
TinyOS: An Operating System for Sensor Networks

Jason Hill, Robert Szewczyk, Alec Woo, Philip Levis, Sam Madden, Cameron Whitehouse,
Joseph Polastre, David Gay, Cory Sharp, Matt Welsh,

Eric Brewer and David Culler

Abstract
We present TinyOS, a flexible, application-specific operating sys-
tem for sensor networks. Sensor networks consist of (potentially)
thousands of tiny, low-power nodes, each of which execute con-
current, reactive programs that must operate with severe memory
and power constraints. The sensor network challenges of limited
resources, event-centric concurrent applications, and low-power
operation drive the design of TinyOS. Our solution combines flex-
ible, fine-grain components with an execution model that supports
complex yet safe concurrent operations. TinyOS meets these chal-
lenges well and has become the platform of choice for sensor net-
work research; it is in use by over a hundred groups worldwide,
and supports a broad range of applications and research topics.
We provide a qualitative and quantitative evaluation of the system,
showing that it supports complex, concurrent programs with very
low memory requirements (many applications fit within 16KB of
memory, and the core OS is 400 bytes) and efficient, low-power
operation. We present our experiences with TinyOS as a platform
for sensor network innovation and applications.

1 Introduction
Advances in networking and integration have enabled
small, flexible, low-cost nodes that interact with their en-
vironment and with each other through sensors, actuators
and communication. Single-chip systems are now emerg-
ing that integrate a low-power CPU and memory, radio
or optical communication [75], and MEMS-based on-chip
sensors. The low cost of these systems enables embedded
networks of thousands of nodes [18] for applications rang-
ing from environmental and habitat monitoring [11, 51],
seismic analysis of structures [10], and object localization
and tracking [68].

Sensor networks are a very active research space, with
ongoing work on networking [22, 38, 83], application sup-
port [25, 27, 49], radio management [8, 84], and secu-
rity [9, 45, 61, 81], as a partial list. A primary goal of
TinyOS is to enable and accelerate this innovation.

Four broad requirements motivate the design of TinyOS:

1) Limited resources: Motes have very limited physical
resources, due to the goals of small size, low cost, and low
power consumption. Current motes consist of about a 1-
MIPS processor and tens of kilobytes of storage. We do
not expect new technology to remove these limitations: the
benefits of Moore’s Law will be applied to reduce size and
cost, rather than increase capability. Although our current
motes are measured in square centimeters, a version is in
fabrication that measures less than 5 mm2.

2) Reactive Concurrency: In a typical sensor network
application, a node is responsible for sampling aspects of
its environment through sensors, perhaps manipulating it

through actuators, performing local data processing, trans-
mitting data, routing data for others, and participating in
various distributed processing tasks, such as statistical ag-
gregation or feature recognition. Many of these events,
such as radio management, require real-time responses.
This requires an approach to concurrency management that
reduces potential bugs while respecting resource and tim-
ing constraints.

3) Flexibility: The variation in hardware and applications
and the rate of innovation require a flexible OS that is both
application-specific to reduce space and power, and inde-
pendent of the boundary between hardware and software.
In addition, the OS should support fine-grain modularity
and interpositioning to simplify reuse and innovation.

4) Low Power: Demands of size and cost, as well as un-
tethered operation make low-power operation a key goal
of mote design. Battery density doubles roughly every 50
years, which makes power an ongoing challenge. Although
energy harvesting offers many promising solutions, at the
very small scale of motes we can harvest only microwatts
of power. This is insufficient for continuous operation of
even the most energy-efficient designs. Given the broad
range of applications for sensor networks, TinyOS must not
only address extremely low-power operation, but also pro-
vide a great deal of flexibility in power-management and
duty-cycle strategies.

In our approach to these requirements we focus on two
broad principles:

Event Centric: Like the applications, the solution must be
event centric. The normal operation is the reactive ex-
ecution of concurrent events.

Platform for Innovation: The space of networked sensors
is novel and complex: we therefore focus on flexibility
and enabling innovation, rather then the “right” OS
from the beginning.

TinyOS is a tiny (fewer than 400 bytes), flexible oper-
ating system built from a set of reusable components that
are assembled into an application-specific system. TinyOS
supports an event-driven concurrency model based on split-
phase interfaces, asynchronousevents, and deferred com-
putation calledtasks. TinyOS is implemented in the nesC
language [24], which supports the TinyOS component and
concurrency model as well as extensive cross-component
optimizations and compile-time race detection. TinyOS
has enabled both innovation in sensor network systems and
a wide variety of applications. TinyOS has been under
development for several years and is currently in its third
generation involving several iterations of hardware, radio

stacks, and programming tools. Over one hundred groups
worldwide use it, including several companies within their
products.

This paper details the design and motivation of TinyOS,
including its novel approaches to components and concur-
rency, a qualitative and quantitative evaluation of the oper-
ating system, and the presentation of our experience with
it as a platform for innovation and real applications. This
paper makes the following contributions. First, we present
the design and programming model of TinyOS, including
support for concurrency and flexible composition. Second,
we evaluate TinyOS in terms of its performance, small size,
lightweight concurrency, flexibility, and support for low
power operation. Third, we discuss our experience with
TinyOS, illustrating its design through three applications:
environmental monitoring, object tracking, and a declara-
tive query processor. Our previous work on TinyOS dis-
cussed an early system architecture [30] and language de-
sign issues [24], but did not present the operating system
design in detail, provide an in-depth evaluation, or discuss
our extensive experience with the system over the last sev-
eral years.

Section 2 presents an overview of TinyOS, including
the component and execution models, and the support for
concurrency. Section 3 shows how the design meets our
four requirements. Sections 4 and 5 cover some of the en-
abled innovations and applications, while Section 6 covers
related work. Section 7 presents our conclusions.

2 TinyOS
TinyOS has a component-based programming model, cod-
ified by the nesC language [24], a dialect of C. TinyOS
is not an OS in the traditional sense; it is a programming
framework for embedded systems and set of components
that enable building an application-specific OS into each
application. A typical application is about 15K in size, of
which the base OS is about 400 bytes; the largest applica-
tion, a database-like query system, is about 64K bytes.

2.1 Overview
A TinyOS program is a graph of components, each of
which is an independent computational entity that exposes
one or moreinterfaces. Components have three computa-
tional abstractions:commands, events, and tasks. Com-
mands and events are mechanisms for inter-component
communication, while tasks are used to express intra-
component concurrency.

A commandis typically a request to a component to
perform some service, such as initiating a sensor read-
ing, while aneventsignals the completion of that service.
Events may also be signaled asynchronously, for example,
due to hardware interrupts or message arrival. From a tra-
ditional OS perspective, commands are analogous to down-
calls and events to upcalls. Commands and events cannot
block: rather, a request for service issplit phasein that the
request for service (the command) and the completion sig-
nal (the corresponding event) are decoupled. The command
returns immediately and the event signals completion at a
later time.

Rather than performing a computation immediately,
commands and event handlers may post atask, a function
executed by the TinyOS scheduler at a later time. This al-
lows commands and events to be responsive, returning im-

Interface Description
ADC Sensor hardware interface
Clock Hardware clock
EEPROMRead/Write EEPROM read and write
HardwareId Hardware ID access
I2C Interface to I2C bus
Leds Red/yellow/green LEDs
MAC Radio MAC layer
Mic Microphone interface
Pot Hardware potentiometer for transmit power
Random Random number generator
ReceiveMsg Receive Active Message
SendMsg Send Active Message
StdControl Init, start, and stop components
Time Get current time
TinySec Lightweight encryption/decryption
WatchDog Watchdog timer control

Figure 1:Core interfaces provided by TinyOS.

mediately while deferring extensive computation to tasks.
While tasks may perform significant computation, their ba-
sic execution model is run-to-completion, rather than to run
indefinitely; this allows tasks to be much lighter-weight
than threads. Tasks represent internal concurrency within
a component and may only access state within that com-
ponent. The standard TinyOS task scheduler uses a non-
preemptive, FIFO scheduling policy; Section 2.3 presents
the TinyOS execution model in detail.

TinyOS abstracts all hardware resources as compo-
nents. For example, calling thegetData() command
on a sensor component will cause it to later signal a
dataReady() event when the hardware interrupt fires.
While many components are entirely software-based, the
combination of split-phase operations and tasks makes this
distinction transparent to the programmer. For example,
consider a component that encrypts a buffer of data. In a
hardware implementation, the command would instruct the
encryption hardware to perform the operation, while a soft-
ware implementation would post a task to encrypt the data
on the CPU. In both cases an event signals that the encryp-
tion operation is complete.

The current version of TinyOS provides a large num-
ber of components to application developers, including ab-
stractions for sensors, single-hop networking, ad-hoc rout-
ing, power management, timers, and non-volatile storage.
A developer composes an application by writing compo-
nents and wiring them to TinyOS components that provide
implementations of the required services. Section 2.2 de-
scribes how developers write components and wire them
in nesC. Figure 1 lists a number of core interfaces that are
available to application developers. Many different compo-
nents may implement a given interface.

2.2 Component Model
TinyOS’s programming model, provided by the nesC lan-
guage, centers around the notion ofcomponentsthat en-
capsulate a specific set of services, specified byinterfaces.
TinyOS itself simply consists of a set of reusable system
components along with a task scheduler. An application
connects components using awiring specificationthat is
independent of component implementations. This wiring
specification defines the complete set of components that
the application uses.

The compiler eliminates the penalty of small, fine-
grained components by whole-program (application plus
operating system) analysis and inlining. Unused compo-

TimerM

StdControl Timer

HWClock

module TimerM {
provides {

interface StdControl;
interface Timer[uint8_t id];

}
uses interface Clock;

}
implementation {

... a dialect of C ...
}

Figure 2: Specification and graphical depiction of the
TimerM component. Provided interfaces are shown above the
TimerM component and used interfaces are below. Downward
arrows depict commands and upward arrows depict events.

interface StdControl {
command result_t init();
command result_t start();
command result_t stop();

}

interface Timer {
command result_t start(char type, uint32_t interval);
command result_t stop();
event result_t fired();

}

interface Clock {
command result_t setRate(char interval, char scale);
event result_t fire();

}

interface SendMsg {
command result_t send(uint16_t address,

uint8_t length,
TOS_MsgPtr msg);

event result_t sendDone(TOS_MsgPtr msg,
result_t success);

}

Figure 3:Sample TinyOS interface types.

nents and functionality are not included in the application
binary. Inlining occurs across component boundaries and
improves both size and efficiency; Section 3.1 evaluates
these optimizations.

A component has two classes of interfaces: those itpro-
videsand those ituses. These interfaces define how the
component directly interacts with other components. An
interface generally models some service (e.g., sending a
message) and is specified by aninterface type. Figure 2
shows a simplified form of theTimerM component, part
of the TinyOS timer service, that provides theStdCon-
trol andTimer interfaces and uses aClock interface (all
shown in Figure 3). A component can provide or use the
same interface type several times as long as it gives each
instance a separate name.

Interfaces arebidirectionaland contain bothcommands
andevents. A command is a function that is implemented
by the providers of an interface, an event is a function that
is implemented by its users. For instance, theTimer inter-
face (Figure 3) definesstart andstop commands and a
fired event. Although the interaction between the timer
and its client could have been provided via two separate in-
terfaces (one for its commands and another for its events),
grouping them in the same interface makes the specifica-
tion much clearer and helps prevent bugs when wiring com-
ponents together.

nesC has two types of components:modulesandconfig-
urations. Modules provide code and are written in a dialect
of C with extensions for calling and implementing com-

HWClock

Clock

TimerC

TimerM

Clock

StdControl Timer

StdControl Timer configuration TimerC {
provides {

interface StdControl;
interface Timer[uint8_t id];

}
}
implementation {

components TimerM, HWClock;

StdControl = TimerM.StdControl;
Timer = TimerM.Timer;

TimerM.Clk -> HWClock.Clock;
}

Figure 4: TinyOS’s Timer Service: the TimerC configura-
tion.

mands and events. A module declares private state vari-
ables and data buffers, which only it can reference. Config-
urations are used to wire other components together, con-
necting interfaces used by components to interfaces pro-
vided by others. Figure 4 illustrates the TinyOS timer ser-
vice, which is a configuration (TimerC) that wires the timer
module (TimerM) to the hardware clock component (HW-
Clock). Configurations allow multiple components to be
aggregated together into a single “supercomponent” that
exposes a single set of interfaces. For example, the TinyOS
networking stack is a configuration wiring together 21 sep-
arate modules and 10 sub-configurations.

Each component has its own interface namespace,
which it uses to refer to the commands and events that
it uses. When wiring interfaces together, a configuration
makes the connection between the local name of an inter-
face used by one component to the local name of the inter-
face provided by another. That is, a component invokes an
interface without referring explicitly to its implementation.
This makes it easy to perform interpositioning by introduc-
ing a new component in the component graph that uses and
provides the same interface.

Interfaces can be wired multiple times; for example, in
Figure 5 theStdControl interface ofMain is wired to
Photo , TimerC , andMultihop . This fan-out is transpar-
ent to the caller. nesC allows fan-out as long as the return
type has a function for combining the results of all the calls.
For example, forresult t , this is a logical-AND; a fan-
out returns failure if any subcall fails.

A component can provide aparameterized interfacethat
exports many instances of the same interface, parameter-
ized by some identifier (typically a small integer). For ex-
ample, the theTimer interface in Figure 2 is parameterized
with an 8-bit id , which is passed to the commands and
events of that interface as an extra parameter. In this case,
the parameterized interface allows the singleTimer com-
ponent to implement multiple separate timer interfaces, one
for each client component. A client of a parameterized in-
terface must specify the ID as a constant in the wiring con-
figuration; to avoid conflicts in ID selection, nesC provides
a specialunique keyword that selects a unique identifier
for each client.

Every TinyOS application is described by atop-level
configurationthat wires together the components used. An
example is shown graphically in Figure 5:SurgeC is a sim-
ple application that periodically (TimerC) acquires light

Leds

LedsC

StdControl ADC

Photo

StdControl

Multihop

SendMsg

TimerC

StdControl Timer

StdControl

SurgeM

ADC Timer LedsSendMsg

SurgeC

Main

StdControl

Figure 5: The top-level configuration for the Surge applica-
tion.

sensor readings (Photo) and sends them back to a base sta-
tion using multi-hop routing (Multihop).

nesC imposes some limitations on C to improve code ef-
ficiency and robustness. First, the language prohibits func-
tion pointers, allowing the compiler to know the precise
call graph of a program. This enables cross-component
optimizations for entire call paths, which can remove the
overhead of cross-module calls as well as inline code for
small components into its callers. Section 3.1 evaluates
these optimizations on boundary crossing overheads. Sec-
ond, the language does not support dynamic memory al-
location; components statically declare all of a program’s
state, which prevents memory fragmentation as well as run-
time allocation failures. The restriction sounds more oner-
ous than it is in practice; the component abstraction elim-
inates many of the needs for dynamic allocation. In the
few rare instances that it is truly needed (e.g., TinyDB, dis-
cussed in Section 5.3), a memory pool component can be
shared by a set of cooperating components.

2.3 Execution Model and Concurrency
The event-centric domain of sensor networks requires fine-
grain concurrency; events can arrive at any time and must
interact cleanly with the ongoing computation. This is a
classic systems problem that has two broad approaches: 1)
atomically enqueueing work on arrival to run later, as in
Click [41] and most message-passing systems, and 2) ex-
ecuting a handler immediately in the style of active mes-
sages [74]. Because some of these events are time criti-
cal, such as start-symbol detection, we chose the latter ap-
proach. nesC can detect data races statically, which elimi-
nates a large class of complex bugs.

The core of the execution model consists of run-to-
completiontasksthat represent the ongoing computation,
and interrupt handlers that are signaled asynchronously by
hardware. Tasks are an explicit entity in the language;
a program submits a task to the scheduler for execution
with the post operator. The scheduler can execute tasks
in any order, but must obey the run-to-completion rule.
The standard TinyOS scheduler follows a FIFO policy,
but we have implemented other policies including earliest-
deadline first.

Because tasks are not preempted and run to completion,
they are atomic with respect to each other. However, tasks
are not atomic with respect to interrupt handlers or to com-
mands and events they invoke. To facilitate the detection
of race conditions, we distinguish synchronous and asyn-
chronous code:

Synchronous Code (SC):code that is only

reachable from tasks.

Asynchronous Code (AC):code that is reach-
able from at least one interrupt handler.

The traditional OS approach toward AC is to minimize
it and prevent user-level code from being AC. This would
be too restrictive for TinyOS. Component writers need to
interact with a wide range of real-time hardware, which is
not possible in general with the approach of queuing work
for later. For example, in the networking stack there are
components that interface with the radio at the bit level, the
byte level, and via hardware signal-strength indicators. A
primary goal is to allow developers to build responsive con-
current data structures that can safely share data between
AC and SC; components often have a mix of SC and AC
code.

Although non-preemption eliminates races among tasks,
there are still potential races between SC and AC, as well
as between AC and AC. In general, any update to shared
state that isreachable from ACis a potential data race. To
reinstate atomicity in such cases, the programmer has two
options: convert all of the conflicting code to tasks (SC
only), or useatomic sectionsto update the shared state. An
atomic section is a small code sequence that nesC ensures
will run atomically. The current implementation turns off
interrupts during the atomic section and ensures that it has
no loops. Section 3.2 covers an example use of an atomic
section to remove a data race. The basic invariant nesC
must enforce is as follows:

Race-Free Invariant: Any update to shared state
is either SC-only or occurs in an atomic section.

The nesC compiler enforces this invariant at compile time,
preventing nearly all data races. It is possible to introduce
a race condition that the compiler cannot detect, but it must
span multiple atomic sections or tasks and use storage in
intermediate variables.

The practical impact of data race prevention is sub-
stantial. First, it eliminates a class of very painful non-
deterministic bugs. Second, it means that composition can
essentially ignore concurrency. It does not matter which
components generate concurrency or how they are wired
together: the compiler will catch any sharing violations at
compile time. Strong compile-time analysis enables a wide
variety of concurrent data structures and synchronization
primitives. We have several variations of concurrent queues
and state machines. In turn, this makes it easy to handle
time-critical actions directly in an event handler, even when
they update shared state. For example, radio events are al-
ways dealt with in the interrupt handler until a whole packet
has arrived, at which point the handler posts a task. Sec-
tion 3.2 contains an evaluation of the concurrency checking
and its ability to catch data races.

2.4 Active Messages
A critical aspect of TinyOS’s design is its networking archi-
tecture, which we detail here. The core TinyOS communi-
cation abstraction is based on Active Messages (AM) [74],
which are small (36-byte) packets associated with a 1-byte
handler ID. Upon reception of an Active Message, a node
dispatches the message (using an event) to one or more han-
dlers that are registered to receive messages of that type.

Handler registration is accomplished using static wiring
and a parameterized interface, as described above.

AM provides an unreliable, single-hop datagram proto-
col, and provides a unified communication interface to both
the radio and the built-in serial port (for wired nodes such
as basestations). Higher-level protocols providing multi-
hop communication, larger ADUs, or other features are
readily built on top of the AM interface. Variants of the ba-
sic AM stack exist that incorporate lightweight, link-level
security (see Section 4.1). AM’s event-driven nature and
tight coupling of computation and communication make
the abstraction well suited to the sensor network domain.

2.5 Implementation Status
TinyOS supports a wide range of hardware platforms and
has been used on several generations of sensor motes. Sup-
ported processors include the Atmel AT90L-series, Atmel
ATmega-series, and Texas Instruments MSP-series proces-
sors. TinyOS includes hardware support for the RFM
TR1000 and Chipcon CC1000 radios, as well as as well
as several custom radio chipsets. TinyOS applications may
be compiled to run on any of these platforms without mod-
ification. Work is underway (by others) to port TinyOS
to ARM, Intel 8051 and Hitachi processors and to support
Bluetooth radios.

TinyOS supports an extensive development environ-
ment that incorporates visualization, debugging, and sup-
port tools as well as a fine-grained simulation environment.
Desktops, laptops, and palmtops can serve as proxies be-
tween sensor networks and wired networks, allowing inte-
gration with server side tools implemented in Java, C, or
MATLAB, as well as interfaces to database engines such
as PostgreSQL. nesC includes a tool that generates code to
marshal between Active Message packet formats and Java
classes.

TinyOS includes TOSSIM, a high-fidelity mote simula-
tor that compiles directly from TinyOS nesC code, scaling
to thousands of simulated nodes. TOSSIM gives the pro-
grammer an omniscient view of the network and greater
debugging capabilities. Server-side applications can con-
nect to a TOSSIM proxy just as if it were a real sensor
network, easing the transition between the simulation en-
vironment and actual deployments. TinyOS also provides
JTAG support integrated withgdb for debugging applica-
tions directly on the mote.

3 Meeting the Four Key Requirements
In this section, we show how the design of TinyOS, particu-
larly its component model and execution model, addresses
our four key requirements: limited resources, reactive con-
currency, flexibility and low power. This section quantifies
basic aspects of resource usage and performance, including
storage usage, execution overhead, observed concurrency,
and effectiveness of whole-system optimization.

3.1 Limited Resources
We look at three metrics to evaluate whether TinyOS ap-
plications are lightweight in space and time: (1) the foot-
print of real applications should be small, (2) the compiler
should reduce code size through optimization, and (3) the
overhead for fine-grain modules should be low.

Application Size Structure
Optimized Unoptimized ReductionTasks Events Modules

Blink 683 1791 61% 0 2 8

Blink LEDs

GenericBase 4278 6208 31% 3 21 19

Radio-to-UART packet router

CntToLeds 6121 9449 35% 1 7 13

Display counter on LEDs

CntToRfm 9859 13969 29% 4 31 27

Send counter as radio packet

Habitat monitoring 11415 19181 40% 9 38 32

Periodic environmental sampling

Surge 14794 20645 22% 9 40 34

Ad-hoc multihop routing demo

Maté 23741 25907 8% 15 51 39

Small virtual machine

Object tracking 23525 37195 36% 15 39 32

Track object in sensor field

TinyDB 63726 71269 10% 18 193 91

SQL-like query interface

Figure 6:Size and structure of selected TinyOS applications.

Absolute Size:A TinyOS program’s component graph de-
fines which components it needs to work. Because compo-
nents are resolved at compile time, compiling an applica-
tion builds an application-specific version of TinyOS: the
resulting image contains exactly the required OS services.

As shown in Figure 6, TinyOS and its applications are
small. The base TinyOS operating system is less than
400 bytes and associated C runtime primitives (including
floating-point libraries) fit in just over 1KB.Blink repre-
sents the footprint for a minimal application using the base
OS and a primitive hardware timer.CntToLeds incorpo-
rates a more sophisticated timer service which requires ad-
ditional memory.GenericBase captures the footprint of
the radio stack whileCntToRfm incorporates both the ra-
dio stack and the generic timer, which is the case for many
real applications. Most applications fit in less than 16KB,
while the largest TinyOS application, TinyDB, fits in about
64KB.

Footprint Optimization: TinyOS goes beyond standard
techniques to reduce code size (e.g., stripping the symbol
table). It uses whole-program compilation to prune dead
code, and cross-component optimizations remove redun-
dant operations and module-crossing overhead. Figure 6
shows the reduction in size achieved by these optimizations
on a range of applications. Size improvements range from
8% for Mat́e, to 40% for habitat monitoring, to over 60%
for simple applications.

Component Overhead:To be efficient, TinyOS must min-
imize the overhead for module crossings. Since there are
no virtual functions or address-space crossings, the basic
boundary crossing is at most a regular procedure call. On
Atmel-based platforms, this costs about eight clock cycles.

Using whole-program analysis, nesC removes many of
these boundary crossings and optimizes entire call paths by
applying extensive cross-component optimizations, includ-
ing constant propagation and common subexpression elim-
ination. For example, nesC can typically inline an entire
component into its caller.

In the TinyOS timer component, triggering a timer event

Cycles Optimized Unoptimized Reduction
Work 371 520 29%
Boundary crossing 109 258 57%

Non-interrupt 8 194 95%
Interrupt 101 64 -36%

Total 480 778 38%

Figure 7:Optimization effects on clock event handling.This
figure shows the breakdown, in CPU cycles, for both work
and boundary crossing for clock event handling, which requires
7 module crossings. Optimization reduces the overall cycle count
by 38%.

crosses seven component boundaries. Figure 7 shows cy-
cle counts for this event chain with and without cross-
component optimizations. The optimization saves not only
57% of the boundary overhead, but also 29% of the work,
for a total savings of 38%. The increase in the crossing
overhead for the interrupt occurs because the inlining re-
quires the handler to save more registers; however, the total
time spent in the handler goes down. The only remaining
boundary crossing is the one for posting the task at the end
of the handler.

Anecdotally, the code produced via whole-program op-
timization is smaller and faster than not only unoptimized
code, but also the original hand-written C code that pre-
dates the nesC language.

3.2 Reactive Concurrency
We evaluate TinyOS’s support for concurrency by looking
at four metrics: (1) the concurrency exhibited by applica-
tions, (2) our support for race detection at compile time, (3)
context switching times, and (4) the handling of concurrent
events with real-time constraints.

Exhibited Concurrency: TinyOS’s component model
makes it simple to express the complex concurrent actions
in sensor network applications. The sample applications in
Figure 6 have an average of 8 tasks and 47 events, each of
which represents a potentially concurrent activity. More-
over, these applications exhibit an average of 43% of the
code (measured in bytes) reachable from an interrupt con-
text.

As an example of a high-concurrency application, we
consider TinyDB, covered in Section 5.3, an in-network
query processing engine that allows users to pose queries
that collect, combine and filter data from a network of sen-
sors. TinyDB supports multiple concurrent queries, each of
which collects data from sensors, applies some number of
transformations, and sends it up a multihop routing tree to
a basestation where the user receives results. The 18 tasks
and 193 events within TinyDB perform several concurrent
operations, such as maintenance of the routing tables, mul-
tihop routing, time synchronization, sensor recalibration, in
addition to the core functionality of sampling and process-
ing sensor data.

Race Detection: The nesC compiler reports errors if
shared variables may be involved in a data race. To evaluate
race detection, we examine the reported errors for accuracy.

Initially, TinyOS included neither an explicitatomic
statement nor the analysis to detect potential race condi-
tions; both TinyOS and its applications had many data
races. Once race detection was implemented, we applied
detection to every application in the TinyOS source tree,
finding 156 variables that potentially had a race condition.

Component Type Data-race variables
RandomLFSR System 1
UARTM System 1
AMStandard System 2
AMPromiscious System 2
BAPBaseM Application 2
ChirpM Application 2
MicaHighSpeedRadioM System 2
TestTimerM Application 2
ChannelMonC System 3
NoCrcPacket System 3
OscilloscopeM Application 3
QueuedSend System 3
SurgeM Application 3
SenseLightToLogM Application 3
TestTemp Application 3
MultihopM System 10
eepromM System 17
TinyAlloc System 18
IdentC Application 23
Total 103

Figure 8:Component locations of race condition variables.

/* Contains a race: */ /* Fixed version: */
if (state == IDLE) { uint8_t oldState;

state = SENDING; atomic {
count++; oldState = state;
// send a packet if (state == IDLE) {

} state = SENDING;
}

}
if (oldState == IDLE) {

count++;
// send a packet

}

Figure 9:Fixing a race condition in a state transition.

Of these, 53 were false positives (discussed below) and
103 were genuine data races, a frequency of about six per
thousand code statements. We fixed each of these bugs by
moving code into tasks or by usingatomic statements. We
then tested each application and verified that the presence
of atomic sections did not interfere with correct operation.

Figure 8 shows the locations of data races in the TinyOS
tree. Half of the races existed in system-level components
used by many applications, while the other half were ap-
plication specific.MultihopM , eepromM, andTinyAlloc
had a disproportionate number of races due to the amount
of internal state they maintain through complex concurrent
operations.IdentC tracks node interactions, records them
in flash, and periodically sends them to the basestation; it
has complex concurrency, lots of state, and was written be-
fore most of the concurrency issues were well understood.
The nesC version is race free.

The finite-state-machine style of decomposition in
TinyOS led to the most common form of bug, a non-atomic
state transition. State transitions are typically implemented
using a read-modify-write of the state variable, which must
be atomic. A canonical example of this race is shown in
Figure 9, along with the fix.

The original versions of the communication,TinyAl-
loc and EEPROM components contained large numbers of
variable accesses in asynchronous code. Rather than using
large atomic sections, which might decrease overall respon-
siveness, we promoted many of the offending functions to
synchronous code by posting a few additional tasks.

False positives fell into three major categories: state-
based guards, buffer swaps, and causal relationships. The
first class, state-based guards, occurred when access to a
module variable is serialized at run time by a state vari-

able. The above state transition example illustrates this; in
this function, the variablecount is safe due to the moni-
tor created bystate . Buffer swaps are a controlled kind
of sharing in which ownership is passed between producer
and consumer; it is merely by this convention that there are
no races, so it is in fact useful that nesC requires the pro-
grammer to check them. The third class of false positives
occurs when an event conflicts with the code that caused it
to execute, but because the two never overlap in time there
is no race. However, if there are other causes for the event,
then there is a race, so these are also worth explicitly check-
ing. In all cases, thenorace type qualifier can be used to
remove the warnings.

Context Switches: In TinyOS, context switch overhead
corresponds to both the cost of task scheduling and in-
terrupt handler overhead. These costs are shown in Fig-
ure 10 based on hand counts and empirical measurements.
The interrupt overhead consists of both switching overhead
and function overhead of the handler, which varies with the
number of saved registers.

Overhead Time (clock cycles)
Interrupt Switching 8
Interrupt Handler Cost 26-74
Task Switching 108

Figure 10:TinyOS scheduling overhead.

Real-time Constraints: The real-time requirements in the
sensor network domain are quite different from those tradi-
tionally addressed in multimedia and control applications.
Rather than sophisticated scheduling to shed load when
many tasks are ongoing, sensor nodes exhibit bursts of ac-
tivity and then go idle for lengthy intervals. Rather than de-
livering a constant bit rate to each of many flows, we must
meet hard deadlines in servicing the radio channel while
processing sensor data and routing traffic. Our initial plat-
forms required that we modulate the radio channel bit-by-
bit in software. This required tight timing on the transmitter
to generate a clean waveform and on the receiver to sample
each bit properly. More recent platforms provide greater
hardware support for spooling bits, but start-symbol detec-
tion requires precise timing and encoding, decoding, and
error-checking must keep pace with the data rate. Our ap-
proach of allowing sophisticated handlers has proven suffi-
cient for meeting these requirements; typically the handler
performs the time-critical work and posts a task for any re-
maining work. With a very simple scheduler, allowing the
handler to execute snippets of processing up the chain of
components allows applications to schedule around a set
of deadlines directly, rather than trying to coerce a prior-
ity scheme to produce the correct ordering. More critical
is the need to manage the contention between the sequence
of events associated with communication (the handler) and
the sampling interval of the application (the tasks). Ap-
plying whole-system analysis to verify that all such jitter
bounds are met is an area for future work.

3.3 Flexibility
To evaluate the goal of flexibility, we primarily refer to
anecdotal evidence. In addition to the quantitative goal
of fine-grain components, we look at the qualitative goals
of supporting concurrent components, hardware/software
transparency, and interposition.

Component Code Size Data Size
(Sizes in bytes) inlined noninlined

AM 456 654 9

Core Active Messages layer

MicaHighSpeedRadioM 1162 1250 61

Radio hardware interface

NoCRCPacket 370 484 50

Packet framing without CRC

CrcFilter – 34 0

CRC filtering

ChannelMonC 454 486 9

Start symbol detection

RadioTimingC 42 56 0

Timing for start symbol detection

PotM 50 82 1

Transmit power control

SecDedEncoding 662 684 3

Error correction/detection coding

SpiByteFifoC 344 438 2

Low-level byte interface

HPLPotC – 66 0

Hardware potentiometer interface

Figure 11:Breakdown of code and data size by component in
the TinyOS radio stack. A ‘–’ in the inlined column indicates
that the corresponding component was entirely inlined. Dead
code elimination has been applied in both cases.

Fine-grained Components: TinyOS allows applications
to be constructed from a large number of very fine-grained
components. This approach is facilitated by cross-module
inlining, which avoids runtime overhead for component
composition. The TinyOS codebase consists of 401 com-
ponents, of which 235 are modules and 166 are configu-
rations. The 42 applications in the tree use an average of
74 components (modules and configurations) each. Mod-
ules are typically small, ranging from between 7 and 1898
lines of code (with an average of 134, median of 81).

Figure 11 shows a per-component breakdown of the data
and code space used by each of the components in the
TinyOS radio stack, both with and without inlining applied.
The figure shows the relatively small size of each of the
components, as well as the large number of components in-
volved in radio communication. Each of these components
can be selectively replaced, or new components interposed
within the stack, to implement new functionality.

Concurrent Components: As discussed in the previous
section, any component can be the source of concurrency.
Bidirectional interfaces and explicit support for events en-
able any component to generate events autonomously. In
addition, the static race detection provided by nesC re-
moves the need to worry about concurrency bugs dur-
ing composition. Out of our current set of 235 modules,
18 (7.6%) contain at least one interrupt handler and are
thereby sources of concurrency.

Hardware/Software Transparency: The TinyOS compo-
nent model makes shifting the hardware/software boundary
easy; components can generate events, which may be soft-
ware upcalls or hardware interrupts. This feature is used
in several ways in the TinyOS codebase. Several hardware
interfaces (such as analog-to-digital conversion) are imple-
mented using software wrappers that abstract the complex-
ity of initializing and collecting data from a given sensor

hardware component. In other cases, software components
(such as radio start-symbol detection) have been supplanted
with specialized hardware modules. For example, each of
the radios we support has a different hardware/software
boundary, but thesamecomponent structure.

Interposition: One aspect of flexibility is the ability toin-
terposecomponents between other components. Whenever
a component provides and uses the same interface type, it
can be inserted or removed transparently.

One example of this is seen in work at UVA [26], which
interposes a component in the network stack at a fairly low
level. Unknown to the applications, this component buffers
the payload of each message and aggregates messages to
the same destination into a single packet. On the receive
side, the same component decomposes such packets and
passes them up to the recipients individually. Although
remaining completely transparent to the application, this
scheme can actuallydecreasenetwork latency by increas-
ing overall bandwidth.

A similar type of interpositioning can be seen in the ob-
ject tracking application described in Section 5.2. The rout-
ing stack allows the interpositioning of components that en-
able, for example, reliable transmission or duplicate mes-
sage filtering. Similarly, the sensor stacks allow the inter-
positioning of components that implement weighted-time
averaging or threshold detection.

3.4 Low Power
The application-specific nature of TinyOS ensures that
no unnecessary functions consume energy, which is the
most precious resource on the node. However, this as-
pect alone does not ensure low power operation. We exam-
ine three aspects of TinyOS low power operation support:
application-transparent CPU power management, power
management interfaces, and efficiency gains arising from
hardware/software transparency.

CPU power usage: The use of split-phase operations
and an event-driven execution model reduces power usage
by avoiding spinlocks and heavyweight concurrency (e.g.,
threads). To minimize CPU usage, the TinyOS scheduler
puts the processor into a low-power sleep mode whenever
the task queue is empty. This decision can be made very
quickly, thanks to run-to-completion semantics of tasks,
which maximizes the time spent in the sleep mode. For
example, when listening for incoming packets, the CPU
handles 20000 interrupts per second. On the current sen-
sor hardware, the CPU consumes 4.6 mA when active and
2.4 mA when idle, and the radio uses 3.9 mA when re-
ceiving. System measurements show the power consump-
tion during both listening and receiving to be 7.5 mA. The
scheduler, which needs to examine the task queue after ev-
ery event, still manages to operate in idle mode 44% of the
time.

Power-Management Interfaces: The scheduler alone
cannot achieve the power levels required for long-term ap-
plications; the application needs to convey its runtime re-
quirements to the system. TinyOS address this requirement
through a programming convention which allows subsys-
tems to be put in a low power idle state. Components ex-
pose aStdControl interface, which includes commands
for initializing, starting, and stopping a component and the
subcomponents it depends upon. Calling thestop com-

mand causes a component to attempt to minimize its power
consumption, for example, by powering down hardware or
disabling periodic tasks. The component saves its state in
RAM or in nonvolatile memory for later resumption using
the start command. It also informs the CPU about the
change in the resources it uses; the system then uses this
information to decide whether deep power saving modes
should be used. This strategy works well: with all com-
ponents stopped, the base system without the sensor board
consumes less than 15µA, which is comparable to self dis-
charge rate of AA alkaline batteries. The node lifetime de-
pends primarily on the duty cycle and the application re-
quirements; a pair of AA batteries can power a constantly
active node for up to 15 days or a permanently idle node for
up to 5 years (battery shelf life). By exposing the start/stop
interface at many levels, we enable a range of power man-
agement schemes to be implemented, for example, using
power scheduling to disable the radio stack when no com-
munication is expected, or powering down sensors when
not in use.

Hardware/Software Transparency: The ability to re-
place software components with efficient hardware imple-
mentations has been exploited to yield significant improve-
ments in energy consumption in our platform. Recent
work [36] has demonstrated a single-chip mote that inte-
grates the microcontroller, memory, radio transceiver, and
radio acceleration logic into a 5 mm2 silicon die. The
standard software radio stack consumes 3.6 mA (involving
about 2 million CPU instructions per second); The hard-
ware implementation of these software components con-
sumes less than 100µA and allows for much more efficient
use of microcontroller sleep modes while providing a 25-
fold improvement in communication bit rate.

4 Enabled Innovations
A primary goal for TinyOS is to enable innovative solu-
tions to the systems challenges presented by networks of
resource constrained devices that interact with a chang-
ing physical world. The evaluation against this goal is in-
herently qualitative. We describe three subsystems where
novel approaches have been adopted that can be directly
related to the features of TinyOS. In particular, TinyOS
makes several kinds of innovations simpler that appear in
these examples: 1) cross-layer optimization and integrated-
layer processing (ILP), 2) duty-cycle management for low
power, and 3) a wide-range of implementation via fine-
grain modularity.

4.1 Radio Stack
A mote’s network device is often a simple, low-power radio
transceiver that has little or no data buffering and exposes
primitive control and raw bit interfaces. This requires han-
dling many aspects of the radio in software, such as control-
ling the radio state, coding, modulating the channel, fram-
ing, input sampling, media access control, and checksum
processing. Various kinds of hardware acceleration may be
provided for each of the elements, depending on the spe-
cific platform. In addition, received signal strength can be
obtained by sampling the baseband energy level at partic-
ular times. The ability to access these various aspects of
the radio creates opportunities for unusual cross-layer opti-
mization.

Integrated-Layer Processing: TinyOS enables ILP
through its combination of fine-grain modularity, whole-
program optimization, and application-specific handlers.
One example is the support for link-layer acknowledg-
ments (acks), which can only be generated after the check-
sum has been computed. TinyOS allows the radio stack
to be augmented with addition error checking by simply
interposing the checksum component between the compo-
nent providing byte-by-byte radio spooling and the packet
processing component. It is also important to be able to
provide link-level acknowledgments so that higher levels
can estimate loss rates or implement retransmission, how-
ever, these acks should be very efficient. The event protocol
within the stack that was developed to avoid buffering at
each level allows the checksum computation to interleave
with the byte-level spooling. Thus, the ack can be gener-
ated immediately after receiving the last byte thus the un-
derlying radio component can send the acksynchronously,
i.e. reversing the channel direction without re-arbitration or
reacquisition. Note that holding the channel is a real-time
operation that is enabled by the use of sophisticated han-
dlers that traverse multiple layers and components without
data races. This collection of optimizations greatly reduce
both latency and power, and in turn allows shorter timeouts
at the sender. Clean modularity is preserved in the code
since these time-critical paths span multiple components.

ILP and flexible modularity have been used in a simi-
lar manner to provide flexible security for confidentiality
and authentication [2]. Although link-level security is im-
portant, it can degrade both power and latency. The abil-
ity to overlap computation via ILP helps with the latency,
while interposition makes it easy add security transparently
as needed. This work also showed that the mechanisms for
avoiding copying or gather/scatter within the stack could
be used to substantially modify packet headers and trailers
without changing other components in the stack.

A TinyOS radio stack from Yeet al. [83, 84] is an ex-
ample that demonstrates ILP by combining 802.11-style
media access with transmission scheduling. This allows
a low-duty cycle (similar to TDMA) with flexible channel
sharing.

Power Management:Listening on the radio is costly even
when not receiving anything, so minimizing duty cycle
is important. Traditional solutions utilize some form of
TDMA to turn off the radio for long periods until a recep-
tion is likely. TinyOS allows a novel alternative by sup-
porting fast fine-grain power management. By integrating
fast power management with precise timing, we were able
to periodically sample the radio for very short intervals at
the physical layer, looking for a preamble. This yields the
illusion of an always-on radio at a 10% duty cycle while lis-
tening, while avoiding a priori partitioning of the channel
bandwidth. Coarse-grain duty cycling can still be imple-
mented at higher levels, if needed.

TinyOS has also enabled an efficient solution to the epi-
demic wakeup problem. Since functionality can be placed
at different levels within the radio stack, TinyOS can detect
that a wakeup is likely by sampling the energy on the chan-
nel, rather than bring up the ability to actually receive pack-
ets. This low-level wake-up only requires 0.00125% duty
cycle [29], a 400-fold improvement over a typical packet-
level protocol. A similar approach has been used to derive
network neighborhood and proximity information [73].

Hardware/Software Transparency: The existence of a
variety of radio architectures poses a challenge for system
designers due to the wide variation in hardware/software
boundaries. There are at least three radio platforms that
are supported in the TinyOS distribution: the 10kbps first-
generation RFM, the 40kbps hardware-accelerated RFM,
and the recent 40kbps Chipcon. In addition, UART and
I2C stacks are supported. The hardware-accelerated RFM
platform exemplifies how a direct replacement of bit level
processing with hardware achieves higher communication
bandwidth [29]. In the extreme cases, the entire radio
stack has been built in pure hardware in spec (mote-on-
a-chip) [36], as well as in pure software in TOSSIM [44].
We have also transparently used hardware acceleration for
encryption. Stack elements using a component remain un-
changed, whether the component is a thin abstraction of a
hardware element or a software implementation.

4.2 Time Synchronization and Ranging

Time and location are both critical in sensor networks due
to the embodied nature of sensor nodes; each node has
a real, physical relationship with the outside world. One
challenge of network time synchronization is to eliminate
sources of jitter such as media access delay introduced by
the radio stack. Traditional layering often hides the de-
tails at the physical layer. Timing protocols often per-
form round-trip time estimation to account for these errors.
TinyOS allows a component to be interposed deep within
the radio stack to signal an event precisely when the first
bit of data is transmitted; this eliminates media access de-
lay from calculations. Similarly, receivers can take a times-
tamp when they hear the first data bit; comparing these fine-
grain timestamps can reduce time synchronization error to
less than a bit time (<25µs). Although reference broad-
cast synchronization (RBS) [16] achieves synchronization
accurate to within 4µs without interposition by comparing
time stamps of receivers, it does so at the cost of many
packet transmissions and sophisticated analysis.

The ability to interact with the network stack at this low
level also enabled precise time of flight (TOF) measure-
ments for ranging in an ad-hoc localization system built on
TinyOS [76]. A transmitter sends an acoustic pulse with a
radio message. TinyOS’s low context switching overhead
enables receivers to check for the acoustic pulse and the ra-
dio message concurrently. Taking the difference between
the timestamps of the two signals produces an acoustic
TOF measurement. TinyOS can accurately measure both
arrival times directly in their event handlers, since the han-
dlers execute immediately; a solution based on queuing the
work for later would forfeit precise timing, which is also
true for the time-syncrhonization example above.

The newest version of the ranging application uses a
co-processor to control the acoustic transducer and per-
form costly localization calculation. Controlling the acous-
tic transducer requires real time interactions between the
two processors which is enabled by TinyOS’s low over-
head event handling. To exploit parallelism between the
two processors, computation and communication must be
overlapped; the split-phased nature of TinyOS’s AM model
makes this trivial.

4.3 Routing
The rigid, non-application specific communication stack
found in industrial standards such as IEEE 802.11 [1] or
Bluetooth [7] often limit the design space for routing proto-
cols. TinyOS’s component model and ease of interposition
yield a very flexible communication stack. This opens up
a platform for implementing many different routing pro-
tocols such as broadcast based routing [23], probabilistic
routing, multipath routing [37], geographical routing, reli-
ability based routing [80, 82], TDMA based routing [14],
and directed diffusion [34].

The large number of routing protocols suggests that sen-
sor network applications may need to use a diverse set
within one communication stack. TinyOS’s parameterized
interfaces and extensible component model enable a coher-
ent routing framework where an application can route by
network address, geographic location, flooding, or along
some application specific gradients [69].

4.4 Dynamic Composition and Virtual Ma-
chines

In our experience, most sensor network applications uti-
lize a common set of services, combined in different ways.
A system that allows these compositions to be concisely
described could provide much of the flexibility of full
reprogramming at a tremendous decrease in communica-
tion costs. Mat́e, a tiny bytecode interpreter that runs on
TinyOS [43], meets this need. It is a single nesC module
that sits on top of several system components, including
sensors, the network stack, and non-volatile storage.

Maté presents a virtual stack architecture to the pro-
grammer. Instructions include sensing and radio communi-
cation, as well as arithmetic and stack manipulation. Maté
has a set of user-definable instructions. These allow devel-
opers to use the VM as a framework for writing new VM
variants, extending the set of TinyOS services that can be
dynamically composed. The virtual architecture hides the
split-phased operations of TinyOS behind synchronous in-
structions, simplifying the programming interface. This re-
quires the VM to maintain a virtual execution context as
a continuation across split-phase operations. The stack-
based architecture makes virtual context switches trivial,
and as contexts are only 78 bytes (statically allocated in a
component), they consume few system resources. Contexts
run in response to system events, such as timers or packet
reception.

Programs virally propagate through a network; once
a user introduces a single mote running a new program,
the network rapidly and autonomously reprograms itself.
Maté programs are extremely concise (orders of magnitude
shorter than their binary equivalents), conserving commu-
nication energy. TinyOS’ event-driven execution provides
a clear set of program-triggering events, and the nesC’s in-
terfaces allow users to easily change subsystems (such as
ad-hoc routing). Mat́e extends TinyOS by providing an in-
expensive mechanism to dynamically compose programs.
nesC’s static nature allows it to produce highly optimized
and efficient codes; Maté demonstrates that run-time flexi-
bility can be re-introduced quite easily with low overhead.
By eschewing aside the traditional user/kernel boundary,
TinyOS allowed other possibilities to emerge. Maté sug-
gests that the run-time/compile-time boundary in sensor

Figure 12:System architecture for habitat monitoring.

networks might better be served by a lean bytecode inter-
preter that sits on top of a TinyOS substrate.

5 Applications
In this section, we describe three applications that have
been built using the TinyOS platform: an environmen-
tal monitoring system, a declarative query processor, and
magnetometer-based object tracking. Each of these appli-
cations represents a distinct set of design goals and exhibits
different aspects of the TinyOS design.

5.1 Habitat Monitoring
Sensor networks enable data collection at a scale and res-
olution that was previously unattainable, opening up many
new areas of study for scientists. These applications pose
many challenges, including low-power operation and ro-
bustness, due to remote placement and extended operation.

One such application is a habitat monitoring system on
Great Duck Island, off the coast of Maine. Researchers
deployed a 35-node network on the island to monitor the
presence of Leach’s Storm Petrels in their underground bur-
rows [51]. The network was designed to run unattended for
at least one field season (7–9 months). Nodes, placed in
burrows, monitored light, temperature, relative humidity,
pressure, and passive infrared; the network relayed read-
ings back to a base station with an Internet connection via
satellite, to be uploaded to a database. Figure 12 illustrates
the tiered system architecture for this application.

A simple TinyOS program ran on the motes. It peri-
odically (every 68 s) sampled sensors and relayed data to
the base-station. To achieve long network lifetimes, nodes
used the power management facilities of TinyOS aggres-
sively, consuming only 35µA in low power state, com-
pared to 18–20 mA when active. Nodes sampled sensors
concurrently (using a split-phase data acquisition opera-
tion), rather than serially, resulting in further power reduc-
tion. During the 4 months of deployment, the network col-
lected over 1.2 million sensor readings.

A specialized gateway node, built using a mote con-
nected to a high-gain antenna, relayed data from the net-
work to a wired base station. The gateway application
was very small (3090 bytes) and extraordinarily robust: it
ran continuously, without failing, for the entire 4 months
of deployment. The gateway required just 2 Watt-hours

of energy per day and was recharged with a 36 in2 solar
panel [63]. In comparison, an early prototype version of
the gateway, an embedded Linux system, required over 60
Watt-hours of energy per day from a 924 in2 solar panel.
The Linux system failed every 2 to 4 days, while the gate-
way mote was still operating two months after researchers
lost access to the island for the winter.

5.2 Object Tracking
The TinyOS object-tracking application (OTA) uses a sen-
sor network to detect, localize and track an object mov-
ing through a sensor field; in the prototype, the object is
a remote-controlled car. The object’s movement through
the field determines the actions and communication of the
motes. Each mote periodically samples its magnetometer;
if the reading has changed significantly since the last sam-
ple, it broadcasts the reading to its neighbors. The node
with the largest reading change estimates the position of
the target by computing the centroid of its neighbors’ read-
ings. Using geographic routing [38], the network routes
the estimated position to the base-station, which controls a
camera to point at the target. The operation of the tracking
application is shown in Figure 13.

OTA consists of several distributed services, such as
routing, data sharing, time synchronization, localization,
power management, and sensor filtering. Twelve different
research groups are collaborating on both the architecture
and individual subsystem implementation. TinyOS execu-
tion model enables running these services concurrently on
limited hardware resources. The component model allows
for easy replacement and comparative analysis of individ-
ual services. Currently, the reference implementation con-
sists of 54 components. General purpose services, such as
time synchronization or localization, have many competing
implementations, enabled by different features of TinyOS.
Replacement of low-level components used for sensing al-
lowed OTA to be adapted to track using light values instead
of magnetic fields.

Several research groups have successfully implemented
application specific services within this framework. Hui
et al. developed a sentry-based approach [31] that ad-
dresses power management within an object tracking net-
work. Their algorithm chooses a connected subset of sentry
motes, which allows for degraded sensing; the non-sentry
units are placed in a low power state. This service makes
extensive use of the TinyOS power management interfaces,
and is shown to reduce energy consumption by 30% with
minimal degradation of tracking accuracy.

5.3 TinyDB
Many sensor network users prefer to interact with a net-
work through a high-level, declarative interface rather
than by low-level programming of individual nodes.
TinyDB [50], a declarative query processor built on
TinyOS, supports this view, and is our largest and most
complex application to date. It poses significant challenges
for concurrency control and limited resources.

In TinyDB, queries (expressed in an SQL-like syntax)
propagate through the network and perform local data col-
lection and in-network aggregation. Queries specify only
what data the user is interested in and the data collection
rate; the user does not specify any details of query propa-
gation, data collection, or message routing. For example,

0 1 2 3 4 5 6
0

1

2

3

4

5

6

 (1,1)

 (2,1)

 (3,1)

 (4,1)

 (5,1)

 (1,2)

 (2,2)

 (3,2)

 (4,2)

 (5,2)

 (1,3)

 (2,3)

 (3,3)

 (4,3)

 (5,3)

 (1,4)

 (2,4)

 (3,4)

 (4,4)

 (5,4)

 (1,5)

 (2,5)

 (3,5)

 (4,5)

 (5,5)

Event−triggered Activity in Z−Racer

1) Z−Racer drives

2) Broadcast detections

3) Send position to
 camera

Figure 13:Event-triggered activity in the object tracking ap-
plication. (1) The vehicle being tracked drives around position
(4,4) (dashed-line); (2) Six nodes broadcast readings (lightened
nodes); (3) Node (4,4) declares itself the leader, aggregates the
readings, and routes them to the base station (dark arrows).

the query:
SELECT AVG(light)

FROM sensors
WHERE temp > 100o F
SAMPLE PERIOD 10s

tells the network to provide the average light value
over all the nodes with temperature greater than 100o

F once every 10 seconds. TinyDB uses in-network
aggregation [42, 49] to greatly reduce network bandwidth
requirements; this requires that nodes coordinate to
produce the results.

TinyDB relies heavily on TinyOS’component-oriented
design, concurrency primitives, and ability to perform
cross-layer optimizations. TinyDB consists of components
that perform query flooding, local data collection, forma-
tion of routing trees, aggregation of query data, and a cat-
alog of available sensor devices and attributes (such as lo-
cation) at each node. It uses the routing, data collection,
and power management interfaces of TinyOS, and inter-
operates with a variety of implementations of these ser-
vices.

TinyOS’s task model meshes well with the concurrency
requirements of TinyDB, which supports multiple simulta-
neous queries by scheduling a timer for each query which
fires when the next set of results for that query are due.
Each timer event posts a task to collect and deliver results
for the corresponding query. The non-preemptive nature
of tasks and the support for safe concurrent handlers avoid
data races despite extensive information sharing.

One example benefit of cross-layer optimization in
TinyDB is message snooping, which is important for de-
termining the state of neighboring nodes in the network.
Snooping is used to enable query propagation: new nodes
joining the network learn of ongoing queries by snooping
for results broadcast by neighbors. This technique also en-
ables message suppression; a node can avoid sending its
local reading if it is superseded by a message from another
node, as in the case of a query requesting the maximum
sensor value in the network.

6 Related Work
Sensor networks have been the basis for work onad hoc
networking [34, 37, 38, 47], data aggregation [33, 49], dis-
tributed algorithms [25, 46, 59], and primitives such as lo-
calization [8, 76, 77], and time synchronization [16, 62]. In
addition to our mote platform, a number of low-power sen-
sor systems have been proposed and developed [3, 4, 12,
39, 55, 56, 64], though few of these systems have addressed
flexible operating systems design. Several projects use
more traditional embedded systems (such as PDAs [16])
or customized hardware [64].

A wide range of operating systems have been devel-
oped for embedded systems. These range from relatively
large, general-purpose systems to more compact real-time
executives. In [30] we discuss range of these embedded
and real-time systems in detail. These systems are gener-
ally not suitable for extremely resource-constrained sensor
nodes, which mandate very compact, specialized OS de-
signs. Here, we focus our attention on a number of emerg-
ing systems that more closely match the resource budget
and execution model of sensor networks.

Traditional embedded operating systems are typically
large (requiring hundreds of KB or more of memory),
general-purpose systems consisting of a binary kernel with
a rich set of programming interfaces. Examples include
WinCE [52], QNX [28], PalmOS [60], pSOSystem [79],
Neutrino [65], OS-9 [54], LynxOS [48], Symbian [71], and
uClinux [72]. Such OSes target systems with greater CPU
and memory resources than sensor network nodes, and gen-
erally support features such as full multitasking, memory
protection, TCP/IP networking, and POSIX-standard APIs
that are undesirable (both in terms of overhead and gener-
ality) for sensor network nodes.

There is also a family of smaller real-time executives,
such as CREEM [40], OSEKWorks [78], and Ariel [53],
that are closer in size to TinyOS. These systems support a
very restrictive programming model which is tailored for
specialized application domains such as consumer devices
and automotive control.

Several other small kernels have been developed that
share some features in common with TinyOS. These sys-
tems do not support the degree of modularity or flexibil-
ity in TinyOS’s design, nor have they been used for as
wide a range of applications. EMERALDS [85] is a real-
time microkernel, requiring about 13KB of code, that sup-
ports multitasking using a hybrid EDF and rate-monotonic
scheduler. Much of this work is concerned with reducing
overheads for semaphores and IPC. AvrX [5] is a small
kernel for the AVR processor, written in assembly, that
provides multitasking, semaphores, and message queues in
around 1.5 KB of memory. Nut/OS [15] and NESOS [58]
are small kernels that provide non-preemptive multitask-
ing, similar in vein to the TinyOS task model, but use some-
what more expensive mechanisms for interprocess commu-
nication than TinyOS’s lean cross-module calls. The BTN-
ode OS [39] consists mainly of library routines to interface
to hardware and a Bluetooth communication stack, but sup-
ports an event-driven programming model akin to TinyOS.
Modules can post a single-byte event to a dispatcher, which
fires the (single) handler registered for that event type.

A number of operating systems have explored the use of
component architectures. Click [41], Scout [57], and thex-
kernel [32] are classic examples of modular systems, but do

not address the specific needs of low-power, low-resource
embedded systems. The units [19] component model, sup-
ported by the Knit [67] language in OSKit [20], is similar
to that in nesC. In Knit, components provide and use inter-
faces, and new components can be assembled out of exist-
ing ones. Unlike nesC, however, Knit lacks bidirectional
interfaces and static analyses such as data race detection.

Several embedded systems have taken a component-
oriented approach for application-specific configurabil-
ity [21]. Many of these systems use heavyweight compo-
sition mechanisms, such as COM or CORBA, and several
support runtime component instantiation or interposition-
ing. PURE [6], eCos [66], and icWORKSHOP [35] more
closely match TinyOS’s goal of lightweight, static compo-
sition. These systems consist of a set of components that
are wired together (either manually or using a composition
tool) to form an application. Components vary in size from
fine-grained, specialized objects (as in icWORKSHOP) to
larger classes and packages (PURE and eCos). VEST [70]
is a proposed toolkit for building component-based embed-
ded systems that performs extensive static analyses of the
system, such as schedulability, resource dependencies, and
interface type-checking.

7 Discussion, Future Work, and Conclusion
Sensor networks present a novel set of systems challenges,
due to their need to react to the physical environment, to
let nodes asynchronously communicate within austere re-
source constraints, and to operate under a very tight energy
budget. Moreover, the hardware architectures in this new
area are changing rapidly. When we began designing an
operating system for sensor nets we believed that the lay-
ers and boundaries that have solidified over the years from
mainframes to laptops were unlikely to be ideal. Thus, we
focused on building a framework for experimenting with
a variety of system designs so that the proper boundaries
could emerge with time. The key elements being a rich
component approach with bidirectional interfaces and en-
capsulated tasks, pervasive use of event-based concurrency,
and whole-system analysis and optimization. It has been
surprising just how varied those innovations are.

Reflecting on the experience to date, the TinyOS’ com-
ponent approach has worked well. Components see a great
deal of re-use and are generally defined with narrow yet
powerful interfaces. nesC’s optimizations allow develop-
ers to use many fine-grained components with little penalty.
This has facilitated experimentation, even with core sub-
systems, such as the networking stack. Some developers
experience initial frustration with the overhead of building
components with a closed namespace, rather than just call-
ing library routines, but this is compensated by the ease
of interpositioning, which allows them to introduce simple
extensions with minimal overhead.

The resource-constrained event-driven concurrency
model has been remarkably expressive and remains almost
unchanged from the first version of the OS. We chose the
task/event distinction because of its simplicity and mod-
est storage demands, fully expecting that something more
sophisticated might be needed in the future. Instead, it
has been able to express the degree of concurrency re-
quired for a wide range of applications. However, the me-
chanics of the approach have evolved considerably. Ear-
lier versions of TinyOS made no distinction between asyn-

chronous and synchronous code and provided inadequate
support for eliminating race conditions, many of which
were exceedingly difficult to find experimentally. At one
point, we tried introducing a hard boundary to AC, so all
“user” processing would be in tasks. This made it impossi-
ble to meet the real-time requirements of the network stack,
and the ability to perform a carefully designed bit of pro-
cessing within the handler was sorely missed. The frame-
work for innovation concept led us to better support for
building (via atomic sections) the low-level concurrent data
structures that cleanly integrate information from the asyn-
chronous external world up into local processing. This par-
ticularly true for low-level real-time operations that cannot
be achieved without sophisticated handlers.

TinyOS differs strongly from most event-driven embed-
ded systems in that concurrency is structured into modular
components, instead of a monolithic dispatch constructed
with global understanding of the application. Not only has
this eased the conceptual burden of managing the concur-
rency, it has led to important software protocols between
components, such as split-phase data acquisition, data-
pumps found between components in the network stack,
and a power-management idiom that allows hardware ele-
ments to be powered-down quickly and easily. In a number
of cases, attention to these protocols provided the benefits
of integrated-layer processing while preserving clean mod-
ularity.

TinyOS is by no means a finished system; it contin-
ues to evolve and grow. The use of language tools for
whole-system optimization is very promising and should
be taken further. Currently, components follow implicit
software protocols; making these protocols explicit entities
would allow the compiler to verify that components are be-
ing properly used. Examples of these protocols include the
buffer-swapping semantics of the networking stack and the
state sequencing in the control protocols. Parallels exist be-
tween our needs and work such as Vault [13] and MC [17].

Richer means of expressing composition are desirable.
For instance, while developing a routing architecture, we
found that layers in the stack required significant self-
consistency and redundancy in their specifications. A sim-
ple example is the definition of header fields when multiple
layers of encapsulation are provided in the network stack.
We have exploredtemplate wiring, which defines a skele-
ton structure, behaviors of composition, and naming con-
ventions into which stackable components can be inserted.
A template wiring produces a set of modules and config-
urations that meet the specification; it merges component
composition and creation into a single step. We expect to
incorporate these higher-level models of composition into
nesC and TinyOS as they become more clear and well de-
fined.

We continue to actively develop and deploy sensor net-
work applications; many of our design decisions have been
based on our and other users’ experiences with these sys-
tems in the field. Sensor networks are still a new domain,
filled with unknowns and uncertainties. TinyOS provides
an efficient, flexible platform for developing sensor net-
work algorithms, systems, and full applications. It has en-
abled innovation and experimentation on a wide range of
scale.

References
[1] ANSI/IEEE Std 802.11 1999 Edition.

[2] TinySec: Link Layer Security for Tiny Devices. http://www.cs.
berkeley.edu/˜nks/tinysec/ .

[3] G. Asada, M. Dong, T. Lin, F. Newberg, G. Pottie, W. Kaiser, and H. Marcy.
Wireless integrated network sensors: Low power systems on a chip. 1998.

[4] B. Atwood, B. Warneke, and K. S. Pister. Preliminary circuits for smart dust.
In Proceedings of the 2000 Southwest Symposium on Mixed-Signal Design,
San Diego, California, February 27-29 2000.

[5] L. Barello. Avrx real time kernel.http://www.barello.net/avrx/ .

[6] D. Beuche, A. Guerrouat, H. Papajewski, W. Schröder-Preikschat,
O. Spinczyk, and U. Spinczyk. The PURE family of object-oriented oper-
ating systems for deeply embedded systems. InProceedings of the 2nd IEEE
International Symposium on Object-Oriented Real-Time Distributed Comput-
ing, 1999.

[7] Bluetooth SIG, Inc.http://www.bluetooth.org .

[8] N. Bulusu, V. Bychkovskiy, D. Estrin, and J. Heidemann. Scalable, ad hoc
deployable, rf-based localization. InProceedings of the Grace Hopper Con-
ference on Celebration of Women in Computing, Vancouver, Canada, October
2002.

[9] D. W. Carman, P. S. Kruus, and B. J. Matt. Constraints and approaches for dis-
tributed sensor network security.NAI Labs Technical Report #00-010, Septem-
ber 2000.

[10] Center for Information Technology Research in the Interest of Society. Smart
buildings admit their faults. http://www.citris.berkeley.edu/
applications/disaster_response/smartbuil%dings.html ,
2002.

[11] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat
monitoring: Application driver for wireless communications technology. In
Proceedings of the Workshop on Data Communications in Latin America and
the Caribbean, Apr. 2001.

[12] L. P. Clare, G. Pottie, and J. R. Agre. Self-organizing distributed mi-
crosensor networks. InSPIE 13th Annual International Symposium on
Aerospace/Defense Sensing, Simulation, and Controls (AeroSense), Unat-
tended Ground Sensor Technologies and Applications Conference, Apr. 1999.

[13] R. Deline and M. Fahndrich. Enforcing High-level Protocols in Low-Level
Software. InProceedings of the ACM SIGPLAN ’01 Conference on Program-
ming Language Design and Implementation, June 2001.

[14] L. Doherty, B. Hohlt, E. Brewer, and K. Pister. SLACKER.http://
www-bsac.eecs.berkeley.edu/projects/ivy/ .

[15] egnite Software GmbH. Nut/OS.http://www.ethernut.de/en/
software.html .

[16] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization
using reference broadcasts. InFifth Symposium on Operating Systems Design
and Implementation (OSDI 2002), Boston, MA, USA., dec 2002.

[17] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using sys-
tem specific, programmer-written compiler extensions. InProceedings of the
Fourth Symposium on Operating Systems Design and Implementation., Oct.
2000.

[18] D. Estrin et al. Embedded, Everywhere: A Research Agenda for Networked
Systems of Embedded Computers. National Acedemy Press, Washington, DC,
USA, 2001.

[19] M. Flatt and M. Felleisen. Units: Cool modules for HOT languages. InPro-
ceedings of the ACM SIGPLAN ’98 Conference on Programming Language
Design and Implementation, pages 236–248, 1998.

[20] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. The flux OS-
Kit: A substrate for kernel and language research. InSymposium on Operating
Systems Principles, pages 38–51, 1997.

[21] L. F. Friedrich, J. Stankovic, M. Humphrey, M. Marley, and J. J.W. Haskins.
A survey of configurable component-based operating systems for embedded
applications.IEEE Micro, May 2001.

[22] D. Ganesan. TinyDiffusion Application Programmer’s Interface API 0.1.
http://www.isi.edu/scadds/papers/tinydiffusion-v0.
1.pdf .

[23] D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, and S. Wicker.
An empirical study of epidemic algorithms in large scale multihop wireless
networks. citeseer.nj.nec.com/ganesan02empirical.html ,
2002. Submitted for publication, February 2002.

[24] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The
nesC language: A holistic approach to networked embedded systems. InPro-
ceedings of Programming Language Design and Implementation (PLDI), June
2003.

[25] I. Gupta and K. Birman. Holistic operations in large-scale sensor network
systems: A probabilistic peer-to-peer approach. InProceedings of Interna-
tional Workshop on Future Directions in Distributed Computing (FuDiCo),
June 2002.

[26] T. Ha, B. Blum, J. Stankovic, and T. Abdelzaher. AIDA: Application Indepen-
dant Data Aggregation in Wireless Sensor Networks. Submitted toSpecial
Issue ofACM TECS, January 2003.

[27] J. S. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, and
D. Ganesan. Building efficient wireless sensor networks with low-level nam-
ing. In Proceedings of the 18th ACM Symposium on Operating Systems Prin-
ciples, Banff, Canada, October 2001.

[28] D. Hildebrand. An Architectural Overview of QNX.http://www.qnx.
com/literature/whitepapers/archoverview.html .

[29] J. Hill and D. E. Culler. Mica: a wireless platform for deeply embedded net-
works. IEEE Micro, 22(6):12–24, nov/dec 2002.

[30] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister.
System architecture directions for networked sensors. InArchitectural Support
for Programming Languages and Operating Systems, pages 93–104, Boston,
MA, USA, Nov. 2000.

[31] J. Hui, Z. Ren, and B. H. Krogh. Sentry-based power management in wireless
sensor networks. InProceedings of Second International Workshop on Infor-
mation Processing in Sensor Networks (IPSN ’03), Palo Alto, CA, USA, Apr.
2003.

[32] N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for im-
plementing network protocols.IEEE Transactions on Software Engineering,
17(1):64–76, 1991.

[33] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of net-
work density on data aggregation in wireless sensor networks. InProceedings
of the International Conference on Distributed Computing Systems (ICDCS),
July 2002.

[34] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scal-
able and robust communication paradigm for sensor networks. InProceedings
of the International Conference on Mobile Computing and Networking, Aug.
2000.

[35] Integrated Chipware, Inc. Integrated Chipware icWORKSHOP.http://
www.chipware.com/ .

[36] Jason Hill. Integratedµ-wireless communication platform. http:
//webs.cs.berkeley.edu/retreat-1-03/slides/Mote_
Chip_Jhill_Nest_jan2003.pdf .

[37] C. Karlof, Y. Li, and J. Polastre. ARRIVE: Algorithm for Robust Routing in
Volatile Environments. Technical Report UCB//CSD-03-1233, University of
California at Berkeley, Berkeley, CA, Mar. 2003.

[38] B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless
networks. InInternational Conference on Mobile Computing and Networking
(MobiCom 2000), pages 243–254, Boston, MA, USA, 2000.

[39] O. Kasten and J. Beutel. BTnode rev2.2.http://www.inf.ethz.ch/
vs/res/proj/smart-its/btnode.html .

[40] B. Kauler. CREEM Concurrent Realitme Embedded Executive for Microcon-
trollers. http://www.goofee.com/creem.htm .

[41] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
modular router.ACM Transactions on Computer Systems, 18(3):263–297, Au-
gust 2000.

[42] B. Krishanamachari, D. Estrin, and S. Wicker. The impact of data aggregation
in wireless sensor networks. InInternational Workshop of Distributed Event
Based Systems (DEBS), Vienna, Austria, Dec. 2002.

[43] P. Levis and D. Culler. Maté: A tiny virtual machine for sensor networks. InIn-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems, San Jose, CA, USA, Oct. 2002.

[44] P. Levis, N. Lee, A. Woo, S. Madden, and D. Culler. Tossim: Simulating large
wireless sensor networks of tinyos motes. Technical Report UCB/CSD-TBD,
U.C. Berkeley Computer Science Division, March 2003.

[45] D. Liu and P. Ning. Distribution of key chain commitments for broadcast
authentication in distributed sensor networks. In10th Annual Network and
Distributed System Security Symposium, San Diego, CA, USA, Feb 2003.

[46] J. Liu, P. Cheung, L. Guibas, and F. Zhao. A dual-space approach to tracking
and sensor management in wireless sensor networks. InProceedings of First
ACM International Workshop on Wireless Sensor Networks and Applications,
September 2002.

[47] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic, and T. He. RAP: A real-
time communication architecture for large-scale wireless sensor networks. In
Proceedings of IEEE RTAS 2002, San Jose, CA, September 2002.

[48] LynuxWorks. LynxOS 4.0 Real-Time Operating System.http://www.
lynuxworks.com/ .

[49] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TAG: A Tiny
AGgregation Service for Ad-Hoc Sensor Networks. InOSDI, 2002.

[50] S. Madden, W. Hong, J. Hellerstein, and M. Franklin. TinyDB web page.
http://telegraph.cs.berkeley.edu/tinydb.

[51] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless
sensor networks for habitat monitoring. InACM International Workshop on
Wireless Sensor Networks and Applications (WSNA’02), Atlanta, GA, USA,
Sept. 2002.

[52] Microsoft Corporation. Microsoft Windows CE. http://www.
microsoft.com/windowsce/embedded/ .

[53] Microware. Microware Ariel Technical Overview. http://www.
microware.com/ProductsServices/Technologies/ariel_
technology_bri%ef.html .

[54] Microware. Microware OS-9. http://www.microware.com/
ProductsServices/Technologies/os-91.html .

[55] Millenial Net. http://www.millennial.net/ .

[56] R. Min, M. Bhardwaj, S.-H. Cho, N. Ickes, E. Shih, A. Sinha, A. Wang, and
A. Chandrakasan. Energy-centric enabling technologies for wireless sensor
networks. 9(4), August 2002.

[57] D. Mosberger and L. Peterson. Making paths explicit in the Scout operating
system. InProceedings of the USENIX Symposium on Operating Systems De-
sign and Implementation 1996, October 1996.

[58] Nilsen Elektronikk AS. Nilsen Elektronikk Finite State Machine Operating
System.http://www.ethernut.de/en/software.html .

[59] R. Nowak and U. Mitra. Boundary estimation in sensor networks: Theory
and methods. InProceedings of 2nd International Workshop on Information
Processing in Sensor Networks, Palo Alto, CA, April 2003.

[60] Palm, Inc. PalmOS Software 3.5 Overview.http://www.palm.com/
devzone/docs/palmos35.html .

[61] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar. Spins: Security
protocols for sensor networks.Wireless Networks, 8(5):521–534, sep 2002.
Previous version of this paper appeared as PSWCT2001.

[62] S. Ping. Something about time syncronization. XXX Lets get this written up
as an Intel tech report.

[63] J. Polastre. Design and implementation of wireless sensor networks for habitat
monitoring. Master’s thesis, University of California at Berkeley, 2003.

[64] N. B. Priyantha, A. Miu, H. Balakrishnan, and S. Teller. The Cricket Com-
pass for context-aware mobile applications. InProceedings of the 7th ACM
MOBICOM, Rome, Italy, July 2001.

[65] QNX Software Systems Ltd. QNX Neutrino Realtime OS .http://www.
qnx.com/products/os/neutrino.html .

[66] Red Hat, Inc. eCos v2.0 Embedded Operating System.http://sources.
redhat.com/ecos .

[67] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit: Component com-
position for systems software. InProc. of the 4th Operating Systems Design
and Implementation (OSDI), pages 347–360, 2000.

[68] C. Sharp. Something about the mag tracking demo. XXX Lets get this written
up as an Intel tech report.

[69] C. Sharp et al. NEST Challenge Architecture.http://www.ai.mit.
edu/people/sombrero/nestwiki/index/ .

[70] J. A. Stankovic, H. Wang, M. Humphrey, R. Zhu, R. Poornalingam, and C. Lu.
VEST: Virginia Embedded Systems Toolkit. InIEEE/IEE Real-Time Embed-
ded Systems Workshop, London, December 2001.

[71] Symbian. Symbian OS - the mobile operating system.http://www.
symbian.com/ .

[72] uClinux Development Team. uClinux, The Linux/Microcontroller Project.
http://www.uclinux.org/ .

[73] University of California at Berkeley. 800-node self-organized wireless sensor
network.http://today.cs.berkeley.edu/800demo/ , Aug. 2001.

[74] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active mes-
sages: a mechanism for integrating communication and computation. InPro-
ceedings of the 19th Annual International Symposium on Computer Architec-
ture, pages 256–266, May 1992.

[75] B. Warneke, M. Last, B. Leibowitz, and K. S. J. Pister. Smart dust: Com-
municating with a cubic-millimeter computer.IEEE Computer, 32(1):43–51,
January 2001.

[76] K. Whitehouse. The design of calamari: an ad-hoc localization system for
sensor networks. Master’s thesis, University of California at Berkeley, 2002.

[77] K. Whitehouse and D. Culler. Calibration as parameter estimation in sensor
networks. InACM International Workshop on Wireless Sensor Networks and
Applications (WSNA’02), Atlanta, GA, USA, Sept. 2002.

[78] Wind River Systems, Inc. OSEKWorks 4.0.http://www.windriver.
com/products/osekworks/osekworks.pdf .

[79] Wind River Systems, Inc. pSOSystem Datasheet.http://www.
windriver.com/products/html/psosystem_ds.html .

[80] A. Woo and D. Culler. Evaluation of Efficient Link Reliability Estimators for
Low-Power Wireless Networks. Technical report, UC Berkeley, 2002.

[81] A. D. Wood and J. A. Stankovic. Denial of service in sensor networks.IEEE
Computer, 35(10):54–62, Oct. 2002.

[82] M. D. Yarvis, W. S. Conner, L. Krishnamurthy, A. Mainwaring, J. Chhabra,
and B. Elliott. Real-World Experiences with an Interactive Ad Hoc Sen-
sor Network. InInternational Conference on Parallel Processing Workshops,
2002.

[83] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol for
wireless sensor networks. InProceedings of IEEE Infocom 2002, New York,
NY, USA., June 2002.

[84] W. Ye, J. Heidemann, and D. Estrin. A flexible and reliable radio communica-
tion stack on motes. Technical Report ISI-TR-565, USC/ISI, Aug. 2002.

[85] K. M. Zuberi, P. Pillai, and K. G. Shin. EMERALDS: a small-memory real-
time microkernel. InSymposium on Operating Systems Principles, pages 277–
299, 1999.

