IP is the Future of Ubiquitous Sensor Networks

TinyOS USN applications workshop

David E. Culler
University of California, Berkeley
Arch Rock Corp.
The Internet ... that we envisioned
THE Question

If Wireless Sensor Networks represent a future of “billions of information devices embedded in the physical world,”

why don’t they run THE standard internetworking protocol?
The Answer

They should

• Substantially advances the state-of-the-art of both.
• Implementing IP requires tackling the general case, not just a specific operational slice
 – Interoperability with all other potential IP network links
 – Potential to name and route to any IP-enabled device within security domain
 – Robust operation despite external factors
 • Coexistence, interference, errant devices, ...
• While meeting the critical embedded wireless requirements
 – High reliability and adaptability
 – Long lifetime on limited energy
 – Manageability of many devices
 – Within highly constrained resources
IP in TinyOS on Motes is a reality today

* Production implementation on TI msp430/cc2420

- Footprint, power, packet size, & bandwidth

<table>
<thead>
<tr>
<th>Function</th>
<th>ROM</th>
<th>RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2420 Driver</td>
<td>3149</td>
<td>272</td>
</tr>
<tr>
<td>802.15.4 Encryption</td>
<td>1194</td>
<td>101</td>
</tr>
<tr>
<td>Media Access Control</td>
<td>330</td>
<td>9</td>
</tr>
<tr>
<td>Media Management Control</td>
<td>1348</td>
<td>20</td>
</tr>
<tr>
<td>6LoWPAN + IPv6</td>
<td>2550</td>
<td>0</td>
</tr>
<tr>
<td>Checksums</td>
<td>134</td>
<td>0</td>
</tr>
<tr>
<td>SLAAC</td>
<td>216</td>
<td>32</td>
</tr>
<tr>
<td>DHCPv6 Client</td>
<td>212</td>
<td>3</td>
</tr>
<tr>
<td>DHCPv6 Proxy</td>
<td>104</td>
<td>2</td>
</tr>
<tr>
<td>ICMPv6</td>
<td>522</td>
<td>0</td>
</tr>
<tr>
<td>Unicast Forwarder</td>
<td>1158</td>
<td>451</td>
</tr>
<tr>
<td>Multicast Forwarder</td>
<td>352</td>
<td>4</td>
</tr>
<tr>
<td>Message Buffers</td>
<td>0</td>
<td>2048</td>
</tr>
<tr>
<td>Router</td>
<td>2050</td>
<td>106</td>
</tr>
<tr>
<td>UDP</td>
<td>450</td>
<td>6</td>
</tr>
<tr>
<td>TCP</td>
<td>1674</td>
<td>50</td>
</tr>
</tbody>
</table>
A Decade Ago we could not imagine IP would scale to Tiny WSNs

- “Resource constraints may cause us to give up the layered architecture.”
- “Sheer numbers of devices, and their unattended deployment, will preclude reliance on broadcast communication or the configuration currently needed to deploy and operate networked devices.”
- “There are significant robustness and scalability advantages to designing applications using localized algorithms.”
- “Unlike traditional networks, a sensor node may not need an identity (e.g. address).”
- “It is reasonable to assume that sensor networks can be tailored to the application at hand.”
Confluence on three fronts
A Low-Power Standard Link

<table>
<thead>
<tr>
<th></th>
<th>802.15.4</th>
<th>802.15.1</th>
<th>802.15.3</th>
<th>802.11</th>
<th>802.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>WPAN</td>
<td>WPAN</td>
<td>WPAN</td>
<td>WLAN</td>
<td>LAN</td>
</tr>
<tr>
<td>Lifetime (days)</td>
<td>100-1000+</td>
<td>1-7</td>
<td>Powered</td>
<td>0.1-5</td>
<td>Powered</td>
</tr>
<tr>
<td>Net Size</td>
<td>65535</td>
<td>7</td>
<td>243</td>
<td>30</td>
<td>1024</td>
</tr>
<tr>
<td>BW (kbps)</td>
<td>20-250</td>
<td>720</td>
<td>11,000+</td>
<td>11,000+</td>
<td>100,000+</td>
</tr>
<tr>
<td>Range (m)</td>
<td>1-75+</td>
<td>1-10+</td>
<td>10</td>
<td>1-100</td>
<td>185 (wired)</td>
</tr>
<tr>
<td>Goals</td>
<td>Low Power, Large Scale, Low Cost</td>
<td>Cable Replacement</td>
<td>Cable Replacement</td>
<td>Throughput</td>
<td>Throughput</td>
</tr>
</tbody>
</table>

- Low Transmit power, Low SNR, modest BW, Little Frames
Decade of Sensor Network Research - without Architecture

- Application
- Transport
- Network
- Link

Three Key Developments

• Idle listening
 – Radio power: transmit \approx receive \approx just listening
 – All the energy is consumed by listening for a packet to receive
 • $E = P \times \text{Time}$
 \Rightarrow Turn radio on only when there is something to hear

• Reliable routing on Low-Power & Lossy Links
 – Power, Range, Obstructions => multi-hop
 – Always at edge of SNR => loss happens
 \Rightarrow monitoring, retransmission, and local rerouting

• Trickle – don’t flood (tx rate < 1/density, and < info change)
 – Connectivity is determined by physical points of interest, not
 network designer. May have huge number of neighbors, so …
 – never naively respond to a broadcast
 – re-broadcast very very politely
Key IPv6 Contributions

• Large simple address
 – Network ID + Interface ID
 – Plenty of addresses, easy to allocate and manage

• Autoconfiguration and Management
 – ICMPv6

• Integrated bootstrap and discovery
 – Neighbors, routers, DHCP

• Protocol options framework
 – Plan for extensibility

• Simplify for speed
 – MTU discovery with min

• 6-to-4 translation for compatibility
Making sensor nets make sense

LoWPAN – 802.15.4
- 1% of 802.11 power, easier to embed, as easy to use.
- 8-16 bit MCUs with KBs, not MBs.
- Off 99% of the time

Web Services
XML / RPC / REST / SOAP / OSGI
HTTP / FTP / SNMP
TCP / UDP
IP
Ethernet Sonet 802.11
802.15.4, ...
IETF 6lowpan
6LoWPAN adaptation

Diverse Object and Data Models (HTML, XML, …, BacNet, …)

Application (Telnet, FTP, SMTP, SNMP, HTTP)

Transport (UDP/IP, TCP/IP)

Network (IP)

Link

Seria l Modem
ISDN
DSL
GPRS
X3T9.5
FDDI
Sonet

802.3
802.5
802.3a
802.5 Token Ring
802.11
802.11b
802.11g
802.11n
802.15.4 LoWPAN

Ethernet
10bT
100bT
1G bT
13
6LoWPAN Challenges

- Large IP Address & Header => 16 bit short address / 64 bit EUID
- Minimum Transfer Unit => Fragmentation
- Short range & Embedded => Multiple Hops
IPv6 Header Compression

- Link local => derive from 802.15.4 header
- In 802.15.4 header
- Zero

in HC1 byte

uncompressed
Low Impact of 6LoWPAN on Lifetime - Comparison to *Raw* 802.15.4 Frame

Energy Cost of Packet Communication vs. Data Size

- RCV 6LoWPAN Local <= Global
- RCV 6LoWPAN Local <= Local
- RCV Raw 802.15.4
- TX 6LoWPAN Local => Global
- TX 6LoWPAN Local => Local
- TX Raw 802.15.4

* fully compressed header
* additional 16-byte IPv6 address
Complete Embedded IPv6 Stack
Embedded IPv6 in Concept

Structured Decomposition
- Retain strict modularity
- Some key cross-layer visibility

IP Link \Rightarrow Always On
- Retain illusion even when always off

IP Link \Rightarrow “Reliable”
- Retain best-effort reliability over unreliable links

IP Link \Rightarrow Broadcast Domain
- IPv6 can support a semi-broadcast link with few changes
Autoconfiguration
Configuring Large Numbers of Interfaces

Stateless
RFC 4861 + 4862

- L2e: 00-17-3B-00-12-58-28
- L2s: 0x0001
- L3: 2001:abcd::1

DHCPv6
RFC 3315

- L2e: 00-17-3B-00-57-17-58-39
- L2s: 0x0001
- L3: 2001:abcd::23

- L2e: 00-17-3B-00-79-49-66-23
- L2s: 0x0092
- L3: 2001:abcd::23

- L2e: 00-17-3B-00-07-49-66-23
- L2s: 0x0092
- L3: 2001:abcd::92
IP in TinyOS on Motes is a reality today

- Footprint, power, packet size, & bandwidth

<table>
<thead>
<tr>
<th>Module</th>
<th>ROM</th>
<th>RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2420 Driver</td>
<td>3149</td>
<td>272</td>
</tr>
<tr>
<td>802.15.4 Encryption</td>
<td>1194</td>
<td>101</td>
</tr>
<tr>
<td>Media Access Control</td>
<td>330</td>
<td>9</td>
</tr>
<tr>
<td>Media Management Control</td>
<td>1348</td>
<td>20</td>
</tr>
<tr>
<td>6LoWPAN + IPv6</td>
<td>2550</td>
<td>0</td>
</tr>
<tr>
<td>Checksums</td>
<td>134</td>
<td>0</td>
</tr>
<tr>
<td>SLAAC</td>
<td>216</td>
<td>32</td>
</tr>
<tr>
<td>DHCPv6 Client</td>
<td>212</td>
<td>3</td>
</tr>
<tr>
<td>DHCPv6 Proxy</td>
<td>104</td>
<td>2</td>
</tr>
<tr>
<td>ICMPv6</td>
<td>522</td>
<td>0</td>
</tr>
<tr>
<td>Unicast Forwarder</td>
<td>1158</td>
<td>451</td>
</tr>
<tr>
<td>Multicast Forwarder</td>
<td>352</td>
<td>4</td>
</tr>
<tr>
<td>Message Buffers</td>
<td>0</td>
<td>2048</td>
</tr>
<tr>
<td>Router</td>
<td>2050</td>
<td>106</td>
</tr>
<tr>
<td>UDP</td>
<td>450</td>
<td>6</td>
</tr>
<tr>
<td>TCP</td>
<td>1674</td>
<td>50</td>
</tr>
</tbody>
</table>

* Production implementation on TI msp430/cc2420
Low Power, Reliability, Scaling

\[f_{rx} = N f_{ra} + D (f_{rr} + f_{app}) \]
\[f_{txb} = f_{ra} \]
\[f_{txu} = (1 + D) (f_{rr} + f_{app}) \]

Data Rate Sensitivity
- (Router)

Data Rate Sensitivity
- (Edge)

Deployment Duty Cycle

Deployment Reliability
event void Boot.booted() { call Udp.bind(7); }

event void Udp.recvfrom(void *buf, uint16_t len, sockaddr_in6_t *from, link_metadata_t *linkmsg) {
 call Udp.sendto(buf, len, from);
}

call Udp.sendto(buf, len, from);
uint8_t m_buf[BUF_SIZE];
event void Boot.booted() {
 call Tcp.bind(7);
 call Tcp.listen();
}
event bool Tcp.accept(sockaddr_in6_t *to, void **sendbuf,
 uint16_t *sendbuf_size) {
 *sendbuf = m_buf;
 *sendbuf_size = sizeof(m_buf);
 return TRUE;
}
event void Tcp.connected() {}
event uint16_t Tcp.recv(void *buf, uint16_t len) {
 return call Tcp.send(buf, len) == SUCCESS ? len : 0;
}
event void Tcp.acked() {}
event void Tcp.closed() {
 signal Boot.booted();
}
TinyOS and Industry

• TinyOS and the Berkeley Mote has always been an interplay of academia and industry
 – Academic research creates and gives to industry
 – Industry refines and gives back
• BSD license permits commercialization
 – It is not GPL
 – Preserve copyright, but take to market
• Companies give back in many forms
 – Sell products compatible with open reference
 – Hopefully, hardened and improved
Wireless Embedded Internet
- Starting Points

• http://www.eecs.berkeley.edu/~culler/WEI
 – Complete set of lectures, labs, and materials (in progress)

• http://support.archrock.com/toski
 – Evaluation version of IPv6 TinyOS Binary Kernel
 – Epic and Telosb platforms

• http://support/archrock.com/ASD
 – Arch Rock IP/6LoWPAN Software Distribution (ASD) - Atmel RZ Raven
 • Atmega + RF231
 – C kernel with a TinyOS Core
Generation 4 - EPIC

- http://www.eecs.berkeley.edu/~prabal/projects/epic/
- Prototype => Pilot => Production
Epic Family

USB+Power Storage Solar + External Sensor

ARCHRock
Epic Interface Board

- Epic core
- Trim Pot
- Power pins
- IO pins
- LEDs
- 2 binaryInputs
- 2 binaryOutputs
- 4 analog Inputs
- external voltage sel.
- Convert switch to digital value
- signal conversion
- USB
- 5v TTL reg
- Li Ion battery
- Alkaline battery
- user button
- reset button
- Alkaline battery
- USB
- Epic USB

ArchRock
Application Solutions

Electric Monitoring and Control

Outdoor Microclimate Monitoring
TinyOS.net - The Open Source

• TinyOS 2.0.2 is released
• TinyOS 2.1 will be a Safe Language
 – Compiler checks ALL pointer and Array references for Safety
 – Technology Path: UCB => MS => Utah => TinyOS Community
• Take & Give Back
 => Contribute Code to the Community
The Next Phase

• TinyOS was invented as a framework for defining key abstractions for intelligent wireless devices embedded in the physical world.
 – Allow the right abstractions to emerge from experience
 – Hardened abstractions, platforms, community => Safety

• Advance on three fronts makes the Internet Architecture viable for this class of devices
 – Structures the problem into manageable pieces
 – Permits greater impact of high quality solutions

• New set of questions within this framework
 – LP MAC really, OS API, Cross layer visibility
 – In-network processing as overlays

• The “IP/USN” is here … today
The IP/USN

LoWPAN-Extended IP Network

IP Network (powered)

IP/LoWPAN Router

IP/LoWPAN Sensor Router

IP Device