Secure Language-Based Adaptive Service Platform (SLAP) for Large-Scale Embedded Sensor Networks

BAA 01-06 Networked Embedded Software Technology

Technical Topic Area: Open Experimental Platforms

David Culler

Eric Brewer

David Wagner

Computer Science Division

EECS

University of California, Berkeley

Section II. Detailed Proposal Information

A. Innovative claims for the proposed research.

Traditional networking and scheduling abstractions do not serve the needs of embedded network algorithm designers and experimenters, because they hide key information, do not scale to many small devices, introduce too much internal complexity, and encourage a call/response mindset. Operation is concurrency intensive over short bursts with long interval of passive vigilance. The law of large numbers and reactive execution must be harnessed to simplify development of such complex, heavily constrained systems

We will develop a platform that facilitates prototyping and evaluation of algorithms by providing the inherent execution building blocks for NE systems. It will: 1) scale down to extremely small devices, 2) scale up to extremely large numbers, 3) operate at extremely low power while remaining vigilant to potential stimuli, 4) provide efficient modularity, and 5) lay a foundation for secure operation. We will develop a simulation, debugging and visualization environment to explore the NE space efficiently.

A state-machine concurrency model, rather than threads, supports vast concurrency and reacts quickly to many potential events, but requires little idle-state storage and cycles. This approach explicitly represents "all execution paths" and provides a natural framework for adaptation and error management. It is amenable to automatic analysis, monitoring, testing, and optimization. An interface description language and visualization tools address the difficulties of FSM programming.

A tiny power-driven, communication-centric node OS represents the application as a graph of components with explicit command and event interfaces plus a scheduler. Components provide the key building blocks and crisp interface for reuse and interposition, while allowing the specific component abstractions to evolve through algorithm and application feedback over the course of the program. The language-based approach is essential for optimization.

A series of device test-beds with many low-cost networked sensors and a hierarchical infrastructure will be provided to program teams to give hands-on experience with numerous, low-power devices, reacting to physical stimuli. Initial version available in month 6, second version in month 20. Sophisticated algorithms can be described succinctly in our framework. Key challenge is understanding what occurs in constrained, highly reactive environments. Test-bed will include an internal logging facility, 'synchronization channel', and a trace collection facility; we combine these with debugging and visualization tools.

A large-scale 'adversarial simulator' will be developed that not only allows algorithms to be exercised in controlled scenarios that are richer than is practical for physical testbeds, but also will search for scenarios that exhibit "bad behavior", such as security flaws, deadlocks, overflows, and oscillation. The representation of the actual code, not just the logic, as a graph of FSMs is essential for this analysis.

Visualization and debugging tools will be developed to develop designer's intuition on algorithm behavior. The key innovations here are the support for FSMs, large numbers of nodes, and event tracing across devices.

Higher-level language tools will be developed for programming the sensor network at the macroscopic level, with the local rules being compiled from the higher-level description. We develop an approach to macrocomputing the collection based techniques from parallel computing and statistics.

A. Proposal Roadmap

Main goal of the work is to develop a platform for NEST research that will accelerate the development of algorithms, services, and their composition into applications dramatically. The vast majority of the platform is software; small, networked sensor nodes are developed to ground algorithmic work in the reality of working with numerous, highly constrained devices.

The main elements of the proposed approach are a comprehensive platform consisting of :

· The hardware required for low-cost large-scale experimentation, (p5)

· The nodal OS that supports not just applications, but debugging, visualization, communication, low-power consumption, and remote monitoring and control (p6-7)

· The infrastructure services for time synchronization, storage, computing and even large-scale simulations, (p12, 14, 20)

· A powerful simulation environment that can effectively explore adversarial situations and worst-case environments, (p21)

· A debugging and visualization environment specifically geared toward large numbers of interacting nodes, and support event-centric development (p 15,19)

· Mechanisms for composition of finite-state machines that enable modular design, and

· A macrocomputing language that simplifies programming whole collection of nodes. (p 17)

This platform will benefit the NEST community by allowing algorithmic work to move from theory to practice at a very early stage, without each group developing extensive infrastructure. Combined with these algorithmic elements, the platform will permit demonstration of smart structures and advance control. The framework of efficient modularity it provides will accelerate reuse and sharing of common elements. The integrated use of testbeds and simulation environment will allow algorithms to be deeply tested. The execution elements of the platform implicitly define the cost metrics for algorithmic analysis; which differ significantly from traditional distributed computing. The programming model defines mechanisms for adapting to changing environments.

Critical barriers are scale, concurrency, complexity, and uncertainty. The nodal system must be of small physical scale, operate under constrained power and bandwidth, support intensive concurrency, and extremely passive vigilance. Thread-based models perform poorly in this regime, so a FSM based approach is developed. Algorithms must utilize massive numbers, rather than device power. A fundamental challenge is to understand what an algorithm is doing in a reactive, diffuse network once deployed. Testbed instrumentation and large-scale simulation attack the understanding issue directly, even searching for Murphy's Law failures. Many of the techniques used here have proven essential in scalable Internet services.

The platform will be evaluated by its effectiveness in accelerating the development of NEST algorithms and applications and its adoption.

The annual cost is $695,651, $714,875, $665,026 in years 1,2, and 3 respectively for the main research, with an option of $199,242, and $201,212 in years 1 and 2 to more broadly disseminate the platform.

B. Technical rationale

1. Introduction

This proposal is about a platform for NEST research in the fullest sense of the word. We believe that by developing a holistic view of the platform all of the individual contribution become stronger and we accelerate NEST research dramatically. The scope of this platform thus includes:

The hardware required for low-cost large-scale experimentation,

The nodal OS that supports not just applications, but debugging, visualization, communication, low-power consumption, and remote monitoring and control

The infrastructure services for time synchronization, storage, computing and even large-scale simulations,

A powerful simulation environment that can effectively explore adversarial situations and worst-case environments,

A debugging and visualization environment specifically geared toward large numbers of interacting nodes, and support event-centric development

Mechanisms for composition of finite-state machines that enable modular design, and

A macrocomputing language that simplifies programming a whole collection of nodes.

There are several principles that we follow throughout the proposal. The most general one is that we aim to exploit the law of large numbers: we focus on systems in which we cannot depend on all nodes working correctly and therefore must to look to aggregate behaviors only. We view this project as opening up the traditional layers of abstraction so that they can be redefined to meet the unique characteristics of deeply embedded networks of sensors; for example, we modify the traditional approaches to concurrency, debugging, synchronization, and modularity to better fit the NEST model. We also focus on language-based technologies to enable optimization, enforce overall properties (such as robustness and security), and simplify the programming of large collections. Finally, we aim to focus on the worst-case adversarial behaviors not just the normal case or even random behaviors.

We focus on four aspects of the platform: the nodes, the infrastructure, large-scale adversarial simulation, and the development environment.

2. Networked Embedded Nodes

Experience shows that it is extremely difficult to escape from the PC/Workstation mindset, where each node has a rich operating system environment and user interface, I/O devices are complex and separated from the application by kernel drivers, and networking is provided as a complete TCP/IP stack. Even such strongly application-driven designs as the UCLA WINS node, end up with cubic-foot scale implementations supporting WINCE. Similarly, most Active Network routers gravitate toward a Pentium III running Linux or equivalent, even though the intended usage is highly specific
. These powerful environments do little to reorient algorithm designers and application builders toward the real issues associated with very large numbers of potentially very limited devices. The hands-on experience with the actual challenges presented by such devices is a powerful driver of intuition. Moreover, the inherent simplicity of small-networked sensors and actuators is obfuscated when a full-blow traditional operating environment in carried along.

The node system architecture provides the substrate upon which the application logic and the networking capabilities are ultimately carried out. It must be extremely energy efficient, especially in the low duty-cycle vigilance mode, and it must be extremely facile under the burst of events. It must meet hard real-time constraints, such as sampling the radio signal within bit windows, while handling asynchronous sensor events and supporting localized data processing algorithms. It must be robust and re-programmable in the field.

2.1 Node Hardware and Test-bed

To ground the algorithm and application efforts in the unique NEST mindset early in program, we propose to provide a sequence of platforms starting from quite small and adding power as more components of the program are composed.

The Phase 0 platform would be available within six months of program start. It is based on a prototype developed through work on SENSIT and Ubiquitous Computing, but redesigned to provide a flexible platform for a range of studies and applications. (See Appendix Figure 1.) The core building block is a 1-inch x 1.5-inch "motherboard" comprising a low-power microcontroller (ATMEL 8535), low-power 900 MHz radio (RFM TR1000), non-volatile memory, status display, network programming support, and vertical expansion bus connector. The microcontroller contains FLASH program and SRAM data storage, AD/DA, and external I/O (standard I^2c and SPI, and direct ports). A second small microcontroller is present to allow the node to reprogram itself from network data. The sensors and actuators on the motherboard are associated with its own operation: battery voltage sensor, radio signal strength sensing and control, and LED display. The microcontroller external interface is exposed in a standardized form on the expansion connector, providing analog, digital, direct I/O, and serial bus interconnections. Sensor packs for the specific applications, including termistors, photo detectors, accelerometers, magnetometers, humidity, and pressure, or actuator connections are 'stacked' like tiny PC104 boards. The assembly stack drops into a programming harness, which also serves as a serial port gateway, so a simple laptop becomes a lab bench. An alternative harness provides logic analyzer connectors for more detailed measurements.

We have manufactured roughly 50 of these prototype devices, shared them with other research groups (UCLA, UIUC, Intel), and have transferred the design to two companies for larger scale production. Thus, we can jumpstart the NEST activity by providing testbeds to the algorithm and application teams very early in the program. Each kit would contain about one hundred battery-powered cubic-inch RF nodes, of which five to ten would be connected to PC104-based gateways. The gateways would have larger power sources and 802-11b wireless Ethernet, providing connectivity to traditional networked environments and servers. The cubic inch nodes cost about $125 and the gateways about $1500, so the entire kit will be about 25K$. These nodes would have a TinyOS version 1 run-time system, described below; provide a complete programming environment for development of distributed algorithms and protocols.

Our experience has been that sophisticated algorithms and applications can be developed on these tiny nodes, but a fundamentally distributed approach must be adopted. For example, our ad hoc multi-hop routing algorithm occupies ~300 bytes of code and is written in a page, given the underlying TinyOS components, but it maintains information only about a fixed number of upstream neighbors and a fixed number of recent messages in each node, rather than any maps proportional to the size of the network[MANET]. We plan to hold a programming workshop to bring other teams up to speed and transfer the technology during year 1. Once they become familiar with the event-driven software environment and practiced at utilizing tiny nodes, we expect that sensor / actuator boards would be developed for their specific applications.

We intend to incorporate design feedback from the coordination, synthesis, and composition groups for 6-9 months in developing the second "phase 1" platform. This corresponds also to when Bluetooth-generation and other pico radios will have matured to where they can be incorporated into small, low-power devices (rather than PCMCIA cards). This is also when we expect a new wave of mems-based micro-sensors to become available, complementing the current suite of termistors, accelerometers, magnetometers, photo detectors, humidity, and pressure sensors. Within NEST, it will be when individual algorithms are becoming mature and are being composed into larger applications. The Phase-1 hardware platform is focused on providing sufficient power to compose multiple coordination and synthesis algorithms, and it begins to develop an I/O controller hierarchy that reflects the primary I/O devices being sensors, actuators, and networks, rather than complex mechanical devices and human interfaces. It will have a more powerful processor, greater storage and radio. It is essentially based on a Bluetooth module with the upper levels of the stack eliminated. The processor is equivalent to an ARMTHUMB. It includes greater parallelism so that small logic blocks can be devoted to passive vigilance - detecting when action needs to take place on behalf of the device. It also provides better real-time characteristics. (We intend also to investigate how to shrink the phase0 class device to obtain cubic centimeter devices in the thousands, but anticipate that such devices would need to be mass-produced to be cost effective.) A second major workshop would be held 20 months into the program to transfer the phase-1 platform and programming environments to the other teams.

The final Phase-2 design would incorporate a more exotic ultra-low-power microcontroller with emerging MEMS sensors. We plan explore the architectural trade-offs through modeling and simulation and to produce a few to demonstrate the potential. The Phase 1 platform will be the primary vehicle for demonstrations in other parts of the program.

2.2 Nodal communication-centric, power-driven OS structure

To make the networked embedded node an effective vehicle for developing algorithms and a rich set of applications, we will produce a modular, structured runtime environment providing the scheduling, device interface, en/decryption, networking, and resource management primitives upon which the NEST programming environments rest. Our approach recognizes that network sensors and actuators have a bimodal behavior, limited device controller hierarchies, and serious real-time requirements. The active mode occurs at critical times when important events happen in the external world, so device operation is extremely concurrency intensive. Several concurrent flows of data stream from sensors and network out to the network and to controllers. Moreover, microsensor devices and low-power networks operate bit-by-bit, or in a few cases byte-by-byte, so a much of the low-level processing of these flows and events must be performed in software. Often, operations must be performed within narrow jitter windows, e.g., sampling the RF signal. The traditional approach to controller design has been to hand-code scheduling loops to service the collection of concurrent flow events, but this yields brittle, single-use firmware that has poor adaptability. A more general-purpose solution is to provide very fine-grain multithreading. While this approach has been studied extensively for general-purpose computation, it can be attacked even more effectively in the NEST regime, because the execution threads that must be interleaved are very simple.

The vast majority of the time is spent in an extremely passive mode, being sensitive to a variety of potential stimuli. In realistic application scenarios, the active bursts are rare and almost all the time is spent “observing”. Although little happens in this mode, it consumes the majority of the power checking whether anything important has occurred - has a sensor tripped a threshold, is a packet incoming? It is not enough to put the processor and peripherals into standby mode; they must be shut down deeply and woken up cheaply. The power management is an essential aspect of every component.

Our starting point is the TinyOS event-driven system we have recently developed on low-power microcontrollers[Hill-etal00]. Under TinyOS, a "node system" is described by a graph of components that are interconnected through narrow command and event interfaces, plus a scheduler. Components have internal state and fine-grain tasks, providing internal concurrency. The logic of the component uses only its local names for the commands and events at its interface. A description file specifies the interconnection of these interfaces. Thus, a component can be interposed between two components, without changing the internals of either one.

The lowest level components abstract the node hardware. Higher-level components create more powerful abstractions using lower components. Consider a component structure for a complete application that maintains a multihop ad hoc routing structure from embedded nodes to base-stations and forwards sensor data from the embedded nodes. (See Appendix Figure 2) The radio stack is structured as a series of data pumps. The bit-level radio component accepts bytes and spools them bit-by-bit to the transceiver as bit-timer events occur. Similarly, as data arrives it builds bytes and signals their arrival to an upper component. The interface is non-blocking, as the upper component requests the initiation of a sequence of bytes and completes its work. It will be signaled to provide or consume additional data bytes as bits are spooled out to the network. A similar data pump occurs byte-by-byte as packets are streamed to and from the network. One virtue of the command and event interface structure is that components can easily be pushed across the hardware/software boundary. For example, the interface to the UART hardware component is identical to the radio software byte-level component. The logic of the radio byte component could be pushed into hardware.
 Processing a command involves lower level commands, which may propagate across several components. More unusual, is that events naturally propagate across levels. Each level handles the event by performing internal processing and potentially signals an event. A bit event may be the end of a byte, which may be the end of a packet, and so on. The key is that events complete in a bounded amount of time, as determined by the jitter tolerance of the other potential real time operations. Where processing time is large or uncertain, the component must break the event chain by saving state as needed and scheduling a task to complete the processing, which may be preempted for events. For example, upon end of packet, the packet level posts a task to perform a CRC check, which may take several bit times. If the packet checks, the task may signal a message arrival event.

An essential kind of component is a dispatcher, which routes events to several components. One example is the Active Message component, which dispatches incoming message events to appropriate application components based on message identifiers. Another is the ADC component which servers several analog sensors.

Observe that while providing reusable components, this design does not dictate what abstractions are used. The interfaces remain open. This flexibility has been shown to be essential in the mobile wireless arena, where traditional Ethernet abstractions hide all aspects of signal strength and error processing from higher levels, preventing applications from using these factors in location determination[Bahl].
 Similarly, the logic of a component layer may vary dramatically among applications. For example, we have three distinct packet layers utilizing different encoding strategies while maintaining the DC balance required by the radio, including a novel DC balanced secded code. The component graph may be highly application specific. It is straightforward to build an ad hoc routing layer that hides packet forwarding from the application components on the node. However, these forwarding operations carry valuable information about the identity of nodes in the communication neighborhood. Aggregation operations would necessarily require integrating the forwarding aspects with local data collection. The TinyOS framework establishes the rules for constructing components that can be reused and can support extensive concurrency on limited processing resources. We anticipate that as experience is gained by teams building applications on this platform, appropriate layers of abstraction will emerge. Not only are traditional protocols too heavy weight, the layering which has served so effectively in the Internet stands in the way, and the communication patterns are very different[Int00].

The modularity associated with the strong interfaces between components greatly enhances the robustness of the platform, but it also presents a performance problem. This is another area where language tools play an essential role. Because the graph of component interactions is manifest, analysis and optimization can be performed across component boundaries. For the initial OS release, components are written in stylized C with a component composition language akin to structural VHDL. A cleaner linguistic structure will be developed in the later versions.

2.3 Nodal Communication model

A foundational question for the NEST program is how should deeply embedded, diffuse sensor networks be programmed? This problem shares aspects with many traditional disciplines, but has unique requirements. It is a form of parallel programming. Ultimately code must be generated for each node that orchestrates operations and passes messages. The problem is also one of distributed computing, where we must deal with quite frequent errors and failures, as well with routing and scheduling. However, networked embedded devices operate largely as aggregates, where information moves from regions of the network to other regions or to other tiers according to some higher-level transformation, rather than point-to-point streams and file transfers between named devices. At the same time, these systems have real-time system requirements because of their coupling to physical processes. . These three aspects must come together in a per-node programming paradigm that realizes higher-level tasks in terms of localized algorithms.

The basic nodal communication primitives will ultimately shape the cost metrics used in algorithmic analysis. Our experience in developing algorithms for diffuse sensor networks has shown that the algorithmic primitives are quite different from those in traditional parallel and distributed computing, where we think about complex processing and transferring point-to-point messages between arbitrary points or along specific topological structures. Here, processing takes the form of simple data acquisition, state transitions, and limited computation. The fundamental transmission operation is a form of unreliable multicast to a group of nodes determined on an ad hoc basis by physical properties. Cells are essentially amorphous, as the physical propagation effects are subtle and unpredictable. Routing is accomplished via multihop retransmission. Each retransmission causes information flow back partially into its source cell and to others. So the natural tendency is for each message to grow into a complete flood. Thus, the algorithmic structure is not actually about routing, but pruning, i.e., filtering out potential retransmissions in order to focus how information is propagated through the network. For example, dynamic maintenance of ad hoc routes to base stations can be accomplished by the following simple algorithm. When a route beacon arrives from a node that is closer to a base-station (determined by a field in the message) record the source as a routing direction and retransmits the beacon as from yourself after incrementing the routing distance. Otherwise, ignore the beacon. Periodically, base-stations emit beacons. Node occasionally increases their distance to the base-station to phase out old routing assumptions. Although the actual cell structure may be changing and unpredictable, it is easy to show that this algorithm builds a breadth-first routing forest in a completely decentralized manner. Each node hears beacons from peers and children but filters their retransmission by a simple distance-check rule and maintains routing links to parents. To route messages out of the sensor network, each hop may simply specify a parent to squelch retransmission in all but one (or a limited number) of nodes. Alternatively, route distance information can be carried in the data message and parents nodes can probabilistically squelch retransmissions. Observe that routing beacons are not strictly necessary, since the routing of data messages is sufficient to reinforce the routing. It is clear that a rich algorithmic space is presented in terms of simple retransmission/squelch rules in the uncertain, changing, fault-prone context of low-power radio networks.

Thus, the fundamental elements of the nodal communications model are (1) local multicast transmission, (2) event driven reception, (3) pruning, (4) aggregation and (5) buffer management.

Transmission is supported by a stack of components that map from application-level message transfer to bit-level hardware operations in a non-blocking, bounded storage manner. At each level, the transmit command is a request to initiate transfer. It may be refused if the component is "full". No level, below the top need provide storage for the entire message. An event will be signaled to indicate readiness for the next transfer unit. Thus, a stack of bounded storage, event-driven data pumps, accomplishes transmission. Components in the stack provide framing and link-level encode/decode in an application and device specific manner as well as media access. The MAC operates in recognition of the bimodal behavior using cheap optimistic techniques in the dominant low duty cycle mode and an adaptive scheme upon burst onset. We have demonstrated that a simple CSMA scheme with scaled back-off and phase randomization provides high channel utilization in dense local regions with periodic data transfers. The multihop nature of deep networks implies that not only is there hidden-node situation between every other level, but that loss rate increases rapidly with distance. Experience with local fairness rules, balancing retransmission rate with transmission rate is very encouraging.

Reception follows closely the Active Message[Tve92] paradigm, rather than traditional MPI or sockets, because it is efficient and integrates naturally with event driven execution. In bound traffic follows a data pump structure, so only the higher levels need provide packet buffering. A generic dispatch component delivers message reception events to components, providing storage for the lifetime of the handler. In general, the component decomposes the packet and incorporates it into its local state or modifies the packet in place and retransmits it. Interesting questions are how the active message registry is maintained across vast numbers of dynamically adapting nodes and how to perform authentication and confidentiality cheaply.

Pruning, filtering, and aggregation are built up within the application components using a small set of local data structures: destination filters, message hash tables, and neighborhood registry. Rather than build a particular set of rules, such as directed diffusion or distributed tuple-space into the platform, it provides a set of primitives from which these and other algorithms can be constructed.

2.4 Resilient Aggregators

One key issue is aggregation in the face of noisy operation - faulty sensor nodes, intermittent communication, and security attacks. Some properties of the aggregate cannot be computed reliably in the presence of a few faulty sensors. For instance, if we wish to find the maximum of all the temperature measurements, a single faulty sensor can throw off the result by an arbitrarily large amount, even if all other sensors are trustworthy. Thus, the "maximum" function is incompatible with robust aggregation.

However, the situation becomes much more favorable if we can discard the top 10% of temperature readings and take the maximum of the remainder. With this modification the computation becomes resilient to malicious sensors (as long as 90% of the sensors are trustworthy).

Thus, we may treat the aggregation problem in a very general setting as follows: Each sensor produces a measurement x_i, and we want to compute a function f(x_1,x_2,...,x_n) on this raw data. Some functions are inherently resilient to changes in a small fraction of their inputs, in the sense that the error is bounded if the number of fraudulent inputs is bounded. For instance, the median of the raw data cannot be affected very much if only a small fraction of sensors are malicious. The average also has a similar (but weaker) property, if the space of possible measurement values is finite and bounded. Resilience is an inherent property of the function under consideration, and the presence or absence of this property is independent of how we implement the function.

Resilient functions allow graceful degradation in the presence of faulty nodes. This suggests a general principle: We should seek to ensure that our algorithms only compute using resilient functions. Of course, algorithms must satisfy this property not just on their output, but also on all intermediate values calculated during execution (or, on the majority of intermediate values, if the output is calculated as a resilient function of the intermediate values). Our platform will facilitate developing this class of algorithms to study how to ensure that this principle is satisfied.

Random sampling is one promising technique for implementing aggregation functions. If we poll a small random subset of the sensors, we can obtain a representative sample of the sensor data, and unless we are very unlucky the fraction of untrustworthy measurements in our sample will be not much larger than the fraction of compromised sensors in the network at large. The advantage of random polling is that we have greatly reduced the amount of raw data, so the task of computing the function should become much more manageable.

For instance, suppose we want to compute the average of the measurements. We may estimate this value by choosing k measurements uniformly at random and averaging this sub-sample. It is a simple mathematical fact that this gives an unbiased estimator of the average, and the quality of the approximation may be made as good as desired by increasing k. (To halve the approximation error, one should quadruple k.) This approach works because the average is a resilient function of its inputs.

Random sampling may be applied recursively: we may randomly select a small number of "leaders" from the network to each coordinate a sub-computation (perhaps using random sampling to implement the sub-computation, or perhaps randomly choosing sub-leaders to implement a sub-sub-computation); afterwards, we compare the results to detect attacks. This is secure as long as not too many nodes are compromised.

2.5 Security Implications

Resilient aggregation also provides a way to attack thorny security aspects of the networked embedded devices, especially secure aggregation. Sensor networks can be expected to generate an enormous amount of data, and it will be necessary to aggregate and summarize the raw data. One of the most interesting things you can do with sensor data is combine it with other sensor data.

The problem is to do this securely in a setting where some fraction of sensors may be compromised. Why this is the right threat model? A compromised sensor can provide malicious inputs to the aggregation process, which is dangerous. There are ways to increase the cost of compromising a sensor, but with so many sensors deployed, the adversary is in a target-right environment and is in a position to bring all of his resources to bear on compromising a single device. Thus, it is unrealistic to hope that all sensors will remain trustworthy forever: although the adversary may not be able to compromise all of our sensors, it will be impossible to avoid the possibility that the adversary may find some way to take control of a few of our network devices. Thus, wherever possible, sensor networks should be designed to remain secure even when a small fraction of the sensors behave maliciously. In effect, security attacks should be merely another source of noise that is addressed at the algorithmic level.

Some natural techniques for implementing aggregation surely cannot provide the level of security we require. For instance, with a single central machine to aggregate and summarize all the raw data, we will have introduced a single point of failure. Compromise of a central aggregator has catastrophic consequences: the results of the computation could be completely controlled by the adversary. Thus, a key challenge will be to find techniques for distributed implementation of aggregation functions that ensure graceful degradation in the presence of compromised or untrustworthy network devices.

Random sampling composes well with replication. If we want to build a secure distributed database on top of a sensor network, we could replicate each (key, value) pair and store copies of it at several randomly-chosen replicas. Unless we are very unlucky, most of those devices will be trustworthy, and so readers should be able to use a simple voting algorithm to detect malicious modifications to the database. Moreover, if we use the simple heuristic of choosing the set of replica sites as a cryptographic hash function of the key, readers will know which nodes to query. This heuristic is somewhat naive, but we believe it helps illustrate the power of randomization and replication. It is a goal of this research to find better techniques for building secure distributed databases.

Repeating a randomized computation helps build confidence in the correctness of its result. However, note that the buck must stop somewhere. The original selection of a random sample must be performed by a trusted entity, because if the adversary can choose who is to be included in the random sample, the adversary will be able to choose only from the set of compromised sensors. Randomness must be truly random.

These principles are powerful, and we suspect they may provide some of the critical tools needed to implement secure aggregation for the aggregation functions that occur in practice. One of our research goals will be to study how to implement securely various aggregation functions of practical interest, using techniques such as random sampling, replication, and resilience.

2.6 Application specific virtual machine

A key aspect of the platform is robust, in situ programmability. This is a somewhat extreme form of active networking. Each node has several components to support its specific devices; moreover, different component stacks are used for different application requirements. For example, a range of options for error handling in packet processing exists with different transmission and processing overheads. Many different ad hoc routing algorithms are possible. The system must be structured so that a base level of operation, communication, and reprogram ability is provided, and an ailing node must eventually return to this base. Component graphs can be built up on top of this, including very low-level hardware support, middleware, and application components.

A particularly attractive approach is to include an application-specific virtual machine as one such component. This allows very high information density and rapid retasking among a family of modes of operation within a neighborhood defined by the virtual machine interpreter. It is likely that a high level query will consist of propagating nodlets into regions of the embedded that collectively perform the specific query or event detection.

3. Infrastructure Support

An important principle of this work is that nodes are not designed in isolation: the nodes and infrastructure must be designed together. We leverage the infrastructure for hard problems, in essence moving them from the nodes, where we have severe limits, to the infrastructure, where can exploit far more resources. The infrastructure includes both the communication among the nodes, and the services within the network that the nodes may exploit (with intermittent connectivity).

Distributed, wide-area state management is hard, especially when many of the computing elements are unreliable and computationally limited. To address this, we will rely on a hierarchically structured infrastructure to provide several advanced tiers of service.

In our architecture, computing elements are partitioned into tiers to facilitate state management and consistency while surviving failures. The lowest units are the numerous, heterogeneous sensors and actuators that we wish to support. Units are limited but extend their power through supporting infrastructure: they can be lost or broken, which implies that any persistent storage, availability, or similar services should be provided by the infrastructure. The scalable service platform is engineered to provide deep processing power, persistent storage, high availability and scalability. Base-station proxies interposed between units and servers provide functional transformation and adaptation, soft state, and additional support for mobility and disconnected operation. Data flows on a path from the server to proxy to unit (when notifying units of events in the infrastructure) and back in the reverse direction (when aggregating and computing on sensor data).

Note that we make a clear distinction between hard, persistent state and soft state: hard state is stored at carefully controlled infrastructure elements; thereby limiting the complexity of dealing with distributed state consistency in general. All other state at the units and proxies is soft and therefore can be regenerated or recovered in case of loss.

This partition provides a natural mechanism for supporting disconnected operation: each unit may be associated with home servers, which provides both a highly available surrogate for the unit while it is disconnected and a stable entity that can assist with consistency management for data shared across units. Since we expect that battery power will be one of the most precious resources on our units, this provides a convenient way to enable units to safely remain in standby mode most of the time without missing important events (since the infrastructure will queue them for us while we are disconnected). The architecture also allows us to readily support remote programming and debugging by pushing code into the appropriate network elements.

4. Development Environment

Traditional development tools focus on thread-based concurrency and single-node systems, neither of which is appropriate for NEST systems. We will provide novel technologies for both of these new challenges.

To address the issues of developing for concurrency without threads (for reasons discussed below), we will provide support for programming nodes as collections of finite-state machines (FSMs). Although widely used for low-level hardware systems, FSMs have not been widely used for higher-level systems, in part to do their relatively complex programming model. However, we believe they match well the essentially event-driven model of NEST nodes and collections.

To address the issue of vast numbers of nodes, we provide two related pieces, macrocomputing, which we define to be the programming of collections in which we care about the aggregate properties (analogous to macroeconomics), and support for visualization and debugging of collections.

4.1 Event-driven Concurrency Support

The traditional means of dealing with concurrency is the use of threads or processes. This approach works well for its intended purpose, which is the multiplexing of the resources on one node among a small number of tasks in the presence of long-delay I/O operations. In the context of NEST, the goals of concurrency are different and require a different mechanism. Threads have four problems in the NEST context, which we address by switching to the finite-state machine model.

First, threads are relatively heavyweight, both in terms of memory usage and context switching time. FSMs manage state explicitly and thus are better able to retain only the live state at any given time (unlike a stack frame). Context switches become procedure calls in the FSM model and thus are an order of magnitude cheaper.

Second, threads are awkward for dealing with the environment reactively, which is the primary point of NEST nodes. Typically, a thread must poll the environment to detect changes; it wastes both memory and CPU while polling. Even if we moved to an interrupt-driven model, we still need to keep a blocked thread around waiting for the event. In contrast, FSMs have two advantages: 1) they are always waiting for events and thus fit very naturally in the NEST context, and 2) they can consume tiny amounts of resources when idle. We have already used this approach successfully for our ad-hoc routing protocol and for the underlying radio protocols.

Third, threads can make real-time reaction a challenge, since both polling and blocking deeply depend on the scheduler to ensure fast reaction times. FSMs do not completely solve this problem in that there must still be scheduling decisions made, but they simplify it by enabling very fast switches and by being fundamentally event-driven rather than scheduler driven.

Finally, threads as a programming model tend to be error prone in the exceptional cases, which is a flaw for both robustness and security. The essential problem is that threads encourage the programmer to think only about the normal-case control flow, which is just call-return. This is because threads always return to the caller and the result is the normal-case return value. Exceptions were created to address this problem, but they are not well supported and they don't really encourage thinking about the exceptional cases, but merely provide a solution path once an exceptional case is found. FSMs do not differentiate the "normal" path and explicitly represent all paths, both of which help the programmer think about all of the cases and thus reduce the chance of bugs that affect security and reliability.

FSMs also have some disadvantages that we need to overcome. The big issue is that they are considered harder to program than threads. This is in part because they force the programmer to be explicit about exceptional cases, but there are other reasons as well. Encoding of FSMs in a procedure language (with call-return flow-control) leads to "spaghetti" code with lots of "goto" statements; this code is hard to understand and maintain.

Object oriented languages are somewhat better in that an object already support multiple entry points and thus we can map each transition onto a method call and make the state of the FSM the private state of the object to achieve encapsulation. In this model, there is still call-return flow control (and a thread with a stack that has to unwind out of the state transitions), but states are clean and the FSMs can be developed with some modularity. We have already done work on event-driven programming in Java [WC00], and believe we can leverage this to get started.

In the longer term, particularly for nodes, it is important to get to true FSM flow-control, in which the program counter really uses branches rather than calls, and there is no stack. We believe that we can map a Java-like language onto this model, but it is challenging. For example, it requires developing all-new libraries that use the model rather than the call-return model. We expect the final approach will be a hybrid, in which we can use call-return flow control within a state, enabling the use of libraries, but not between them. In this model, calls are not allowed to block (or run forever) and can only use a thread within a state. This keeps the advantages of both models: threads are not kept across state transitions so they have no state and thus no context to switch (all the state is explicitly managed by the FSM), any thread can handle any transition (event), and context-switching remains a procedure call. We believe that we will be able to check for correct use of threads statically as part of the programming environment; it essentially maps to proving that no call blocks or calls a procedure that could block.

We also need to address the composition of FSMs. Today there is really no support for this. The thread model of composition is based on interfaces that are fundamentally call return, and composition means bringing an interface into your namespace and checking each call site for type safety. This model is weak even for threaded systems and is not useful for FSMs. For example, there is no way to check that methods in the interface are used in the correct order, no way to handle admission control or place limitations on calls, and no way to ensure that all of the exceptional cases are handled. Thus we intend to design an "interface" description for FSMs (analogous to an IDL) that addresses these issues. The basic approach is to define the externally visible states of an FSM and the incoming and outgoing edges (which can only go to externally visible states). Using a modular FSM as a block box, it thus appears to have a small number of states and a set of in and out arrows. Its true complexity is presumably much higher since we are abstracting it. The act of composition is thus to connect all of the arrows in a type safe way. This approach has a few obvious benefits: 1) we ensure that all cases are handled since exceptional arrows have to be connected somewhere, and 2) "replies" need not return to the caller - i.e., we achieve more general flow control than threads. There are some more subtle benefits as well. We may be able to check the order of use of the arrows (equivalent to enforcing a calling order on the methods of an interface), and we expect to able to enforce flow control (in the network sense) along an arrow, which enables resource management and admission control. To summarize, we will develop the techniques required to compose FSMs, which makes them useful for large complex systems and brings the benefits of modularity and reuse to FSMs.

4.2 Macrocomputing

In additional to an effective nodal programming model, we believe that it is essential to provide scientists the ability to "program the collection" at a higher level - relying on compilation to generate the nodal programs from the high-level description. Lessons may be drawn from higher-level parallel programming models, such as NESL, BSP, and HPF, where a rich set of aggregate operations are provided to the programmer and compiled down into nodal code. However, with NEST applications the collection of nodes is unstructured, constantly changing, and oriented toward real-time. Thus, aggregate operations must deal with such variations and are likely to be statistical, rather than deterministic.

Our first version of macrocomputing will be based on simple SPMD ideas from parallel computing. The basic operations are thus gather, scatter and select. Gather means collecting an aggregate across all nodes, except that we can't wait for all nodes to report and must do so statistically and with tolerance for adversarial inputs from the nodes. Thus, most gathers will have error bounds and a current fraction of completion. Similarly, for scatter operations, we will not have acknowledgements from all nodes and must again focus on statistical distribution and acknowledgement. For example, we will use scatter for large-scale software upgrades and large-scale event notification (such as "start"); our macrocomputing model must enable be able to detect majority receipt (to establish a quorum for the new version), and must also support interoperation of old and new versions. The select primitive is used to set a named boolean variable at each node, such as whether it can hear a particular base station or is hot or cold. Select allows us execute broad commands selectively at each node. We will use the resilient aggregation and multicast techniques described above to implement gather/scatter mechanisms. We will also support exclusion of nodes considered adversarial or unreliable.

The second view of macrocomputing that we hope to exploit is that of online query processing from recent database research at Berkeley [H+99]. The "online" distinction refers to the fact that the tables are constantly changing, and in fact sensor data is one of the canonical example uses, as each new sensor reading is viewed as a new row for that sensor's table. The simple use is to treat the output sequence of our gather operation as a sequence of rows and then use the online query processing system to store, plot and measure the data, and in general to implement statistical process control with triggers to notify users of major events. However we can do much better than this. The key idea is to include the gather process into the query planning system. For example, rather than moving all of the data to the database and then processing it, we should be able to move some of the processing (some of the operators) into the nodes themselves, thus gathering answers (or partial answers) rather than raw data. This is not only more efficient, it may also be more secure, since less data is actually moving around. This approach also works well if we want queries that are based on physical location or proximity. For example, if we want to know if any region is below a certain temperature, we can do so easily by combining local gathers with simple operators to execute the query separately in each region (in parallel). We are essentially pushing the query out to the nodes. This also works well for intermittent connectivity, since we now only need to communicate outside the region if we detect a problem (in which case we might switch to a less secure but more reliable communication channel). Much of the key database technology is being developed as part of Berkeley's Endeavor project (of which two of the three of us are involved); the new part for this proposal is the application of that technology as part of both distributed query processing and macrocomputing.

The database community has one other key idea that we will apply to programming the nodes: database languages are declarative rather than procedural. This is critically important for macrocomputing: declarative languages state what has to happen rather than how to do it. Since we cannot reliably control or even communicate with every node, we must avoid languages that work in terms of specific instructions on specific nodes (the procedural approach). Instead we need data- and node-independent language techniques, such as predicate calculus, SQL, and scan-based languages.

We do not yet know exactly what this language will look like, but we know some aspects it requires. For example, we know we need strong inherent support for statistical aggregation and processing, since every piece of data is probabilistic. A declarative language for statistics, such as SAS, thus might be a good starting point. There are also languages for Bayesian AI techniques that might fit well. We also know we need a language that supports large numbers of nodes and data samples, so we might look to the tuple-space languages such as Linda, which provide essentially a global namespace for shared information. Many operation sequences take place in the tuple-space concurrently, with associative operations utilizing the inherent parallelism. Finally, a unique element of NEST is the opportunity to use redundancy in an adaptive fashion to manage density and power utilization, so we need support for redundancy and hierarchy in the language. We will explore bringing these all of these notions together in a hierarchical, event-driven, statistically based aggregate programming paradigm.

4.3 Visualization and Debugging

Both the FSM model and the macrocomputing model require new tools for visualization and debugging. We will build tools for visualizing large collections of real or simulated nodes. In particular, there are three distinct problems that we will address: event-centric debugging, aggregation, and the volume of data.

The first and most important research goal is to enable an event-based view of visualization and debugging. Current debugging systems (and to a lesser extent visualization systems) are based on threads: they allow you to debug one thread within a complex environment. In an event-based system, we care much more about tracing an event and its consequences (event centric), rather than tracing all of the events that go through one operator (operator- or thread-centric). A good analogy is tracing blood flow with radioactive tracers rather than watching all of the blood that goes through one organ. Although we will still support operator-centric debugging and visualization, our focus on event-centric debugging enables us to debug operator interactions and aggregate behavior. In some sense, as we move to vast numbers of small nodes, debugging one node is not even helpful and only the event- and aggregate-views can make progress. The key trick to implementing event-centric debugging is to realize that tracing is just another kind of event to which nodes (and more generally FSMs) must react. We have some experience on a small scale debugging "paths" in the Ninja and Iceberg projects [GW+00], where we looked at how to compose operators for a stream (such as Internet telephony); these paths are sequences of events and thus share the tracing aspect that we propose here.

The event-centric model will also require support for viewing FSMs and for tracing particular FSMs over time. At first, this appears to be the same as traditional thread-centric debugging, but it practice there are important differences. For example, breakpoints cannot be based on either PC locations or on thread id’s, which are the two mechanisms in use today. PC locations aren't useful since we have many concurrent actions that use the same code. Thread ids aren't useful because any thread can advance any FSM at any time, and conversely a given thread may execute transitions of many different FSMs. Thus both the debugging and visualization systems need to understand FSMs and FSM ids. Another subtle difference is that the current thread-based debuggers depend on call-return semantics: they implicitly set breakpoints on return addresses so that you can execute whole subroutines without having to step through the code of the subroutine. This modularity is very important, but will not suffice as is for FSM debugging; at a minimum, we need to detect all reentry points for an FSM not just those of call-return semantics. More generally, the debugging and visualization systems need to use the same modularity boundaries that the programmer uses, and these are different than the traditional boundaries of procedures, files, or objects. Thus we must integrate the novel techniques for composition into the debugging and visualization process.

Similarly and longer term, we hope to integrate the macrocomputing abstractions into the debugging and visualization process, which we define as our second major goal for this area. Given the sheer number of nodes, we can't use the traditional debugging process of using many windows, typically one per node, to monitor the collective behavior. Just as we need some way to aggregate data for applications, we need some way to deal with aggregates for debugging and visualization. The goal is for these two problems to have an integrated solution. This implies a macrocomputing debugger, that is, one that deals with the macro program, which includes:

Monitoring its variables (which may represent the aggregate of many physical locations),

Understanding gather/scatter and select,

Understanding the implementation of replication (knowing that two things are the same), and stepping through statements in the macro program.

We would also like to support switching among the three views: the macro view, the FSM view, and the event view (tracing). Note that the latter two views are in some sense "zoomed in" views of the macro program. The zoomed in views are useful for debugging both errors in the implementation of the macro language (such as replication errors), and for debugging applications not written in the macro language.

Finally, we need to develop new techniques for handling variable quality and location-dependent data. We will start with our previous work for the Proteus simulator [BD+92] and the CM-5 supercomputer [BK94], which enables charts with millions of data points from hundreds of nodes, and in fact led to the discovery of unknown congestion patterns not visible on graphs with less data. We have two new problems to address in this area that the existing tools do not address. First, the CM-5 provided highly reliable nodes and a globally consistent measure of time (the synchronized clock). For debugging mode (at least), we can use our nodes support for a synchronization beacon to provide global timestamps, but we will still have to add support for missing or incomplete data. Second, the physical layout of the CM-5 nodes was both fixed and unimportant. In the NEST work, physical location is often very important and may be a critical part of visualization. This means that we need to support both abstract and absolute topologies and location information. In some cases, we can use traditional two- or three-dimensional coordinate systems, and in other cases, especially for fixed deployments, we may need a more abstract layout of nodes, such as a floor plan or street map.

To summarize, we believe a realistic platform for NEST development must address several hard issued in addition to the hardware, node OS, and simulator; it must enable efficient development, testing and maintenance of new algorithms and applications. Toward this end, we will provide novel debugging and visualization technologies designed specifically for the new challenges of NEST computing. We will also develop higher-level abstractions to simplify implementation, including a macrocomputing language and new forms of modularity that permeate the platform, simulator, development tools and languages.

5. Large-Scale Adversarial Simulation

Composition of many components in large-scale sensor networks brings risks for reliability. Harmful interactions may only make themselves apparent when components are composed, and some failure modes only appear at scale. This is likely to be a special problem for large sensor networks, where one may find an unprecedented level of fine-grained interaction between concurrent computations.

Although hands-on experience with real networked embedded systems is essential to ground algorithm development in solving real problems, dealing with real uncertainties, using real capabilities, it is difficult to isolate causes for specific behaviors and explore the space of possible interactions in this mode. It is also essential to have a means of experimenting at the many thousand-node level without deploying networks that large for every situation. Thus, it is essential that the NEST platform be seamlessly shifted from deployment to large-scale simulation. It will itself be a research problem to identify techniques that allow us to scale up to simulating hundreds of thousands of sensor nodes. Nonetheless, we expect that three key factors will aid us as we build a large-scale simulation platform: 1) by necessity each individual sensor does not do very much on its own, and 2) our control over the programming interface makes it easier to ensure that sensor code can be readily interpreted by a simulator in a virtual machine, and 3) vast computing clusters can be applied to the problem so that simulation is provided as an internet service to the NEST teams. An unusual aspect of this simulation facility is its "Murphy's Law" approach. To find out if devices will compose, simulate a million of them then make the simulator adversarial, so it drops messages at the worst possible time, etc.

We will use this scalable simulation platform for early detection of "composition bugs", i.e., bugs that only manifest themselves once all the pieces are combined together, remaining hidden if we merely examine individual components in isolation. Detecting composition bugs in sensor networks will force us to advance the state of the art in scalable testing platforms, and one of our research goals will be to develop techniques for simulation in the large.

An important area to advance is in a partial inefficiency of random, unguided walks at finding bugs. If we visualize the state-space of a sensor network with N devices as an enormous N-dimensional space, naive simulation corresponds to taking a random walk through this space and checking whether we ever enter a bad state (e.g., one where the system is deadlocked). However, the space of possible states is very large, and random trial-and-error takes a long time to cover more than a small fraction of the space, so some bugs may evade detection unless we are very patient. This is a limitation of random testing.

To improve the power of our simulation platform at detecting composition bugs, it may help to view the testing process as a competitive two-player game. The first player, the programmer, writes some code for the sensors. The second player, the simulation platform, tries to find a feasible path through the state-space of the system that ends in a bad state, and the simulation platform "wins the game" if it can produce such a buggy path. The simulator has some degree of freedom in how it may legally execute the sensor code---for instance, in the order in which transmitted messages are interleaved at receivers---and so we can now consider adversarial simulation, i.e., simulation platforms that behave adversarially.
An obvious strategy for an adversarial simulation platform is to explore first the paths that have the best odds of leading to a bad state. For example, a clever simulator might exploit scenarios where, e.g., a sensor node is forcibly killed just after acquiring a critical lock. An adversarial simulator like this may detect many concurrency bugs that a traditional simulation platform would have trouble finding. For example, the probability that a sensor dies during the brief window when it holds a lock are slim enough that a random walk through the state space is unlikely to find this bug.

This suggests that adversarial simulation might be considerably more powerful than naive unguided random testing. The usual limitation of runtime testing or simulation is that the rare corner cases are the hardest ones to test. Adversarial simulation has the potential to ameliorate this shortcoming by re-directing special attention to the rare cases that seem particularly worthy of attention.

The key-enabling factor that allows us to apply adversarial testing is the presence of a simulation platform and a well-defined programming model. When simulating, one can control all external factors, for instance ensuring the failure of a few key sensor nodes or dropping a message at just the worst possible time and in the worst possible way for the system. Moreover, in our event-oriented programming model, events are visible and meaningful to the simulator: for instance, the simulator can tell when the device goes to sleep and when it resumes computation. Thus, the simulator can use domain-specific knowledge to formulate adversarial tactics for driving the system into some failure mode of interest.

We intend to combine simulation with checkpointing to enable more powerful testing. For instance, suppose the goal is to detect race conditions, such as the one that occurs if code copies a shared variable, increments the local copy, and blindly writes the new value back into the shared variable. (This hypothetical code does not compose well with itself: it has a concurrency bug.) A simulator could try to detect this type of bug by checkpointing the component immediately after it reads any shared variable; then if that same component later modifies the same shared variable, we can back up to the previous checkpoint and re-commence execution, this time forcing a context switch to occur between the read and the write. This gives two traces (the original one where no context switch occurred, and one where we backed up and injected a context switch), which should be hopefully equivalent; if they differ substantively, we can warn the programmer about a possible composition bug. Checkpointing seems to increase the power of the adversary in adversarial simulation, and this translates into a better detection of composition bugs.

A final technique we will explore is guided search. Suppose we have some concept of the "distance" between a pair of nodes. Further suppose that, during our random walk, we can estimate the distance to the nearest bad state. Then one natural improvement to random depth-first search in the state-space is priority-first search, where we follow the state transitions according to how much they reduce the distance to a bad state. For instance, if the goal is to see whether our code can exceed the sensor's memory limits, we can use as our distance metric the amount of free memory remaining. We then use priority-first search (or some variant, such as hill-climbing or simulated annealing) to accelerate the search for resource usage bugs. As another example, we could imagine using static program analysis on the sensor source code to build a finite-state model of the sensor and then using this model as a "map" to guide the simulator and steer it in the direction of the bad states. In general, the notion of guided search seems to yield a rich class of techniques, and we do not yet understand which ones may prove best suited to making composition reliable in sensor networks.

In summary, in this part of the project, we will explore research issues in reliability, simulation, and testing of composition in sensor networks, especially issues of scalability, adversarial testing, checkpointing, guided search, and domain-specific heuristics.

C. Deliverables associated with the proposed research.

A series of small, low-cost, flexible, low-power networked sensor/actuator device test-beds allowing NEST teams to rapidly investigate algorithms and develop applications in a realistic setting and scale exposed to realistic constraints. The first will be available 6 months into the program consisting of 1.5 sq in. stackable wireless nodes with application-specific micro-sensor packs and C-based TinyOS component-based programming environment. The second at 20 months will provide sufficient power to compose multiple algorithms and a complete FSM-based programming system. The final platform will be a design prototype of more extreme integration. A report evaluating each platform will be provided.

An open, communication-centric, power-aware component-based operating system for very small devices, including reusable components for a variety of network stacks, sensors, actuators, retransmission pruning, and resilient aggregators. Language-based optimization tools to provide efficient execution and fine-grain multithreading with component modularity. Report evaluating key abstractions for NEST regime.

Nodal communication facilities establishing algorithmic cost metrics consisting of physical multicast transmission, event-driven receive, retransmission-pruning, aggregation, and zero-copy buffer management.

Resilient aggregators coping with noise and security attacks. Random sampling techniques for such aggregators.

Application specific virtual machines that allow families of algorithms to be encoded extremely concisely and distributed through the network as tiny capsules to allow embedded network behavior to rapidly adapt over substantial range. These also allow for rapid in situ reprogramming for algorithmic experimentation.

Hierarchical infrastructure support connecting extensive, diffuse embedded networks into a powerful service environment.

A complete development environment for FSM-based representations of NEST coordination and synthesis algorithms. Initial versions will involve direct specifications of states and transitions. Final version will map simpler high-level descriptions down to such representations. Interface description language for FSMs to support modular composition.

Macroprogramming language to allow embedded networks to programmed in aggregate, rather than only from nodal rules and protocols. Initial version will extend gather, scatter, select and scan concepts to operate in unstructured topologies in a statistical manner. Final version extends this to a form of online query processing over incremental data in a declarative fashion.

Visualization and debugging tools for both the FSM and macroprogramming environments supporting testbed logging and simulation facilities.

Large-scale adversarial simulation facilities providing the ability to simulate very large embedded networks at any level of component description under application scenarios, including physical obstruction, mobility, and external stimuli. Guided search techniques to automatically uncover regimes where algorithm failure modes occur.

Reports describing each aspect of the platform architecture.

A series of workshops for NEST program teams and other research collaborators to rapidly spread platform experience through the program and to gain feedback in the platform development.

All software and hardware designs will be made available publicly on a non-exclusive, no-fee, open right to use and modify basis carrying the University copyright and indemnification wording.

D. Statement of Work (SOW)

The proposed work is focused on the design, development, and evaluation of a platform to facilitate research and experimentation on large sensor networks and to enable low-cost prototyping and deployment of scalable algorithms for coordination, synthesis, and other tasks.

Towards this goal, we will develop a series of testbeds with many small, low-cost, heterogeneous sensors, a hierarchical connection to external networks, and development tools and support. These testbeds will be provided to program teams to give algorithm designers hands-on experience with the NEST design space with the realities of very numerous, low-power devices reacting to physical stimuli, and also to allow us to evaluate, validate, and refine our architecture based on experience with prototypes.

An initial version will be developed in the first six months, consisting of 1.5 sq in. stackable wireless nodes with application-specific micro-sensor packs and a C-based component-oriented programming environment on top of TinyOS. Two subsequent, more sophisticated, versions of the platform will follow: at 30 months, a testbed with a complete FSM-based programming environment and sufficient power to compose multiple algorithms; at the end of the project, a final platform that is a design prototype of more extreme integration. Section C (our technical rationale) sets out the broad framework we will follow, centered around concurrent state-machines that are implemented on top of a specialized, low-power, reactive-oriented operating system using a composition-friendly language for programming FSM's.

We will maintain architecture documentation throughout the project. Each of the platforms will be accompanied by a report describing the platform architecture a report describing experience with the testbed and evaluating its design decisions in preparation for the next testbed. We will hold workshops for NEST program teams and other collaborators using our testbed to rapidly spread platform experience through the program and to gain feedback on the platform.

In FY01 we will design and develop an initial Open Embedded Platform (OEP1). We will manufacture and distribute to program project groups 10 testbed kits.

We will also carry out collateral work associated with developing and solving Challenge Problems in distributed control in coordination with DARPA.

E. FY01 Production and Distribution of Testbed kits

· UCB will assemble ten (10) OEP1 Testbed kits each consisting of approximately 100 wireless networked sensor nodes, plus base-stations, lab programming harness, and software tools.

· Distribute kits to project groups

· PCB board manufacture and assembly will be out-sourced.

 (Current candidate is XBOW inc.)

F. FY01 Challenge Problem Development

· Collateral work, in coordination with DARPA, developing Challenge Applications involving distributed control and large-scale for the OEP1.

· Developing integration experiments related to Challenge Applications.

G. FY01 NEST Emerging Platform Research Milestones and Work Items

8/2001: Release OEP version 1 preliminary design document, assimilating initial NEST project requirements and challenge problems into prototype platform

12/2001: Release OEP version 1.

· Design, development and testing of OEP tiny motherboards, sensor boards, base-station interface, experimental programming harness, PC-104 mobile base-station.

· Specification of OEP hardware platform, including schematic, PCB layout, bill of material, and component CAD files in standard interchange format for wireless motherboard, generic sensor board and challenge sensor board. Motherboard based on Atmel microcontroller, RFM 900 Mhz Radio, and EEPROM.

· Specification of extension connector support project specific sensor packs.

· Specification and document of mechanical design

· Open code release of test suite and diagnostics

· Open code release of Tiny OS version 1.0 operating system software

· TinyOS Programming Environment will be built upon tools in open releases (eg, RedHat and Cygwin), publically available microcontroller compilers and assemblers, java tools. Low-cost support tools (eg, atmel parallel port programmer) may be required, but entire software distribution should not exceed $1,000. Tiny OS version 1.0 operating system software and components will be openly released.

· All code, design and supporting documents available though project web site.

1/2002: Tutorial Workshop and Distribution

· Tutorial Workshop for Program Project Groups

· Programming TinyOS tutorial documents with application examples

· TinyOS and Motherboard Principles of Operation document.

· Sensorboard design guide with examples.

1/2002 OEP1 Embedded Software Component

· Investigation and evaluation of tiny stack of wireless networking components

· Demonstration of NEST application as collection of cooperating FSM components

· Demonstration of set of preliminary dynamic ad hoc routing components

· Demonstration of preliminary time synchronization beacon

· Demonstration of preliminary tiny authentication and encryption protocol

· Systematic analysis of the use of TinyOS commands, events, and tasks

6/2002 Evaluation of OEP1

· Support facility for project groups using the platform.

· Logging and analysis of platform usage, failure modes, energy profile.

· Analysis of hardware design relative to evolving project needs

· Analysis of version 1 OS and programming environment relative to evolving project needs

6/2002 Emerging Platform Design Prototype

· Design specification for robust version of TinyOS

· Demonstration of reusable OS components for devices and network support

· Design of low-level programming language for FSM components

· Preliminary Analysis of techniques for resilient aggregation and random sampling

H. FY 02 Platform Research Activities

9/2002 OEP2 proposed platform feature set document

12/2002 FSM-based Environment on OEP1

· Compiler/interpreter implemented for low-level FSM language.

· Initial suite of resilient aggregation components

· Initial Application Specific Virtual Machine

12/2002 Support for Systematic Empirical Studies

· Prototype of adversarial simulation facility

· Design of logging and trace collection facility

· Evaluation of integration experiments

12/2002 Novel Platform Design

· Initial Implementation of TinyOS version 2.

· Initial Design of OEP2 node hardware, including selection of very-low power microcontroller, higher capability radio, selection of suite of sensor packs, form factor, and energy source.

6/2003 Algorithm design and analysis support

· Complete FSM-based programming environment

· Implementation of logging and trace collection facility.

· Preliminary visualization and debugging tools for FSM programming environment

· Implementation of initial gather, scatter, select, and scan functionality

· Preliminary evaluation of secure aggregation.

6/2003 Design and Analysis of OEP2

· Prototype of OEP2 (composition) node hardware

I. FY 03 Platform Research Activities

12/2003 High-level Programming Environment Development

· Extend adversarial simulator to scale up to very large sensor networks

· Interface description language for composing FSMs

· Initial design of high-level declarative macroprogramming language

· Preliminary demonstration of infrastructure services

1/2004 Release and Select Distribution of OEP2 kits to project groups

· Tutorial Workshop

· Specification of OEP2 hardware platform, including schematic, PCB layout, bill of material, and component CAD files in standard interchange format.

· Specification and document of mechanical design

· Open code release of test suite and diagnostics

· Open code release of Tiny OS version 2.0 operating system software

· FSM-based Programming Environment

· All code, design and supporting documents available though project web site.

6/2004 Language-Based Optimization

· Demonstration of application composition on OEP2

· Language-based optimization tools for FSM components

· Compiler from high-level macrolanguage to low-level FSM language

6/2004 Novel Platform Design II

· Initial Design of OEP3 node hardware, including ultra-low power microcontroller, pico-radio, sensors, and power harvesting.

J. FY 04 Platform Research Activities

12/2004 Final Programming Environment

· Visualization and debugging tools for macroprogramming system

· Application-specific virtual machine query processing

· Finish design, implementation, and integration of infrastructure services

12/2005 Design and Analysis of OEP3

· Prototype of OEP3 ultra-low power platform

12/2005 Prototype Large-Scale Coordination Experiments

6/2005 Overall evaluation and demonstration

· Release final platform

· Report on all aspects of the platform architecture for networked embedded systems

· Grand-challenge NEST demonstration involving large-scale coordination and distributed control

K. Graphic illustration of the milestones and schedule

[image: image1.png]A
=
=
=
=
-
Z
-

%

: '-\‘v.‘“.‘“‘“
- ;.—\E

L. Technology Transfer.

Our major vehicle for technology transfer will be through interactions with the research community and selected industrial partners and collaborators. The team of investigators is well known and well respected in the various research communities of interest to DARPA. Eric Brewer worked on the BARWAN, InfoPad, IC&V (MASH) and Active Network (Ninja) Projects. David Culler led the NOW project and Berkeley's Millennium project with Intel, in addition to participating in Ninja. David Wagner worked on Ninja as a graduate student, and a long record in the area of security.

We are committed to sharing our architecture for proactive infrastructure, and its embodiment in the software and hardware components we develop, with the rest of the University and DARPA research community. We will also fully collaborate with DARPA's NEST research community to couple our work with theirs and to build upon the developments that emerge from the community, especially in the area of active routers. The proposal team has enviable record of developing and distributing high quality prototype software that have been used to enable the research of others: Proteus and TranSend Proxy Server (Brewer), Split-C and Active Messages (Culler).

We feel that it is very important to work with industry at an early stage in the development of our network service architecture. In the long and successful history of computing systems research projects at Berkeley-RISC, SOAR, SPUR, RAID, InfoPad, NOW, BARWAN, and MASH-we have evolved a highly effective consortia model for coordinating our industrial interactions based on periodic retreats. The research project will hold twice yearly research retreats in which industrial and governmental representatives of the sponsoring organizations will meet with the research team to review progress, share research results, obtain technical assistance, and set future directions for the project. This gives the industrial participants an opportunity to obtain the fruits of the research at first hand, to observe (and recruit) the excellent students working on the project, and to interact with their peers at competing organizations on the neutral ground of a university research project.

The RAID Industrial Consortium was the most successful of these efforts, involving over 15 companies, and leading to the creation of a multi-billion dollar industry segment with over 150 companies selling RAID products today. Through interaction with this highly visible research project, the participating companies were given an early view on the evolving technology, and were able to use the results of the project's analyses and measurements to drive their internal engineering efforts.

We are already in active negotiations with Intel, Philips, Motorola, and Sun Microsystems as collaborators on this research. We have long successful history working with all of these companies. To encourage maximum technology transfer, especially to our industrial collaborators, the investigators will make no proprietary claims to the results, prototypes, or systems supporting the research, results, and prototypes of the proposed effort. The University of California will retain copyright to developed software. It is our intention that no-fee, non-exclusive licensing agreements be freely available for educational institutions, government sponsors, and industrial collaborators.

Crossbow is already producing versions on our prototype network sensor platform and selling them at cost back to the research community. We are working closely with UCLA, Univ. of Washington, and Rutgers on using this platform.

Intel is intending to place a new research lab in Berkeley and one of the PIs, David Culler, will serve as University Research Director. Its initial research agenda will be closely collaborative with this project and it is anticipated that hardware and software development will iterate between the University and the Intel lab, bringing an additional level of engineering to bear on the NEST platform.

M. Comparison with other ongoing research

There is a large amount of work on developing micro-electromechanical sensors and new communication devices[wins, smartdust]. The development of these new devices and the desire to develop coordination and synthesis algorithms for networked embedded applications make a strong case for the development of a software platform to support and connect them. Today there is no comprehensive software development platform that targets the devices, algorithms, and usage models of the NEST program. The closest effort is the UCLA WINS nodes developed as part of the SENSIT program. These, however, focused on robust generic sensor units deployable in small number in harsh conditions.

Numerous efforts address the real-time executive aspects, but we believe that current real-time operating systems do not meet the needs of this emerging integrated regime. Many of them have followed the performance growth of the wallet size device.

	Name
	 Preemption
	 Protection
	 ROM Size
	 Configurable
	 Targets

	pOSEK
	 Tasks
	 No
	 2K
	 Static
	Microcontroller

	pSOSystem
	 POSIX
	 Optional
	
	 Dynamic
	PII -> ARM Thumb

	VxWorks
	 POSIX
	 Yes
	 ~ 286K
	 Dynamic
	 Pentium -> Strong ARM

	QNX Neutrino
	 POSIX
	 Yes
	 >100K
	 Dynamic
	 Pentium II -> NEC chips

	QNX Real-time
	 POSIX
	 Yes
	 100K
	 Dynamic
	 Pentium II -> 386's

	OS-9
	 Process
	 Yes
	
	 Dynamic
	 Pentium -> SH4

	Chorus OS
	 POSIX
	 Optional
	 10K
	 Dynamic
	 Pentium -> Strong ARM

	Ariel
	 Tasks
	 No
	 19K
	 Static
	 SH2, ARM Thumb

	CREEM
	 data-flow
	 No
	 560 bytes
	 Static
	 ATMEL 8051

Traditional real time embedded operating systems includes VxWorks[vxworks], WinCE[wince], PalmOS[palmos], and QNX[qnx-whitepaper] and many others[psos, qnx-nutrino, os9]. The table shows the characteristics for a handful of these systems. Many are based on microkernels that allow for capabilities to be added or removed based on system needs. They provide an execution environment that is similar to traditional desktop systems. Their POSIX[posix] compatible thread packages allow system programmers to reuse existing code and multiprogramming techniques. The largest RTOSs provide memory protection given the appropriate hardware support. This becomes increasingly important as the size of the embedded applications grow. In addition to providing fault isolation, memory protection prevents corrupt pointers from causing seemingly unrelated errors in other parts of the program allowing for easier software development. These systems are a popular choice for PDAs, cell phones and set-top-boxes. However, they do not meet the NEST requirements; they are more suited to the world of embedded PCs. For example, a QNX context switch requires over 2400 cycles on a 33MHz 386EX processor, and the memory footprint of VxWorks is in the hundreds of kilobytes
. Both of these statistics are more than an order of magnitude beyond our TinyOS target.

There is also a collection of smaller \em real time executives including Creem[creem, pOSEK[posek, and Ariel[ariel, which are minimal operating systems designed for deeply embedded systems, such as motor controllers or microwave ovens. While providing support for preemptive tasks, they have severely constrained execution and storage models. pOSEK, for example, provides a task-based execution model that is statically configured to meet the requirements of a specific application. Generally, these systems approach the space requirements and represent designs closest to ours. However, they tend to be control centric - controlling access to hardware resources -- as opposed to dataflow-centric. Even the pOSEK, which meets our memory requirements, exceeds the limitations we have on context switch time. At its optimal performance level and with the assumption that the CPI and instructions per program of the PowerPC are equivalent to that of the 8-bit ATMEL the context switch time would be over 40 us.

Many real time executives use messaging passing for internal communication as opposed to our function call approach. Our use of function calls provides us with the modularity of separate data environments and the support of type checking.

Other related work includes [chiodo95synthesis] where a finite state machine (FSM) description language is used to express component designs that are compiled down to software. However, they assume that this software will then operate on top of a real-time OS that will give them the necessary concurrency. This work is complementary to ourts in that the requirements of an FSM based design maps well onto our event/command structure. We also have the ability to support the high levels of concurrency inherent in many finite state machines.

On the device side, [smartdust-page] is developing a cubic millimeter integrated network sensors. Additionally, [wins, low-power] has developed low power hardware to support the streaming of sensor readings over wireless communication channels. In their work, they explicitly mention the need for the inclusion of a microcontroller and the support of multi-hop routing. Both of these systems require the support of an efficient software architecture that allows high levels of concurrency to manage communication and data collection. Our system is designed to scale down to the types of devices they envision.

A final class of related work is that of applications that will be enabled by networked sensors. Piconet [piconet] and The Active Badge Location System [activebadge] have explored the utility of networked sensors. Their applications include personnel tracking and information distribution from wireless, portable communication devices. However, they have focused on the applications of such devices as opposed to the system architecture that will allow a heterogeneous group of devices to scale down to the cubic millimeter category.

Many researchers have used black box testing [fuzz], as well as more sophisticated testing techniques such as fault injection [inject], to discover security holes. Runtime analysis tools which perform a partial exhaustive search [verisoft, eraser] have been very successful at

detecting certain kinds of bugs. Rivet, a custom Java virtual machine that supports check pointing for partially exhaustive exploration of the program state space, is especially relevant: it may be viewed as a special case of an adversarial simulator for Java programs [rivet]. The previous experience with these tools makes us expect that an adversarial simulation may be a powerful organizing principle for ensuring reliability of large sensor networks.

Several authors have considered using static analysis to find bugs from program source code by selecting and simulating many straight-line paths through the code [engler, prefix]. One recent direction is to use static analysis to build a model of the application, and then apply model checking to find bugs [bebop]. A second recent direction involves specializing the analysis tool to find security holes [overruns]. These techniques may help improve the power of an adversarial simulation.

N. Experimentation and Integration Plans.

We plan to develop this NEST platform in close collaboration with the other NEST teams. The initial networked sensor node is based on a prototype developed with Prof. Kris Pister as part of his SmartDust work. We have already developed versions of it that are in used by Deborah Estrin's Groups at UCLA, and we have been working closely with Gaetano Borriello's group at University of Washington. We have a regular conference call and retreats. We intend to expand that aspect. We are developing tutorial material and documentation for TinyOS and scheduling preliminary workshops with the Sensit community. Intel and Crossbow have picked up parts of this technology.

Our approach is to get an initial version of the testbed and TinyOS programming environment out into the NEST community very early into the program. We intend to distribute testbeds 6 months into the program and hold an initial programming workshop to get all the teams on an active working basis, beyond the regular PI meetings.

We will then set up a repository to facilitate sharing software components and a shared support structure. Early algorithm development experience will provide critical feedback into the development of the FSM programming environment, debugging and visualization tools, and simulator.

We have a ten-month period of active feedback and interaction with the other contractors in shaping the main NEST platform, which will be delivered at 20 months. We will work closely with contractors at that point in developing testbeds tailored to their application and algorithm areas.

We intend that the phase 1 platform will be used heavily in composing algorithms developed by multiple contractors into larger applications. Thus, joint experiments will be natural. We have planned a second larger workshop around deploying the phase 1 platform and the macrocomputing environment.

Simulation tools will be actively shared throughout. We intend to borrow heavily from existing simulation code, such as NS, in the early development. We will set up a simulation service on our large clusters available to all NEST participants.

Internally we hold biannual retreats to bring together our students and industrial participants, and these would include other NEST contractors.

Section III. Additional Information

[image: image2.png]. ittle | Guy

[image: image3.wmf]RFM

Radio byte

i2c

Temp

photo

Messaging Layer

clocks

bit

byte

packet

Radio Packet

Radio Packet

Routing Layer

sensing application

application

HW

SW

ADC

messaging

routing

UART Packet

UART Packet

UART byte

References

[chiodo95synthesis] M. Chiodo et al., Synthesis of Software Programs for Embedded Control Applications, Proc. of the 32nd DAC, June 1995, pp.587-592.

[os_bench] "Real-Time Consult",

http://www.realtime-info.com/encyc/market/rtos/eval_introduction.htm

[os9] "Microware OS-9", http://www.microware.com/ProductsServices/Technologies/os-91.html

[wince] Microsoft Corp., "Microsoft Windows CE", http://www.microsoft.com/windowsce/embedded/

[qnx-whitepaper] Dan Hildebrand, "An Architectural Overview of QNX",

http://www.qnx.com/literature/whitepapers/archoverview.html

[qnx-nutrino] QNX Software Systems Ltd., "QNX Neutrino Realtime OS",

http://www.qnx.com/products/os/neutrino.html

[bluetooth] "The Official Bluetooth Website",http://www.bluetooth.com

[uclinux] "uClinux, The Linux/Microcontroller Project",

http://www.uclinux.org/

[DIMMPClinux] EMJ EMBEDDED SYSTEMS, "White Dwarf Linux",

http://www.emjembedded.com/linux/dimmpc.html

[vxworks] "vxWorks 5.4 Datasheet",

http://www.windriver.com/products/html/vxwks54_ds.html

[palmos] "PalmOS Software 3.5 Overview",

 http://www.palm.com/devzone/docs/palmos35.html

[picoradio] "Pico Radio",

http://bwrc.eecs.berkeley.edu/Research/Pico_Radio

[posek]
"pOSEK, A super-small, scalable real-time operating system for high-volume, deeply embedded applications", http://www.isi.com/products/posek/index.htm
[bahl] P. Bahl and V. N. Padmanabhan, RADAR: An In-Building RF-Based User Location and Tracking System, Proceedings of IEEE INFOCOM 2000, Tel-Aviv, Israel, March 2000

[creem] "Barry Kauler, "CREEM Concurrent Realitme Embedded Executive for Microcontrollers",

http://www.goofee.com/creem.htm

[RFM] "RF Monolithics", http://www.rfm.com/products/data/tr1000.pdf

[arm-thumb] "Atmel AT91 Arm Thumb", http://www.atmel.com/atmel/products/prod35.htm

[atmel-avr] "Atmel AVR 8-Bit RISC processor",

http://www.atmel.com/atmel/products/prod23.htm

[winnt_overhead] VenturCom, Inc., "RTX vs. Windows NT Performance - See the Differences!",

http://www.vci.com/products/vci_products/rtx/rtx_vs_nt_performance.html

[ariel] Microware Ariel Technical Overview",

http://www.microware.com/ProductsServices/Technologies/ariel_technology_brief.html

[psos] "pSOSystem Datasheet",

http://www.windriver.com/products/html/psosystem_ds.html

[MANET] Mobile Ad-hoc Networks (manet)

http://www.ietf.org/html.charters/manet-charter.html
[TAM] D. Culler et. al., "Fine grain parallelism with minimal hardware

support: A compiler-controlled treaded abstract machine", Proceedings

of 4th International Conference on Architectural Support for

Programming Languages and Operating Systems", April 1991.

[smartdust] S. J. Pister, J. M. Kahn and B. E. Boser. Smart Dust:

 Wireless Networks of Millimeter-Scale Sensor Nodes. Highlight

 Article in 1999 Electronics Research Laboratory Research Summary.

[scout] A. B. Montz and D. Mosberger and S. W. O'Malley and L. L. Peterson and T. A. Proebsting., "Scout: A Communications-Oriented Operating System.", Hot OS, May 1995

[x-kernel] N. C. Hutchinson and L. L. Peterson.,

"The x-kernel: An architecture for implementing network protocols.",

IEEE Transactions on Software Engineering, 17(1):64--76, Jan 1991.

[stackable] J. S. Heidemann and G. J. Popek., "File-system development

with stackable layers", ACM Transactions on Computer Systems,

12(1):58--89, Feb 1994.

[weiser-scheduling] M. Weiser and B. Welch and A. Demers and S. Shenker, "Scheduling for reduced CPU energy.", Proceedings of the First Symposium on Operating Systems Design and Implementation (OSDI), pp. 13--23.

[weC] McLurkin, James, "Algorithms for Distributed Sensor Networks",

Masters Thesis for Electrical Engineering at the Univeristy of

California, Berkeley, Dec. 1999.

[smartdust-page] Pister, K.S.J.,

http://www.atmel.com/atmel/products/prod23.htm

[CullerSingh] D. E. Culler, J. P. Singh, and A. Gupta. Parallel

 Computer Architecture A Hardware/Software Approach. Morgan

 Kaufmann Publishers, 1 edition, 1999.

[TvE92] T. von Eicken, D.E. Culler, S.C. Goldstein, and

 K.E. Schauser. Active Messages: a Mechanism for Integrated

 Communication and Computation. In The 19th Annual International

 Symposium on Computer Architecture, pages 256--266, Gold Coast,

 Australia, May 1992.

[activebadge] Roy Want and Andy Hopper. Active badges and personal

 interactive computing objects. IEEE Transactions on Consumer

 Electronics, 38(1):10--20, Feb 1992.

[posix] IEEE Standard P1003.4 (Real-time extensions to POSIX). IEEE,

 345 East 47th St., New York, NY 10017, 1991.",

[piconet]"F. Bennett, D. Clarke, J. Evans, A. Hopper, A. Jones and

 D. Leask. Piconet: Embedded Mobile Networking. IEEE Personal

 Communications, 4(5), October 1997.

[highperfweb] James Hu and Irfan Pyarali and Douglas C. Schmidt, "Measuring the Impact of Event Dispatching and Concurrency Models on Web Server Performance Over High-speed Networks", Proceedings of the 2 nd Global Internet Conference. IEEE", Nov. 1997.

[wins] G. Pottie, W. Kaiser, L. Clare and H. Marcy. Wireless, "Integrated Network Sensors", Submitted for publication, 1998.

[GW+00] The Ninja Architecture for Robust Internet-Scale Systems and Services, Steven D. Gribble, Matt Welsh, Rob von Behren, Eric A. Brewer, David Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill, A. Joseph, R.H. Katz, Z.M. Mao, S. Ross, and B. Zhao. To appear in Computer Networks,Special Issue on Pervasive Computing, June, 2000.

[WC00] Achieving Robust, Scalable Cluster I/O in Java, Matt Welsh and David Culler. In Proceedings of the Fifth ACM SIGPLAN Workshop on Languages, Compilers, and Runtime Environments for Scalable Computers (LCR2K), Rochester, NY, June, 2000.

 [BD+92] Proteus: A High-Performance Parallel-Architecture Simulator. Eric A. Brewer, Chrysanthos N. Dellarocas, Adrian Colbrook, and William E. Weihl. Technical report MIT/LCS/TR-516; a shorter version appeared in the Proceedings of the ACM SIGMETRICS and Performance '92 Conference, Newport, Rhode Island, May 1992.

 [BK94] How to Get Good Performance from the CM-5 Data Network. Eric A. Brewer and Bradley C. Kuszmaul. Proceedings of the 1994 International Parallel Processing Symposium, Cancun, Mexico, April 1994.

[H+99] Interactive Data Analysis with CONTROL. Hellerstein et al. IEEE Computer, August 1999

[bebop1] Thomas Ball and Sriram Rajamani. Bebop: A symbolic model checker for

boolean programs. SPIN '00: Model Checking of Software, 2000.

[prefix] William R. Bush, Jonathan D. Pincus, and David J. Sielaff.

A static analyzer for finding dynamic programming errors.

Software Practice and Experience, 30:775--802, 2000.

[engler] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem.

Checking system rules using system-specific, programmer-written

compiler extensions. Proceedings of the Fourth Symposium on Operating

Systems Design and Implementation (OSDI), October 2000.

[fuzz] B.P. Miller, L. Fredricksen, and B. So.

An empirical study of the reliability of Unix utilities.

Communications of the ACM, 33(12):32--44, December 1990.

[inject] A.K. Ghosh, T. O'Connor, and G. McGraw.

An automated approach for identifying potential vulnerabilities in software.

Proc. IEEE Symp. on Security and Privacy, pages 104--114, May 1998.

[overruns] David Wagner, Jeffrey S. Foster, Eric A. Brewer, and Alexander Aiken.

A first step towards automated detection of buffer overrun

vulnerabilities. 2000 ISOC Symposium on Network and Distributed System

Security (NDSS).

[verisoft] P. Godefroid. Model checking for programming languages

using VeriSoft. Proceedings of the 24th ACM Symposium on Principles

of Programming Languages, pages 174--186, 1997.

[eraser] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro.

Eraser: A dynamic data race detector for multithreaded prorams.

ACM Transactions on Computer Systems, 15(4):391--411, November 1997.

[rivet] Derek L. Bruening, Systematic testing of multithreaded

Java programs, Masters thesis, MIT, 1999.

6

12

18

24

30

36

TestBed

TinyOS

Prog. Env

Sim

phase 0 workshop

phase 1 workshop

res. aggr.

algorithm

usage

composed

application

usage

final report

low-level FSM design

node emulation.

os done

FSM compiler

logging

viz tool

gather/scatter

adversarial sim. prototype

basic sim

components

p1 arch

p1 proto

large-scale

adversarial sim.

macroprogramming

language

macrop compiler

macro viz tool

application-specific virtual machines

fin arch

Finish design, implementation, and integration of infrastructure services

��

Figure � SEQ Figure * ARABIC �1�: Prototype Network Microsensor Platform. Left is motherboard with microcontroller, low-power radio and expansion connector. Center is sensor protoboard containing photosensor, thermistor, and breadboard area. Right is 3D accelerometer board. Far right shows “laptop lab” with wireless sensor stack bay.

�

Figure � SEQ Figure * ARABIC �2�: TinyOS Component graph for ad hoc networked sensor application

� In building scalable clusters, we found it challenging to orient researchers toward working at the aggregate level, rather than opening a window on each of several machines.

� The behavior of such a component is more sophisticated than for a serial line. Given the signal characteristics of low-power RF, it must scan for a start symbol, not just a start bit. It must also provide aspects of media access control, such collision sensing, backoff, and phase adjustment.

� We find that with low-power RF, signal strength is too strongly effected by interference in the nodes environment to be useful in location determination indoors. Interestingly, bit error rates have been shown to be a much more reliable indicator of proximity.

� It is troubling to note that while there is a large amount of information on code size of embedded OSes, there are very few hard performance numbers published. [os_bench] has started a program to test various real-time operating systems yet they are keeping the results confidential - you can view

them for a fee.

1

[image: image4.jpg]

