatibility, ...)
Conclusion

Summary
- Setup of two-stage game-theoretic model for a network of electricity consumers
- Consumers seek to maximize individual utility function and derive utility from peer comparisons
- Investigated profit-maximizing pricing schemes (subgame-perfect equilibria)
- Heuristic approach for profit maximization problem of utility

Future Work
- Extend setting to sequential problem
 - Incorporate fluctuating wholesale electricity prices
 - Model peer effects in auction settings (incentive compatibility, ...)

Conclusion

Summary
- Setup of two-stage game-theoretic model for a network of electricity consumers
- Consumers seek to maximize individual utility function and derive utility from peer comparisons
- Investigated profit-maximizing pricing schemes (subgame-perfect equilibria)
- Heuristic approach for profit maximization problem of utility

Future Work
- Extend setting to sequential problem
- Incorporate fluctuating wholesale electricity prices
- Model peer effects in auction settings (incentive compatibility, ...
Conclusion

Summary
- Setup of two-stage game-theoretic model for a network of electricity consumers
- Consumers seek to maximize individual utility function and derive utility from peer comparisons
- Investigated profit-maximizing pricing schemes (subgame-perfect equilibria)
- Heuristic approach for profit maximization problem of utility

Future Work
- Extend setting to sequential problem
- Incorporate fluctuating wholesale electricity prices
- Model peer effects in auction settings (incentive compatibility, ...)

THANK YOU!
QUESTIONS?