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Abstract through actuators, performing local data processing, trans-
mitting data, routing data for others, and participating in
arious distributed processing tasks, such as statistical ag-
regation or feature recognition. Many of these events,
ch as radio management, require real-time responses.
his requires an approach to concurrency management that

resources, event-centric concurrent applications, and low-pow duces potential bugs while respecting resource and tim-

operation drive the design of TinyOS. Our solution combines flex-"9 constraints.

ible, fine-grain components with an execution model that support8) Flexibility: The variation in hardware and applications
complex yet safe concurrent operations. TinyOS meets these chand the rate of innovation require a flexible OS that is both
lenges well and has become the platform of choice for sensor ne@application-specific to reduce space and power, and inde-
work research; it is in use by over a hundred groups worldwide pendent of the boundary between hardware and software.
and supports a broad range of applications and research topick1 addition, the OS should support fine-grain modularity
We provide a qualitative and quantitative evaluation of the systemand interpositioning to simplify reuse and innovation.

showing that it supports complex, concurrent programs with very4) Low Power: Demands of size and cost. as well as un-

low memory requirements (many applications fit within 16KB of ; _ ;

memory, and the core OS is 400 bytes) and efficient, Iow-powe%efﬂrl]egteeddoegieéﬁfloé]atrﬂil;edLor\],gi,gloévoedb?gs rr?)tllj(;rf]ﬂ)a/‘ g\?gr)?ggl

operation. We present our experiences with TinyOS as a platforye 5 g \which makes power an ongoing challenge. Although

for sensor network innovation and applications. energy harvesting offers many promising solutions, at the
. very small scale of motes we can harvest only microwatts

1 Introduction of power. This is insufficient for continuous operation of

Advances in networking and integration have enableceven the most energy-efficient designs. Given the broad

small, flexible, low-cost nodes that interact with their en-range of applications for sensor networks, TinyOS must not

vironment and with each other through sensors, actuatoreénly address extremely low-power operation, but also pro-

and communication. Single-chip systems are now emergvide a great deal of flexibility in power-management and

ing that integrate a low-power CPU and memory, radioduty-cycle strategies.

or optical communication [75], and MEMS-based on-chip | oyr approach to these requirements we focus on two

sensors. The low cost of these systems enables embeddggh,g principles:

networks of thousands of nodes [18] for applications rang-

ing from environmental and habitat monitoring [11, 51], Event Centric: Like the applications, the solution must be

seismic analysis of structures [10], and object localization  event centric. The normal operation is the reactive ex-

and tracking [68]. ecution of concurrent events.

Sensor networks are a very active research space, with
ongoing work on networking [22, 38, 83], application sup- Platform for Innovation: The space of networked sensors

We present TinyOS, a flexible, application-specific operating sys
tem for sensor networks. Sensor networks consist of (potentially
thousands of tiny, low-power nodes, each of which execute con
current, reactive programs that must operate with severe memo
and power constraints. The sensor network challenges of limite

port [25, 27, 49], radio management [8, 84], and secu- is nhovel and complex: we therefore focus on flexibility
rity [9, 45, 61, 81], as a partial list. A primary goal of and enabling innovation, rather then the “right” OS
TinyOS is to enable and accelerate this innovation. from the beginning.

Four broad requirements motivate the design of TinyOS: ) ] )
TinyOS is a tiny (fewer than 400 bytes), flexible oper-

1) Limited réasourcis: Motles fhave I\lle_ry I|r|n|ted physmc?ll ating system built from a set of reusable components that
resources, due to the goals of small size, low cost, and lowe 35sembled into an application-specific system. TinyOS

power consumption. Current motes consist of about a 1g,,56rt5 an event-driven concurrency model based on split-
MIPS processor and tens of kilobytes of storage. We dq)p5¢e interfaces, asynchronawents and deferred com-

not expect new technology to remove these limitations: they i1 calledasks TinyOS is implemented in the nesC

benefits of Moore’s Law will be applied to reduce size and ; :
cost, rather than increase capability. Although our currenE‘nguaIge [24], which supports the TinyOS component and

: . - =" 'concurrency model as well as extensive cross-component
motes are measured in square centimeters, a version is Bptimizations and compile-time race detection. TinyOS

fabrication that measures less than 5mm has enabled both innovation in sensor network systems and
2) Reactive Concurrency: In a typical sensor network a wide variety of applications. TinyOS has been under
application, a node is responsible for sampling aspects afevelopment for several years and is currently in its third
its environment through sensors, perhaps manipulating igeneration involving several iterations of hardware, radio



stacks, and programming tools. Over one hundred groups |-nterface Description ___

. e . . s . ADC Sensor hardware interface
worldwide use it, including several companies within their Clock Hardware clock
products. EEPROMRead/Write ~ EEPROM read and write

This paper details the design and motivation of TinyOS, :*ngd""a'e'd ::?é?fggié?z%ﬁ:

including its novel approaches to components and concur- | g4 Redlyellow/green LEDs
rency, a qualitative and quantitative evaluation of the oper- | mac Radio MAC layer
ating system, and the presentation of our experience with g'c'; m;m:;nso'gﬁgg;i ter for transmit powr
it as a platform for innovation and real applications. This | zan4om Random number generator
paper makes the following contributions. First, we present | ReceiveMsg Receive Active Message
the design and programming model of TinyOS, including S%ndMsgl ISsend Activegllessage
support for concurrency and flexible composition. Second, ?i‘m?’“”" Gmeft iLe;:te:trL;;op components
we eva[uate TinyOS in terms qf jt_s performance, small size, | Tinysec Lightweight encryption/decryption
lightweight concurrency, flexibility, and support for low WatchDog Watchdog timer control

power operation. Third, we discuss our experience with
TinyOS, illustrating its design through three applications:
environmental monitoring, object tracking, and a declara-

tive query processor. Our previous work on TinyOS dis-mediately while deferring extensive computation to tasks.
cussed an early system architecture [30] and language dgyhile tasks may perform significant computation, their ba-
sign issues [24], but did not present the operating systerjc execution model is run-to-completion, rather than to run
design in detail, provide an in-depth evaluation, or discussndefinitely; this allows tasks to be much lighter-weight
our extensive experience with the system over the last se\han threads. Tasks represent internal concurrency within
eral years. ] ] ) . a component and may only access state within that com-
Section 2 presents an overview of TinyOS, includingponent. The standard TinyOS task scheduler uses a non-
the component and execution models, and the support fq§reemptive, FIFO scheduling policy; Section 2.3 presents
concurrency. Section 3 shows how the design meets oype TinyOS execution model in detail.
four requirements. Sections 4 and 5 cover some of the en- TinyOS abstracts all hardware resources as compo-
abled innovations and applications, while Section 6 coverg,ents” For example, calling thgetData()  command
related work. Section 7 presents our conclusions. on a sensor component will cause it to later signal a
. dataReady() event when the hardware interrupt fires.
2 TinyOS While many components are entirely software-based, the
TinyOS has a component-based programming model, codsombination of split-phase operations and tasks makes this
ified by the nesC language [24], a dialect of C. TinyOSdistinction transparent to the programmer. For example,
is not an OS in the traditional sense; it is a programmingconsider a component that encrypts a buffer of data. In a
framework for embedded systems and set of componentsardware implementation, the command would instruct the
that enable building an application-specific OS into eacrencryption hardware to perform the operation, while a soft-
application. A typical application is about 15K in size, of ware implementation would post a task to encrypt the data
which the base OS is about 400 bytes; the largest applic&n the CPU. In both cases an event signals that the encryp-

tion, a database-like query system, is about 64K bytes. tion operation is complete. _
The current version of TinyOS provides a large num-

ber of components to application developers, including ab-
fstractions for sensors, single-hop networking, ad-hoc rout-
'gg, power management, timers, and non-volatile storage.

developer composes an application by writing compo-

Figure 1:Core interfaces provided by TinyOS.

2.1 Overview

A TinyOS program is a graph of components, each o
which is an independent computational entity that expose

one or moranterfaces Components have three computa- . ; "

tional abstractionscommandsevents andtasks Com-  Nents and wiring them to TinyOS components that provide

mands and events are mechanisms for inter-componelflPlémentations of the required services. Section 2.2 de-
scribes how developers write components and wire them

communication, while tasks are used to express intrai-n nesC. Figqure 1 lists a number of core interf that ar
component concurrency. esC. Figure 1 lists a number of core interfaces that are

A commandis typically a request to a component to available to application developers. Many different compo-

perform some service, such as initiating a sensor read?€Nts May implement a given interface.

ing, while aneventsignals the completion of that service.

Events may also be signaled asynchronously, for examplg,'2 Component Model

due to hardware interrupts or message arrival. From a trafinyOS’s programming model, provided by the nesC lan-

ditional OS perspective, commands are analogous to dowrguage, centers around the notiona@mponentshat en-

calls and events to upcalls. Commands and events cannoapsulate a specific set of services, specifietht®rfaces

block: rather, a request for servicesiglit phasen thatthe  TinyOS itself simply consists of a set of reusable system

request for service (the command) and the completion sigeomponents along with a task scheduler. An application

nal (the corresponding event) are decoupled. The commangbnnects components usingwdring specificationthat is

returns immediately and the event signals completion at éndependent of component implementations. This wiring

later time. specification defines the complete set of components that
Rather than performing a computation immediately,the application uses.

commands and event handlers may pottsk a function The compiler eliminates the penalty of small, fine-

executed by the TinyOS scheduler at a later time. This algrained components by whole-program (application plus

lows commands and events to be responsive, returning ineperating system) analysis and inlining. Unused compo-



module TimerM { VVY _VVA

prO.VIdeS { . StdControl | Timer fi ion TimerC
\A A 4 YV A interface StdControl; —— — configuration Timer {
interface Timer[uint8_t id]; R provides {
StdControl H Timer } VVVY VVA interface StdControl;
TimerM : uses interface Clock; Stdc()mml‘ Timer interface Timer[uint8_t id];
HWClock implemeg@altiortl {f C e i}mplementation {
... a dialect o lock
VA } Cloc components TimerM, HWClock;
Figure 2: Specification and graphical depiction of the StdControl = TimerM.StdControl;
TimerM component. Provided interfaces are shown above the Timer = TimerM.Timer,
TimerM component and used interfaces are below. Downward TimerM.Clk -> HWClock.Clock:
arrows depict commands and upward arrows depict events. HWClock } ' ' '
TimerC

interface StdControl {

command result_t init(); Figure 4: TinyOS's Timer Service: the TimerC configura-
command result_t start();

command result_t stop(); tion.
}
interface Timer { i i
command result_t start(char type, uint32_t interval); mands and events. A qume de.CIareS private state V.al’l
command result_t stop(); ables and data buffers, which only it can reference. Config-
event result_t fired(); urations are used to wire other components together, con-
} necting interfaces used by components to interfaces pro-
interface Clock { vided by others. Figure 4 illustrates the TinyOS timer ser-
command result_t setRate(char interval, char scale); vice, which is a configuratiorm(merC ) that wires the timer
) event result_t fire(); module {imerM) to the hardware clock component-
Clock ). Configurations allow multiple components to be
interface SendMsg { ' aggregated together into a single “supercomponent” that
command result_t Se“d(u'”tlﬁ_tts ﬁltd‘lifesiﬁ exposes a single set of interfaces. For example, the TinyOS
TOS MsgPtr msg): networking stack is a configuration wiring together 21 sep-
event result_t sendDone(TOS_MsgPtr msg, arate modules and 10 SUb-COﬂfIgUI’atIOI’IS.
) result_t success); Each component has its own interface namespace,
) _ ) ) which it uses to refer to the commands and events that
Figure 3:Sample TinyOS interface types. it uses. When wiring interfaces together, a configuration

makes the connection between the local name of an inter-
face used by one component to the local name of the inter-

nents and functionality are not included in the applicationface provided by another. That is, a component invokes an
binary. Inlining occurs across component boundaries anthterface without referring explicitly to its implementation.
improves both size and efficiency; Section 3.1 evaluateJhis makes it easy to perform interpositioning by introduc-
these optimizations. ing a new component in the component graph that uses and

A component has two classes of interfaces: thopeoit ~ provides the same interface.
videsand those iuses These interfaces define how the Interfaces can be wired multiple times; for example, in
component directly interacts with other components. AnFigure 5 theStdControl  interface ofMain is wired to
interface generally models some service (e.g., sending Bhoto , TimerC , andMultihop . This fan-out is transpar-
message) and is specified by imterface type Figure 2  ent to the caller. nesC allows fan-out as long as the return
shows a simplified form of th&@imerM component, part type has a function for combining the results of all the calls.
of the TinyOS timer service, that provides tBedCon- For example, foresult _t, this is a logical-AND; a fan-
trol andTimer interfaces and usesGiock interface (all  out returns failure if any subcall fails.
shown in Figure 3). A component can provide or use the A component can providegarameterized interfacibat
same interface type several times as long as it gives eaakkports many instances of the same interface, parameter-
instance a separate name. ized by some identifier (typically a small integer). For ex-

Interfaces ardidirectionaland contain bottommands ample, the th&imer interface in Figure 2 is parameterized
andevents A command is a function that is implemented with an 8-bitid , which is passed to the commands and
by the providers of an interface, an event is a function thatvents of that interface as an extra parameter. In this case,
is implemented by its users. For instance, Timer inter-  the parameterized interface allows the singleer com-
face (Figure 3) definestart andstop commands and a ponentto implement multiple separate timer interfaces, one
fired event. Although the interaction between the timerfor each client component. A client of a parameterized in-
and its client could have been provided via two separate interface must specify the ID as a constant in the wiring con-
terfaces (one for its commands and another for its eventsfiguration; to avoid conflicts in ID selection, nesC provides
grouping them in the same interface makes the specificaa specialinique keyword that selects a unique identifier
tion much clearer and helps prevent bugs when wiring comfor each client.
ponents together. Every TinyOS application is described bytap-level

nesC has two types of componentsodulesaandconfig-  configurationthat wires together the components used. An
urations Modules provide code and are written in a dialectexample is shown graphically in FigureSurgeC is a sim-
of C with extensions for calling and implementing com- ple application that periodicallyT(merC ) acquires light



SurgeC m reachable from tasks.

acontro Asynchronous Code (AC):code that is reach-

[ ain | [surgem | able from at least one interrupt handler.
StdControl ADC | Timer | SendMsg Leds
YYY Yvy . A L.
The traditional OS approach toward AC is to minimize
it and prevent user-level code from being AC. This would
v/ be too restrictive for TinyOS. Component writers need to
‘ StdControl ‘ADC ‘ StdControl ‘Timer‘ ‘ StdControl ‘SendMsg‘ Leds |nteract Wlth a Wlde range Of real-tlme hardWare, Wthh |S
[Photo [Timerc | [muttinop | [Leasc not possible in general with the approach of queuing work

for later. For example, in the networking stack there are
components that interface with the radio at the bit level, the
byte level, and via hardware signal-strength indicators. A
primary goal is to allow developers to build responsive con-
sensor reading®foto ) and sends them back to a base sta-current data structures that can safely share data between
tion using multi-hop routingMultihop ). AC and SC; components often have a mix of SC and AC
nesC imposes some limitations on C to improve code efcode. ] o
ficiency and robustness. First, the language prohibits func- Although non-preemption eliminates races among tasks,
tion pointers, a||owing the Comp”er to know the precise there are still potentlal races between SC and AC, as well
call graph of a program. This enables cross-componer@s between AC and AC. In general, any update to shared
optimizations for entire call paths, which can remove thestate that iseachable from AGs a potential data race. To
overhead of cross-module calls as well as inline code fof€instate atomicity in such cases, the programmer has two
small components into its callers. Section 3.1 evaluate§ptions: convert all of the conflicting code to tasks (SC
these optimizations on boundary crossing overheads. Se@nly), or useatomic sectiono update the shared state. An
ond, the language does not support dynamic memory aRtomic section is a small code sequence that nesC ensures
location; components statically declare all of a program'swill run atomically. The current implementation turns off
state, which prevents memory fragmentation as well as runinterrupts during the atomic section and ensures that it has
time allocation failures. The restriction sounds more onerho loops. Section 3.2 covers an example use of an atomic
ous than it is in practice; the component abstraction elimsection to remove a data race. The basic invariant nesC
inates many of the needs for dynamic allocation. In themust enforce is as follows:
few rare instances that it is truly needed (e.g., TinyDB, dis- .
cussed in Section 5.3), a memory pool component can be ~Race-Free Invariant: Any update to shared state
shared by a set of cooperating components. is either SC-only or occurs in an atomic section.

2.3 Execution Model and Concurrency The nesC compiler enforces this invariant at compile time,
_ i _ __preventing nearly all data races. It is possible to introduce
The event-centric domain of sensor networks requires finey yace condition that the compiler cannot detect, but it must

grain concurrency; events can arrive at any time and MUspan multiple atomic sections or tasks and use storage in
interact cleanly with the ongoing computation. This is ajtermediate variables.

classic systems problem that has two broad approaches: 1) The practical impact of data race prevention is sub-
atomically enqueueing work on arrival to run later, as instantial. First, it eliminates a class of very painful non-
Click [41] and most message-passing systems, and 2) efeterministic bugs. Second, it means that composition can
ecuting a handler immediately in the style of active mes-ggsentially ignore concurrency. It does not matter which
sages [74]. Because some of these events are time Crikpmponents generate concurrency or how they are wired
cal, such as start-symbol detection, we chose the latter agygether: the compiler will catch any sharing violations at
proach. nesC can detect data races statically, which e“mbompile time. Strong compile-time analysis enables a wide
nates a large class of complex bugs. , variety of concurrent data structures and synchronization
The core of the execution model consists of run-to-primjtives. We have several variations of concurrent queues
completiontasksthat represent the ongoing computation, anq state machines. In turn, this makes it easy to handle
and interrupt handlers that are signaled asynchronously byme-critical actions directly in an event handler, even when
hardware. Tasks are an explicit entity in the languageiney update shared state. For example, radio events are al-
a program submits a task to the scheduler for executiofyays dealt with in the interrupt handler until a whole packet
with the post operator. The scheduler can execute tasks, g arrived, at which point the handler posts a task. Sec-

in any order, but must obey the run-to-completion rule.ion 3.2 contains an evaluation of the concurrency checking
The standard TinyOS scheduler follows a FIFO policy, ang its ability to catch data races.

but we have implemented other policies including earliest-
deadline first. 2.4 Active Messages
Because tasks are not preempted and run to completion, } ) . , i
they are atomic with respect to each other. However, taské critical aspect of TinyOS's design is its networking archi-
are not atomic with respect to interrupt handlers or to comecture, which we detail here. The core TinyOS communi-
mands and events they invoke. To facilitate the detectiorfation abstraction is based on Active Messages (AM) [74],
of race conditions, we distinguish synchronous and asynwhich are small (36-byte) packets associated with a 1-byte
chronous code: handler ID. Upon reception of an Active Message, a node
dispatches the message (using an event) to one or more han-
Synchronous Code (SC):code that is only dlers that are registered to receive messages of that type.

Figure 5: The top-level configuration for the Surge applica-
tion.



Handler registration is accomplished using static wiring|Application Size Structure

and a parameterized interface, as described above. Optimized Unoptimized Reductigifasks Events Modulgs
AM provides an unreliable, single-hop datagram proto-|Blink 683 1791 61% | 0 2 8

col, and provides a unified communication interface to bothBlink LEDs

the radio and the built-in serial port (for wired nodes such| GenericBase 4218 6208 3% | 321 19

as basestations). Higher-level protocols providing multi-{Radio-to-UART packet router

hop communication, larger ADUs, or other features argCntroLeds 6121 9449 % | 17T 13

readily built on top of the AM interface. Variants of the ba- [2iSpiay counter on LEDS .
sic AM stack exist that incorporate lightweight, link-level | S"ToRm 9859 13969 29% | 4 31 27

security (see Section 4.1). AM’s event-driven nature and iegdt Ctoume_[ & rad'oflafl‘? T TR B
tight coupling of computation and communication make Psri(')jicrg::r‘;z”mgemal sampling 0

the abstraction well suited to the sensor network domain. Surge 704 0645 TR ”

. Ad-hoc multihop routing demo

2.5 Implementation Status Matée 23741 25907 8% | 15 51 39
TinyOS supports a wide range of hardware platforms ang¢Small virtual machine

has been used on several generations of sensor motes. Sifpject tracking 23525 37195 36% | 15 39 32
ported processors include the Atmel AT90L-series, Atme|"ack objectin sensor field .
ATmega-series, and Texas Instruments MSP-series proces™P8 63726 71269 10% ) 18 183 oL

SQL-like query interface

sors. TinyOS includes hardware support for the RFM
TR1000 and Chipcon CC1000 radios, as well as as welkigure 6:Size and structure of selected TinyOS applications.
as several custom radio chipsets. TinyOS applications may

be compiled to run on any of these platforms without mod-

ification. Work is underway (by others) to port TinyOS P ,
- ; bsolute Size:A TinyOS program’s component graph de-
glféliol\g'tr:nrfégg?l and Hitachi processors and to suppor ines which components it needs to work. Because compo-

TinvOS " tensive devel t . nents are resolved at compile time, compiling an applica-

'tn}{/h 5 _ Suppor St an ex elﬂs'\t/_e %Vebopme” eng'roniion builds an application-specific version of TinyOS: the
ment that incorporates visualization, aebugging, and SUragting image contains exactly the required OS services.
port tools as well as a fine-grained simulation environment. As shown in Figure 6, TinyOS and its applications are

Desktops, laptops, and palmtops can serve as proxies be-

tween sensor networks and wired networks, allowing inteigglg u;rshgn?ja;gsg?ggg gprernagmg Sﬁ”tn'et'melss Iﬁgls éhnan
gration with server side tools implemented in Java, C, of y : untime primitives (including

MATLAB, as well as interfaces to database engines suctj0ating-point libraries) fit in just over 1KEBlink _repre-
as PostgreSQL. nesC includes a tool that generates code 1§1tS the footprint for a minimal application using the base
and a primitive hardware timeEntToLeds incorpo-

marshal between Active Message packet formats and Ja L X : > .
rates a more sophisticated timer service which requires ad-

classes. ditional memory.GenericBase captures the footprint of

TinyOS includes TOSSIM, a high-fidelity mote simula- the radio stack whil&€ntToRfm incorporates both the ra-
tor that compiles directly from TinyOS nesC code, scalingji, siack and the generic timer, which is the case for many

to thousands of simulated nodes. TOSSIM gives the PrOreal applications. Most applications fit in less than 16KB,

grammer an omniscient view of the network and greatey, e the |argest TinyOS application, TinyDB, fits in about
debugging capabilities. Server-side applications can CoONs kR

nect to a TOSSIM proxy just as if it were a real sensor
network, easing the transition between the simulation enFootprint Optimization: TinyOS goes beyond standard
vironment and actual deployments. TinyOS also providegechniques to reduce code size (e.g., stripping the symbol
JTAG support integrated withdb for debugging applica- table). It uses whole-program compilation to prune dead
tions directly on the mote. code, and cross-component optimizations remove redun-
dant operations and module-crossing overhead. Figure 6
. . shows the reduction in size achieved by these optimizations
3 Meeting the Four Key Requirements on a range of applications. Size improvements range from
In this section, we show how the design of TinyOS, particu-8% for Mag, to 40% for habitat monitoring, to over 60%
larly its component model and execution model, addressetor simple applications.

our four key requirements: limited resources, reactive Congqmnonent Overhead:To be efficient, TinyOS must min-
currency, flexibility and low power. This section quantifies imize the overhead for module cross:ings. Since there are

basic aspects of resource usage and performance, includingi,a| functions or address-space crossings, the basic
storage usage, execution overhead, observed concurrengyy \ngary crossing is at most a regular procedure call. On
and effectiveness of whole-system optimization. Atmel-based platforms, this costs about eight clock cycles.
_— Using whole-program analysis, nesC removes many of
3.1 Limited Resources these boundary crossings and optimizes entire call paths by
We look at three metrics to evaluate whether TinyOS apapplying extensive cross-component optimizations, includ-
plications are lightweight in space and time: (1) the foot-ing constant propagation and common subexpression elim-
print of real applications should be small, (2) the compilerination. For example, nesC can typically inline an entire
should reduce code size through optimization, and (3) th€omponent into its caller.
overhead for fine-grain modules should be low. In the TinyOS timer component, triggering a timer event



Cycles Optimized  Unoptimized  Reduction Component Type Data-race variables
Work 371 520 29% RandomLFSR System 1
Boundary crossing 109 258 57% UARTM System 1
Non-interrupt 8 194 95% AMStandard System 2
Interrupt 101 64 -36% AMPromiscious System 2
Total 480 778 38% BAPBaseM Application 2
. .. . R . ChirpM Application 2
Figure 7: Optimization effects on clock event handling.This MicinghSpeedRadioM ssstem >
figure shows the breakdown, in CPU cycles, for both work TestTimerM Application 2
and boundary crossing for clock event handling, which requires ChannelMonC System 3
7 module crossings. Optimization reduces the overall cycle count | NoCrcPacket System 3
by 38%. OscilloscopeM Application 3
QueuedSend System 3
SurgeM Application 3
SenseLightToLogM Appl@cat@on 3
crosses seven component boundaries. Figure 7 shows cy- Iﬁiﬁem& éppt"cat'on 130
cle counts for this event chain with and without cross- | coomm Systom 17
component optimizations. The optimization saves notonly | TinyAloc System 18
57% of the boundary overhead, but also 29% of the work, IdentC Application 23
for a total savings of 38%. The increase in the crossing L '@ 103

overhead for the interrupt occurs because the inlining re-Figure 8:Component locations of race condition variables.
quires the handler to save more registers; however, the total
time spent in the handler goes down. The only remaining
boundary crossing is the one for posting the task at the end
of the handler.

Anecdotally, the code produced via whole-program op-
timization is smaller and faster than not only unoptimized }
code, but also the original hand-written C code that pre-
dates the nesC language.

/* Fixed version: */
uint8_t oldState;
atomic {
oldState = state;
if (state == IDLE) {
state = SENDING;

/* Contains a race: */
if (state == IDLE) {
state = SENDING;
count++;
/I send a packet

}

if (oldState == IDLE) {
count++;

/I send a packet

3.2 Reactive Concurrency }

We evaluate TinyOS’s support for concurrency by looking Figure 9:Fixing a race condition in a state transition.

at four metrics: (1) the concurrency exhibited by applica-

tions, (2) our support for race detection at compile time, (3)

context switching times, and (4) the handling of concurrentOf these, 53 were false positives (discussed below) and

events with real-time constraints. 103 were genuine data races, a frequency of about six per
Exhibited Concurrency: TinyOS's component model thousand code statements. We fixed each of these bugs by

makes it simple to express the complex concurrent action g\é'?gs%gg%géﬂ t:skﬁcc;rtil()));]uasrl]%g\)/rgmi e(sjt?ﬁzr?ﬁgs'r\é\é%n ce
in sensor network applications. The sample applications i PP P

Figure 6 have an average of 8 tasks and 47 events, each 8f falie S0 D000 URCEIE FE S0 SRETET I
which represents a potentially concurrent activity. More-

over, these applications exhibit an average of 43% of th ree. Half of the races existed in system-level components

: : sed by many applications, while the other half were ap-
tco?e (measured in bytes) reachable from an interrupt Corblicatio% Spegﬁcﬁﬂpumhop,v, eepromM, andTinyAlloc P
ext. : ’

. I had a disproportionate number of races due to the amount
As an example of a high-concurrency application, we

> ’ A . . of internal state they maintain through complex concurrent
consider TinyDB, covered in Section 5.3, an in-network o o ationsidentc  fracks node interactions, records them

query processing engine that allows users to pose QUEeNER flash, and periodically sends them to the basestation; it

tsr:)arfscsjl'lilr?clggzrlrblr;?tgrr]l?uflltlitel:edcitggﬂ?gnat nﬁgﬁgrsk g;ﬁﬁno'Fas complex concurrency, lots of state, and was written be-
which co)I/Iects dg?a from seﬁsors aoplies gome number dPre most of the concurrency issues were well understood.
» 8PP he nesC version is race free.

transformations, and sends it up a multihop routing tree to "' " g ite state-machine style of decomposition in

a basestation where the user receives results. The 18 taSﬁ?}yOS led to the most common form of bug, a non-atomic
and 193 events within TinyDB perform several concurrent tate transition. State transitions are typically implemented
operations, such as maintenance of the routing tables, mul-,

; ) : SO - > L -using a read-modify-write of the state variable, which must
tihop routing, time synchronization, sensor recalibration, ing

addition to the core functionality of sampling and process-—e atomic. A canonical example of this race is shown in
§ y piing P Figure 9, along with the fix.
ing sensor data.

The original versions of the communicatiofinyAl-

Race Detection: The nesC compiler reports errors if loc and EEPROM components contained large numbers of

shared variables may be involved in a data race. To evaluateariable accesses in asynchronous code. Rather than using

race detection, we examine the reported errors for accuraciarge atomic sections, which might decrease overall respon-
Initially, TinyOS included neither an explicatomic siveness, we promoted many of the offending functions to

statement nor the analysis to detect potential race condsynchronous code by posting a few additional tasks.

tions; both TinyOS and its applications had many data False positives fell into three major categories: state-

races. Once race detection was implemented, we applidohsed guards, buffer swaps, and causal relationships. The

detection to every application in the TinyOS source treefirst class, state-based guards, occurred when access to a

finding 156 variables that potentially had a race conditionmodule variable is serialized at run time by a state vari-



able. The above state transition example illustrates this; in| Component Code Size Data Size

this function, the variableount is safe due to the moni- (Sizes in bytes) inlined _noninlined

tor created bystate . Buffer swaps are a controlled kind AM 456 654 9

of sharing in which ownership is passed between producer]_Core Active Messages layer

and consumer; it is merely by this convention that there are| MicaHighSpeedRadioM 1162 1250 61

no races, so it is in fact useful that nesC requires the pro-|Radio hardware interface

grammer to check them. The third class of false positives | NoCRCPacket 370 484 50

occurs when an event conflicts with the code that caused it|-acket framing without CRC

to execute, but because the two never overlap in time there Crefiter - 34 0

is no race. However, if there are other causes for the event,—CRC fitering

then there is a race, so these are also worth explicitly check-| chameMonc 54 486 o

. e Start symbol detection

ing. In all cases, theorace type qualifier can be used to RadioTimingC e 5 5

remove the warnings. Timing for start symbol detection

Context Switches: In TinyOS, context switch overhead PotM 50 82 1

corresponds to both the cost of task scheduling and in-| Transmit power control

terrupt handler overhead. These costs are shown in Fig-{ SecDedEncoding 662 684 3

ure 10 based on hand counts and empirical measurements. Error correction/detection coding

The interrupt overhead consists of both switching overhead| spiByteFifoC 344 438 2

and function overhead of the handler, which varies with the | Low-level byte interface

number of saved registers. HPLPotC - 66 0

Hardware potentiometer interface

Overhead Time (clock cycles) Figure 11:Breakdown of code and data size by component in
Interrupt Switching 8 the TinyOS radio stack. A ‘— in the inlined column indicates
'T“;;fg'xigﬁ?ndser Cost Zfég"' that the corresponding component was entirely inlined. Dead

code elimination has been applied in both cases.

Figure 10:TinyOS scheduling overhead.

Real-time Constraints: The real-time requirements in the Fine-grained Components: TinyOS allows applications
sensor network domain are quite different from those tradito be constructed from a large number of very fine-grained
tionally addressed in multimedia and control applicationscomponents. This approach is facilitated by cross-module
Rather than sophisticated scheduling to shed load whemlining, which avoids runtime overhead for component
many tasks are ongoing, sensor nodes exhibit bursts of acomposition. The TinyOS codebase consists of 401 com-
tivity and then go idle for lengthy intervals. Rather than de-ponents, of which 235 are modules and 166 are configu-
livering a constant bit rate to each of many flows, we mustrations. The 42 applications in the tree use an average of
meet hard deadlines in servicing the radio channel whilé’4 components (modules and configurations) each. Mod-
processing sensor data and routing traffic. Our initial plat-ules are typically small, ranging from between 7 and 1898
forms required that we modulate the radio channel bit-by{ines of code (with an average of 134, median of 81).

bit in software. This required tight timing on the transmitter  Figure 11 shows a per-component breakdown of the data
to generate a clean waveform and on the receiver to samplgnd code space used by each of the components in the
each bit properly. More recent platforms provide greaterTinyOS radio stack, both with and without inlining applied.
hardware support for spooling bits, but start-symbol detecThe figure shows the relatively small size of each of the
tion requires precise timing and encoding, decoding, an¢omponents, as well as the large number of components in-
error-checking must keep pace with the data rate. Our apyolved in radio communication. Each of these components
proach of allowing sophisticated handlers has proven suffican be selectively replaced, or new components interposed
cient for meeting these requirements; typically the handlefyithin the stack, to implement new functionality.

performs the time-critical work and posts a task for any re- . . .
maining work. With a very simple scheduler, allowing the Concurrent Components: As discussed in the previous
handler to execute snippets of processing up the chain ¢i€ction, any component can be the source of concurrency.
of deadlines directly, rather than trying to coerce a prior-@blé any component to generate events autonomously. In
ity scheme to produce the correct ordering. More criticalddition, the static race detection provided by nesC re-
is the need to manage the contention between the sequeng®ves the need to worry about concurrency bugs dur-
of events associated with communication (the handler) ani'd composition. Out of our current set of 235 modules,
the sampling interval of the application (the tasks). Ap-18 (7.6%) contain at least one interrupt handler and are
plying whole-system analysis to verify that all such jitter thereby sources of concurrency.

bounds are met is an area for future work. Hardware/Software Transparency: The TinyOS compo-
3.3 FElexibilit nent model makes shifting the hardware/software boundary
: y easy; components can generate events, which may be soft-
To evaluate the goal of flexibility, we primarily refer to ware upcalls or hardware interrupts. This feature is used
anecdotal evidence. In addition to the quantitative goain several ways in the TinyOS codebase. Several hardware
of fine-grain components, we look at the qualitative goalsinterfaces (such as analog-to-digital conversion) are imple-
of supporting concurrent components, hardware/softwarenented using software wrappers that abstract the complex-
transparency, and interposition. ity of initializing and collecting data from a given sensor



hardware component. In other cases, software componentsand causes a component to attempt to minimize its power
(such as radio start-symbol detection) have been supplantensumption, for example, by powering down hardware or
with specialized hardware modules. For example, each aflisabling periodic tasks. The component saves its state in
the radios we support has a different hardware/softwar®AM or in nonvolatile memory for later resumption using
boundary, but theamecomponent structure. thestart command. It also informs the CPU about the

Interposition: One aspect of flexibility is the ability tm- ~ CNange in the resources it uses; the system then uses this

terposecomponents between other components. Whenevdpformation to decide whether deep power saving modes

a component provides and uses the same interface type, 3fould be used. This strategy works well: with all com-
can be inserted or removed transparently. ponents stopped, the base system without the sensor board

One example of this is seen in work at UVA [26], which consumes less than 14\, which is comparable to self dis-

interposes a component in the network stack at a fairly Iovxf:h"":jge rate OflAA altkhallr(lje tbatterlles. thhmde 'l'_fet'tme de-
level. Unknown to the applications, this component bufferspehefn ggg_ag y;f'pof i Iy Ltj)gtt((:eyr(':ei 22n oe grpg Iggr:gtgrqﬁ-
the payload of each message and aggregates message§1 , apal ! pow M

the same destination into a single packet. On the receivaCtVe node for up to 15 days or a permanently idle node for
side, the same component decomposes such packets a to 5 years (battery shelf life). By exposing the start/stop

passes them up to the recipients individually. Although!nerface at many levels, we enable a range of power man-

remaining completely transparent to the application, thi29eMent schemes to be implemented, for example, using
scheme can actualiecreasaetwork latency by increas- POWer scheduling to disable the radio stack when no com-
ing overall bandwidth. munication is expected, or powering down sensors when
A similar type of interpositioning can be seen in the ob-Notin use.

ject tracking application described in Section 5.2. The routHardware/Software Transparency: The ability to re-

ing stack allows the interpositioning of components that enplace software components with efficient hardware imple-
able, for example, reliable transmission or duplicate mesmentations has been exploited to yield significant improve-
sage filtering. Similarly, the sensor stacks allow the inter-ments in energy consumption in our platform. Recent
positioning of components that implement weighted-timework [36] has demonstrated a single-chip mote that inte-

averaging or threshold detection. grates the microcontroller, memory, radio transceiver, and
radio acceleration logic into a 5 ninsilicon die. The
3.4 Low Power standard software radio stack consumes 3.6 mA (involving

fibout 2 million CPU instructions per second); The hard-

The application-specific nature of TinyOS ensures tha are implementation of these software components con-
no unnecessary functions consume energy, which is the P P

most precious resource on the node. However, this as:uMes 1ss than 100\ and allows for much more efficient

pect alone does not ensure low power operation. We exanf—se of microcontroller sleep modes while providing a 25-

ine three aspects of TinyOS low power operation support.Old improvement in communication bit rate.
application-transparent CPU power management, power .
management interfaces, and efficiency gains arising frondt Enabled Innovations

hardware/software transparency. A primary goal for TinyOS is to enable innovative solu-
CPU power usage: The use of split-phase operations tions to the systems challenges presented by networks of
and an event-driven execution model reduces power usagesource constrained devices that interact with a chang-
by avoiding spinlocks and heavyweight concurrency (e.g.ing physical world. The evaluation against this goal is in-
threads). To minimize CPU usage, the TinyOS scheduleherently qualitative. We describe three subsystems where
puts the processor into a low-power sleep mode whenevgrovel approaches have been adopted that can be directly
the task queue is empty. This decision can be made verelated to the features of TinyOS. In particular, TinyOS
quickly, thanks to run-to-completion semantics of tasks,makes several kinds of innovations simpler that appear in
which maximizes the time spent in the sleep mode. Fothese examples: 1) cross-layer optimization and integrated-
example, when listening for incoming packets, the CPUlayer processing (ILP), 2) duty-cycle management for low
handles 20000 interrupts per second. On the current sepower, and 3) a wide-range of implementation via fine-
sor hardware, the CPU consumes 4.6 mA when active angrain modularity.

2.4 mA when idle, and the radio uses 3.9 mA when re- .

ceiving. System measurements show the power consumgh.1  Radio Stack

tion during both listening and receiving to be 7.5 mA. The p 1 6te's network device is often a simple, low-power radio

scheduletr, Vt‘{n'Ch needs :0 exam|tne' thgltask %uerfo/aﬂ?rtﬁ\’r'ansceiver that has little or no data buffering and exposes
ery event, still manages to operate in idie mode 00 eprimitive control and raw bit interfaces. This requires han-

time. dling many aspects of the radio in software, such as control-
Power-Management Interfaces: The scheduler alone ling the radio state, coding, modulating the channel, fram-

cannot achieve the power levels required for long-term aping, input sampling, media access control, and checksum
plications; the application needs to convey its runtime reprocessing. Various kinds of hardware acceleration may be
quirements to the system. TinyOS address this requirememirovided for each of the elements, depending on the spe-
through a programming convention which allows subsys-<ific platform. In addition, received signal strength can be

tems to be put in a low power idle state. Components exebtained by sampling the baseband energy level at partic-
pose aStdControl interface, which includes commands ular times. The ability to access these various aspects of
for initializing, starting, and stopping a component and thethe radio creates opportunities for unusual cross-layer opti-
subcomponents it depends upon. Calling ¢t com-  mization.



Integrated-Layer Processing: TinyOS enables ILP Hardware/Software Transparency: The existence of a
through its combination of fine-grain modularity, whole- variety of radio architectures poses a challenge for system
program optimization, and application-specific handlersdesigners due to the wide variation in hardware/software
One example is the support for link-layer acknowledg-boundaries. There are at least three radio platforms that
ments (acks), which can only be generated after the checlare supported in the TinyOS distribution: the 10kbps first-
sum has been computed. TinyOS allows the radio stacigeneration RFM, the 40kbps hardware-accelerated RFM,
to be augmented with addition error checking by simplyand the recent 40kbps Chipcon. In addition, UART and
interposing the checksum component between the compd2C stacks are supported. The hardware-accelerated RFM
nent providing byte-by-byte radio spooling and the packeiplatform exemplifies how a direct replacement of bit level
processing component. It is also important to be able tgrocessing with hardware achieves higher communication
provide link-level acknowledgments so that higher levelsbandwidth [29]. In the extreme cases, the entire radio
can estimate loss rates or implement retransmission, howstack has been built in pure hardware in spec (mote-on-
ever, these acks should be very efficient. The event protoca-chip) [36], as well as in pure software in TOSSIM [44].
within the stack that was developed to avoid buffering atWe have also transparently used hardware acceleration for
each level allows the checksum computation to interleavencryption. Stack elements using a component remain un-
with the byte-level spooling. Thus, the ack can be generehanged, whether the component is a thin abstraction of a
ated immediately after receiving the last byte thus the unhardware element or a software implementation.

derlying radio component can send the agkchronously

i.e. reversing the channel direction without re-arbitration or
reacquisition. Note that holding the channel is a real-time
operation that is enabled by the use of sophisticated han*"

dlers that traverse multiple layers and components withouﬁ.. d locati both critical i tworks d
data races. This collection of optimizations greatly reduce’ M€ &nd jocation are both criical in Sensor NEworks due
o the embodied nature of sensor nodes; each node has

both latency and power, and in turn allows shorter tlmeout8 real, physical relationship with the outside world. One

at the sender. Clean modularity is preserved in the cod . v o
since these time-critical paths span multiple components. chalIengequttnetworrlT time sgnchronlzaudor; IS _totelémln%teb
; : : . ~."sources of jitter such as media access delay introduced by

ILP and flexible modularity have been used in a simi the radio stack. Traditional layering often hides the de-

lar manner to provide flexible security for confidentiality . _: ; 7
e . . 7 tails at the physical layer. Timing protocols often per-

andt autth?ntlcagon [2(}' %Itft]rc])ugh Imk—legt;:l tsecurlt}I/_;‘s 'mt').lform round-trip time estimation to account for these errors.
portant, it can degrade both power and latency. The abil— ; s
iy t0 overlap computation via ILP helps with the latency, 025, M S PGIROTEN O RE TRERONEL SO I
while interposition makes it easy add security transparentl%it of data is transmitted: this eliminates media access de-
as needed. This work also showed that the mechanisms f ; . ; -
avoiding copying or gather/scatter within the stack could %fgovw]gﬁlf#gt;?enjr'tﬁg?ilrlgtr Ié/’a,::%?,pfgsrnc;;itﬁg ?haegtran f?nSé_
be used to substantially modify packet headers and trailer rain timestamps can reduce time synchronization error to

Witzo_t_’.t Cfgsngindg otfj(erlfofmpoger:tslinggegiagk. less than a bit time<25us). Although reference broad-
| 'n%/ dra 10 stac r(I)ITD t‘)E al.[ i ] Issoézml(lax- (Last synchronization (RBS) [16] achieves synchronization
ample that demonstrates y combining -11-styl&; ccurate to within As without interposition by comparing

media access with transmission scheduling. This allowgie stamps of receivers, it does so at the cost of many
ahlovy-duty cycle (similar to TDMA) with flexible channel 5 et transmissions and sophisticated analysis.
sharing.

Power Management:Listening on the radio is costly even
when not receiving anything, so minimizing duty cycle
is important. Traditional solutions utilize some form of

2 Time Synchronization and Ranging

The ability to interact with the network stack at this low
level also enabled precise time of flight (TOF) measure-
ments for ranging in an ad-hoc localization system built on
; : ; ~ TinyOS [76]. A transmitter sends an acoustic pulse with a
TDMA to turn off the radio for long periods until a recep radio message. TinyOS's low context switching overhead

tlg?tihs I}';i'%/ 'fin-g-nyrgiﬁ a(ll\c,)vv;? r?1 ;noa:/ eellrilé%naélv?n?g f;t?n enables receivers to check for the acoustic pulse and the ra-
P 9 9 P g - BY g Yio message concurrently. Taking the difference between

fast power management with precise timing, we were abl he timestamps of the two signals produces an acoustic

to periodically sample the radio for very short intervals at :
: - L TOF measurement. TinyOS can accurately measure both
the physical layer, looking for a preamble. This yields thearrival times directly in their event handlers, since the han-

illusion of an always-on radio at a 10% duty cycle while lis- : : . ;
; : 7 L oS dlers execute immediately; a solution based on queuing the
tening, while avoiding a priori partitioning of the channel work for later would forfeit precise timing, which is also

bandwidth. Coarse-grain duty cycling can still be imple- L L
mented at higher levels, if needed. true for the time-syncrhonization example above.

TinyOS has also enabled an efficient solution to the epi- The newest version of the ranging application uses a
demic wakeup problem. Since functionality can be placedco-processor to control the acoustic transducer and per-
at different levels within the radio stack, TinyOS can detectform costly localization calculation. Controlling the acous-
that a wakeup is likely by sampling the energy on the chantic transducer requires real time interactions between the
nel, rather than bring up the ability to actually receive pack-two processors which is enabled by TinyOS’s low over-
ets. This low-level wake-up only requires 0.00125% dutyhead event handling. To exploit parallelism between the
cycle [29], a 400-fold improvement over a typical packet-two processors, computation and communication must be
level protocol. A similar approach has been used to deriveverlapped; the split-phased nature of TinyOS’s AM model
network neighborhood and proximity information [73].  makes this trivial.



4.3 Routing

The rigid, non-application specific communication stack
found in industrial standards such as IEEE 802.11 [1] o1
Bluetooth [7] often limit the design space for routing proto-
cols. TinyOS’s component model and ease of interpositior
yield a very flexible communication stack. This opens up
a platform for implementing many different routing pro-

tocols such as broadcast based routing [23], probabilisti
routing, multipath routing [37], geographical routing, reli-

ability based routing [80, 82], TDMA based routing [14],

and directed diffusion [34].

The large number of routing protocols suggests that ser
sor network applications may need to use a diverse se
within one communication stack. TinyOS’s parameterized Data Service

interfaces and extensible component model enable a cohe.

ent routing framework where an application can route by  Figure 12:System architecture for habitat monitoring.
network address, geographic location, flooding, or along

some application specific gradients [69].

Sensor Node

Client Data Browsing
and Processing

/\

Internet

Basestation

Base-Remote Link

_ . i networks might better be served by a lean bytecode inter-
4.4 Dynamic Composition and Virtual Ma-  preter that sits on top of a TinyOS substrate.

chines o
In our experience, most sensor network applications uti—5 Applications

lize a common set of services, combined in different ways!In this section, we describe three applications that have
A system that allows these compositions to be conciseljpeen built using the TinyOS platform: an environmen-
described could provide much of the flexibility of full tal monitoring system, a declarative query processor, and
reprogramming at a tremendous decrease in communic&agnetometer-based object tracking. Each of these appli-
tion costs. Ma, a tiny bytecode interpreter that runs on cations represents a distinct set of design goals and exhibits
TinyOS [43], meets this need. It is a single nesC moduledifferent aspects of the TinyOS design.

that sits on top of several system components, includin% . o

sensors, the network stack, and non-volatile storage. .1 Habitat Monitoring

Maté presents a virtual stack architecture to the pro-Sensor networks enable data collection at a scale and res-
grammer. Instructions include sensing and radio communielution that was previously unattainable, opening up many
cation, as well as arithmetic and stack manipulation.&lat new areas of study for scientists. These applications pose
has a set of user-definable instructions. These allow devemany challenges, including low-power operation and ro-
opers to use the VM as a framework for writing new VM bustness, due to remote placement and extended operation.
variants, extending the set of TinyOS services that can be One such application is a habitat monitoring system on
dynamically composed. The virtual architecture hides theGreat Duck Island, off the coast of Maine. Researchers
split-phased operations of TinyOS behind synchronous indeployed a 35-node network on the island to monitor the
structions, simplifying the programming interface. This re- presence of Leach’s Storm Petrels in their underground bur-
quires the VM to maintain a virtual execution context asrows [51]. The network was designed to run unattended for
a continuation across split-phase operations. The staclat least one field season (7-9 months). Nodes, placed in
based architecture makes virtual context switches trivialpurrows, monitored light, temperature, relative humidity,
and as contexts are only 78 bytes (statically allocated in @ressure, and passive infrared; the network relayed read-
component), they consume few system resources. Contexiisgs back to a base station with an Internet connection via
run in response to system events, such as timers or packeatellite, to be uploaded to a database. Figure 12 illustrates
reception. the tiered system architecture for this application.

Programs virally propagate through a network; once A simple TinyOS program ran on the motes. It peri-
a user introduces a single mote running a new programpdically (every 68 s) sampled sensors and relayed data to
the network rapidly and autonomously reprograms itselfthe base-station. To achieve long network lifetimes, nodes
Maté programs are extremely concise (orders of magnitudesed the power management facilities of TinyOS aggres-
shorter than their binary equivalents), conserving commusively, consuming only 3%A in low power state, com-
nication energy. TinyOS’ event-driven execution providespared to 18—20 mA when active. Nodes sampled sensors
a clear set of program-triggering events, and the nesC'’s ineoncurrently (using a split-phase data acquisition opera-
terfaces allow users to easily change subsystems (such &en), rather than serially, resulting in further power reduc-
ad-hoc routing). Md extends TinyOS by providing an in- tion. During the 4 months of deployment, the network col-
expensive mechanism to dynamically compose programgdected over 1.2 million sensor readings.
nesC’s static nature allows it to produce highly optimized A specialized gateway node, built using a mote con-
and efficient codes; Matdemonstrates that run-time flexi- nected to a high-gain antenna, relayed data from the net-
bility can be re-introduced quite easily with low overhead.work to a wired base station. The gateway application
By eschewing aside the traditional user/kernel boundaryvas very small (3090 bytes) and extraordinarily robust: it
TinyOS allowed other possibilities to emerge. Klag- ran continuously, without failing, for the entire 4 months
gests that the run-time/compile-time boundary in sensoof deployment. The gateway required just 2 Watt-hours



of energy per day and was recharged with a 36salar 1) Z-Racer drives

panel [63]. In comparison, an early prototype version of g 2 @53 P 5

the gateway, an embedded Linux system, required over 60 )
Watt-hours of energy per day from a 924 isolar panel. 2) Broadcast detections
The Linux system failed every 2 to 4 days, while the gate- _ TN ,

way mote was still operating two months after researchers ~ ®*" €2 &3y = s @5

lost access to the island for the winter. / \

5.2 Object Tracking e e:2) 33 LR e:5)
The TinyOS object-tracking application (OTA) uses a sen- > saerggrgosnm

sor network to detect, localize and track an object mov-

ing through a sensor field; in the prototype, the objectis ~ ®2" / ®22) €23) 024 025

the field determines the actions and communication of the
motes. Each mote periodically samples its magnetometer; @11 12 @13 o4 )

i the_ reading has changed .Signifiqantlylsince the last SaMejgyre 13:Event-triggered activity in the object tracking ap-
ple, it broadcasts the reading to its neighbors. The nOdﬁligation. (1) The vg%icle being t¥acked drijves aroundgpc?sition
with the largest reading change estimates the position of4,4) (dashed-line); (2) Six nodes broadcast readings (lightened
the target by computing the centroid of its neighbors’ read-nodes); (3) Node (4,4) declares itself the leader, aggregates the
ings. Using geographic routing [38], the network routesreadings, and routes them to the base station (dark arrows).
the estimated position to the base-station, which controls a
camera to point at the target. The operation of the tracking
application is shown in Figure 13.

OTA consists of several distributed services, such a&€ query:
routing, data sharing, time synchronization, localization, SELECT AVG(light)
power management, and sensor filtering. Twelve different CfHOE'\gESiQrSn"f) 100 F
research groups are collaborating on both the architecture SAMPLE PERIOD 10s
and individual subsystem implementation. TinyOS execu-
tion model enables running these services concurrently otells the network to provide the average light value
limited hardware resources. The component model allowgver all the nodes with temperature greater than°100
for easy replacement and comparative analysis of individF once every 10 seconds. TinyDB uses in-network
ual services. Currently, the reference implementation conaggregation [42, 49] to greatly reduce network bandwidth
sists of 54 components. General purpose services, such gsquirements; this requires that nodes coordinate to
time synchronization or localization, have many competingproduce the results.
impIFmentation;sl, en?bleld by different featudr(fes of TinyOSI. TinyDB relies heavily on TinyOS’component-oriented
Replacement of low-level components used for sensing al5 __. - o
Iowped OTA to be adapted to trae:k using light valuesinst%acfies'gn’ concurrency primitives, and ability to perform
of magnetic fields. cross-layer optimizations. TinyDB consists of components

: that perform query flooding, local data collection, forma-
Several research groups have successfully implement po . ;
application specific services within this framework. HuipT h of routing trees, aggregation of query data, and a cat-

et al. developed a sentry-based approach [31] that agalog of available sensor devices and attributes (such as lo-

dresses power management within an object tracking ne cation) at each node. It uses the routing, data collection,
work. Their algorithm chooses a connected subset of sentr’ nd power _np]anagement ]Ln.terfiaces of TmyOSf, ﬁnd inter-
motes, which allows for degraded sensing; the non-sentr perates with a variety of implementations of these ser-
units are placed in a low power state. This service make |ce§. _

extensive use of the TinyOS power management interfaces, TinyOS's task model meshes well with the concurrency
and is shown to reduce energy consumption by 30% wittrequirements of TinyDB, which supports multiple simulta-

a remote-controlled car. The object's movement through /

minimal degradation of tracking accuracy. neous queries by scheduling a timer for each query which
] fires when the next set of results for that query are due.
5.3 TinyDB Each timer event posts a task to collect and deliver results

for the corresponding query. The non-preemptive nature
work through a high-level, declarative interface rather©f tasks and the support for safe concurrent handlers avoid

than by low-level programming of individual nodes. data races despite extensive information sharing.
TinyDB [50], a declarative query processor built on  One example benefit of cross-layer optimization in
TinyOS, supports this view, and is our largest and mosiTinyDB is message snooping, which is important for de-
complex application to date. It poses significant challengesermining the state of neighboring nodes in the network.
for concurrency control and limited resources. Snooping is used to enable query propagation: new nodes
In TinyDB, queries (expressed in an SQL-like syntax)joining the network learn of ongoing queries by snooping
propagate through the network and perform local data colfor results broadcast by neighbors. This technique also en-
lection and in-network aggregation. Queries specify onlyables message suppression; a node can avoid sending its
what data the user is interested in and the data collectiotocal reading if it is superseded by a message from another
rate; the user does not specify any details of query propanode, as in the case of a query requesting the maximum
gation, data collection, or message routing. For examplesensor value in the network.

Many sensor network users prefer to interact with a net



6 Related Work not address the specific needs of low-power, low-resource
Sensor networks have been the basis for worladrhoc embedded systems. The units [19] component model, sup-

: . ._ported by the Knit [67] language in OSKit [20], is similar
networking [34, 37, 38, 47], data aggregation [33, 49], dis to that in nesC. In Knit, components provide and use inter-
tributed algorithms [25, 46, 59], and primitives such as lo- :

ot : ot faces, and new components can be assembled out of exist-
calization [8, 76, 77], and time synchronization [16, 62]. In ing ones. Unlike nesC, however, Knit lacks bidirectional
addition to our mote platform, a number of low-power Sen_'gterfaces and static analyses such as data race detection.

sor systems have been proposed and developed [3, 4, 19
39, 55, 56, 64], though few of these systems have addressed, S€Veral embedded systems have taken a component-

flexible operating systems design. Several projects usirlented approach for application-specific configurabil-

P y [21]. Many of these systems use heavyweight compo-
cr:}o‘:rﬁsigarg;ggge;]laerngsaerc;d[%(i].systems (such as PDAs [16] ition mechanisms, such as COM or CORBA, and several

; - t runtime component instantiation or interposition-
A wide range of operating systems have been devel2UPPOr :
oped for embedded systems. These range from relativel ng.selTUrIEzEt([,ﬁ]’T?nC%SS['SG](’)ZIngf I|(i:V|’\<8VF\(;=<?ItH2tZti[SSC]OT’IOZ)e—
large, general-purpose systems to more compact real-tim y y 9 9 gnt, P

executives. In [30] we discuss range of these embedde :tlao\?v'ir(;r dh?oseetsggﬁg;tshg(r)rrﬁéﬁu(z)aﬁla grebs(‘)ifncogc%orgegtssitit:ﬁt
and real-time systems in detail. These systems are gener- 9 Y 9 P

ally not suitable for extremely resource-constrained sensg°)) t0 form an application. Components vary in size from

nodes, which mandate very compact, specialized OS d ine-grained, specialized objects (as in cWORKSHOP) to

signs ’Here we focus our attention on’ a number of emerg.—arger classes and packages (PURE and eCos). VEST [70]
' ! a proposed toolkit for building component-based embed-

ing systems that more closely match the resource budgé : :
and execution model of sensor networks. c?ed systems that performs extensive static analyses of the

Traditional embedded operating systems are typicall system, such as schedulability, resource dependencies, and

y .
large (requiring hundreds of KB or more of memory), interface type-checking.
eneral-purpose systems consisting of a binary kernel wit . . .

g rich sel?t oI[fJ progryamming interfaces. Examples includeh] Discussion, Future Work, and Conclusion
WInCE [52], QNX [28], PalImOS [60], pSOSystem [79], Sensor networks present a novel set of systems challenges,
Neutrino [65], OS-9 [54], LynxOS [48], Symbian [71], and due to their need to react to the physical environment, to
uClinux [72]. Such OSes target systems with greater CPUet nodes asynchronously communicate within austere re-
and memory resources than sensor network nodes, and gesburce constraints, and to operate under a very tight energy
erally support features such as full multitasking, memorybudget. Moreover, the hardware architectures in this new
protection, TCP/IP networking, and POSIX-standard APlsarea are changing rapidly. When we began designing an
that are undesirable (both in terms of overhead and genebperating system for sensor nets we believed that the lay-
ality) for sensor network nodes. ers and boundaries that have solidified over the years from

There is also a family of smaller real-time executives, mainframes to laptops were unlikely to be ideal. Thus, we
such as CREEM [40], OSEKWorks [78], and Ariel [53], focused on building a framework for experimenting with
that are closer in size to TinyOS. These systems support & variety of system designs so that the proper boundaries
very restrictive programming model which is tailored for could emerge with time. The key elements being a rich
specialized application domains such as consumer devicesmponent approach with bidirectional interfaces and en-
and automotive control. capsulated tasks, pervasive use of event-based concurrency,

Several other small kernels have been developed thatnd whole-system analysis and optimization. It has been
share some features in common with TinyOS. These syssurprising just how varied those innovations are.
tems do not support the degree of modularity or flexibil-  Reflecting on the experience to date, the TinyOS’ com-
ity in TinyOS’s design, nor have they been used for asponent approach has worked well. Components see a great
wide a range of applications. EMERALDS [85] is a real- deal of re-use and are generally defined with narrow yet
time microkernel, requiring about 13KB of code, that sup-powerful interfaces. nesC's optimizations allow develop-
ports multitasking using a hybrid EDF and rate-monotonicers to use many fine-grained components with little penalty.
scheduler. Much of this work is concerned with reducingThis has facilitated experimentation, even with core sub-
overheads for semaphores and IPC. AvrX [5] is a smallsystems, such as the networking stack. Some developers
kernel for the AVR processor, written in assembly, thatexperience initial frustration with the overhead of building
provides multitasking, semaphores, and message queuesgomponents with a closed namespace, rather than just call-
around 1.5 KB of memory. Nut/OS [15] and NESOS [58] ing library routines, but this is compensated by the ease
are small kernels that provide non-preemptive multitask-of interpositioning, which allows them to introduce simple
ing, similar in vein to the TinyOS task model, but use some-extensions with minimal overhead.
what more expensive mechanisms for interprocess commu- The resource-constrained event-driven concurrency
nication than TinyOS’s lean cross-module calls. The BTN-model has been remarkably expressive and remains almost
ode OS [39] consists mainly of library routines to interfaceunchanged from the first version of the OS. We chose the
to hardware and a Bluetooth communication stack, but suptask/event distinction because of its simplicity and mod-
ports an event-driven programming model akin to TinyOS.est storage demands, fully expecting that something more
Modules can post a single-byte event to a dispatcher, whicBophisticated might be needed in the future. Instead, it
fires the (single) handler registered for that eventtype.  has been able to express the degree of concurrency re-

A number of operating systems have explored the use ofuired for a wide range of applications. However, the me-
component architectures. Click [41], Scout[57], andithe chanics of the approach have evolved considerably. Ear-
kernel [32] are classic examples of modular systems, but dber versions of TinyOS made no distinction between asyn-



chronous and synchronous code and provided inadequafleferences

support for eliminating race conditions, many of which [y
were exceedingly difficult to find experimentally. At one
point, we tried introducing a hard boundary to AC, so all
“user” processing would be in tasks. This made it impossi- [3]
ble to meet the real-time requirements of the network stack,
and the ability to perform a carefully designed bit of pro- (4]
cessing within the handler was sorely missed. The frame-
work for innovation concept led us to better support for
building (via atomic sections) the low-level concurrent data [°!
structures that cleanly integrate information from the asyn- (6]
chronous external world up into local processing. This par-
ticularly true for low-level real-time operations that cannot
be achieved without sophisticated handlers.

TinyOS differs strongly from most event-driven embed- :

ded systems in that concurrency is structured into modulart
components, instead of a monolithic dispatch constructed
with global understanding of the application. Not only has
this eased the conceptual burden of managing the concurl
rency, it has led to important software protocols between
components, such as split-phase data acquisition, dat o)
pumps found between components in the network stack;
and a power-management idiom that allows hardware ele-
ments to be powered-down quickly and easily. In a number
of cases, attention to these protocols provided the benefitsll
of integrated-layer processing while preserving clean mod-
ularity.

7]
8]

TinyOS is by no means a finished system; it contin-*2
ues to evolve and grow. The use of language tools for
whole-system optimization is very promising and should
be taken further. Currently, components follow implicit [13]
software protocols; making these protocols explicit entities
would allow the compiler to verify that components are be-
ing properly used. Examples of these protocols include thé
buffer-swapping semantics of the networking stack and the
state sequencing in the control protocols. Parallels exist bd*®

tween our needs and work such as Vault [13] and MC [17]116]

Richer means of expressing composition are desirable.
For instance, while developing a routing architecture, we,
found that layers in the stack required significant self-
consistency and redundancy in their specifications. A sim-
ple example is the definition of header fields when multiple
layers of encapsulation are provided in the network stacki8l
We have exploredemplate wiring which defines a skele-
ton structure, behaviors of composition, and naming con- g
ventions into which stackable components can be inserted’
A template wiring produces a set of modules and config-
urations that meet the specification; it merges componerjto)
composition and creation into a single step. We expect to
incorporate these higher-level models of composition into
nesC and TinyOS as they become more clear and well dd?!!
fined.

We continue to actively develop and deploy sensor netl??]
work applications; many of our design decisions have been
based on our and other users’ experiences with these SYg3)
tems in the field. Sensor networks are still a new domain,
filled with unknowns and uncertainties. TinyOS provides
an efficient, flexible platform for developing sensor net-
work algorithms, systems, and full applications. It has en{24
abled innovation and experimentation on a wide range of
scale.
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