
DTNLite: A Reliable Data Transfer Architecture for
Sensor Networks

Rabin Patra and Sergiu Nedevschi
CS294-1: Deeply Embedded Networks(Fall 2003)
{rkpatra,sergiu}@cs.berkeley.edu

Abstract— We present a network architecture, DTNLite, for
reliable message delivery in sensor networks facing problems of
high mobility, frequent disconnections and unreliable nodes . It is
based on the DTN(Delay Tolerant Networking) architecture and
its main features are asynchronous message delivery combined
with custody transfer on an overlay network on sensor motes. We
present an implementation of this architecture for the TinyOS
platform targeting data collection applications. We also explore
the various issues in reliable custody transfer and investigate
the particular issue of querying and selection of custody hops in
detail. Our simulation results show that selection criteria that
use energy or delay as metrics are able to profitably exploit the
asymmetries in the network.

I. INTRODUCTION AND MOTIVATION

Wireless sensor networks are a cost effective, distributed
solution, providing sensing and computing solutions in various
environments where conventional networks are impractical.
This paper addresses the design of system support for reliable
data delivery in sensor networks facing challenges such as
sparse connectivity, high degree of mobility, flaky nodes and
unreliable links. However the key questions are why reliability,
why challenged sensornets, and why reliability in challenged
sensornets?

Unlike traditional networks, reliability in sensor networks is
still an open research question. There has been little amount
of work on the design of reliable delivery protocols, and
most of the existing solutions are application-specific. This
is mainly because in traditional sensor network applications,
such as monitoring, directed diffusion or object tracking, oc-
casional data loss is acceptable. However, as sensor networks
become ubiquitously deployed, we can imagine a large class
of applications where reliable delivery is required. A good
example is network reprogramming of sensor nodes, where
the reliable delivery of every single byte of code is necessary.
Reliable and timely delivery of emergency events is another.
For applications with large data units, exceeding the maximum
packet payload, reliable delivery of all fragments is required
to make the data usable.

The majority of current solutions for sensor nets assume
high connectivity degrees, manageable mobility and low error
rates. On the other hand, few real environments can have
such well-controlled parameters, and providing these proper-
ties requires large numbers of nodes, and important energy
consumption. Covering extended sensing areas is achievable
by tolerating smaller node density, and an important tool
in extending coverage is mobility, i.e. moving data around.

Moreover, maintaining a long lifetime recommends small
on-times. All these are reasons for exploring solutions for
challenged networks.

Finally, in challenged networks, reliability, though hard
to achieve, is essential, because data loss opportunities are
plentiful, and without reliability mechanisms, most of the data
will be lost or unusable.

II. RELATED WORK

In this section we provide a brief survey or related work in
the areas of reliable data delivery in sensor and delay tolerant
networking.

A. Reliable Data Delivery in Sensor Networks

Efficient transport protocols to provide reliable data delivery
in sensor networks have been proposed in [1] and [2].

In [2], authors introduce RMST, a transport protocol that
provides guaranteed delivery and fragmentation/reassembly for
applications that require them. RMST is a selective NACK-
based protocol that can be configured for in-network caching
and repair. Nodes along the route of a message cache mes-
sage fragments, and some number of nodes perform message
reassembly, test for lost fragments, and issue repair request to
the previous nodes in the path.

Another reliable transport protocol for sensornets is pre-
sented in [1]. In this approach called Pump Slow Fetch Quickly,
each node performs a special type of message reassembly. That
is, nodes can immediately forward to the next hop fragments
if they are received in order. However, as soon as they receive
an out-of-order fragment, they issue a repair request, and
buffer the out-of-order fragment until the missing fragment
is obtained and relayed. Nodes are thus performing fragment
ordering. The repair requests are answered by previous nodes
in the path that use fragment caches. PSFQ targets a small
delay, comparable to forwarding approaches, combined to the
reliability and small number of retransmissions specific to
hop-to-hop store-and-forward. Most of these approaches are
application-specific reliable data delivery mechanisms. In [3],
the author proposes a store-and-forward hop-to-hop efficient
data transfer protocol, used for high-bandwidth data collection
in the structural monitoring of the Golden Gate bridge.

B. Delay Tolerant Networking

This is an emerging field that attempts to develop an
networking architecture[4] and philosophy revolving around

asynchronous message delivery with custody transfer for net-
works that are subject to long delays and/or frequent discon-
nections that rule out contemporaneous end-to-end connec-
tions. The architecture operates as an overlay above the trans-
port layers of the networks it interconnects, and provides key
services such as in-network data storage and retransmission,
inter-operable naming, authenticated forwarding and a coarse-
grained class of services. An implementation of this protocol
is also publicly available at [5].

The ZebraNet [6] system includes custom tracking collars
(nodes) carried by animals under study across a large, wild
area; the collars operate as a peer-to-peer network to deliver
logged data back to researchers. The collars are small wireless
devices that include GPS, flash memory, wireless transceivers,
and a small CPU.

III. DESIGN SPACE

The main instruments for achieving reliable delivery are
acknowledgment and retransmission. Thus, the design space
for reliable solutions will be shaped by retransmissions: when
are they performed and who is responsible for them. The
best solution is the one that makes the most efficient use of
retransmissions.

The end-to-end argument dictates end-to-end acknowledg-
ment as the only true answers for reliability. However, adding
functionality at the intermediary hops can significantly in-
crease efficiency.

Packets can be retransmitted at each hop, at some number
of intermediate hops, or only at the source. Each packet can
be treated independently, and acknowledged independently,
or selective negative acknowledgments can be sent for the
missing fragments of a larger message.

From the point of view of the number of nodes that perform
retransmissions, the extreme cases are when acknowledgment
and retransmission is done at each hop, and the case when they
are done only at endpoints. As illustrated in [1], the second
solution is well suited for very reliable and stable networks,
with less than 1% error rates. However, it is not suited for
links with high error rates, because the error probability for
the whole path accumulates, becoming 1 − (1 − pn), where
p is the link error rate and n is the number of hops in the
path. Consequently, retransmissions at intermediary hops are
desirable.

From the point of view of the number of fragments that
need to be acknowledged, the extremes are the forwarding and
store-and-forward approaches. In forwarding, each packet is
acknowledged separately, and can immediately be sent to the
next hop. In store-and-forward on the other hand, messages
are assembled at every hop, and the missing fragments are
negative-acknowledged. Forwarding is inefficient due to the
high number of acknowledgments, while store-and-forward
features large delays.

There are other approaches that reside in between extremes,
both in terms of number of nodes performing retransmission,
as well as in terms of number of acknowledgments per
message. Both [1] and [2] propose hybrid approaches that rely

on in-network caching, loss detection and repair. In the PSFQ
approach([1]) , the solution exhibits a multi-modal property
that provides a graceful trade off between forwarding and
store-and-forward paradigms.

Having understood the design options for reliable data
delivery in non-challenged sensor networks, let us analyze the
performance of the available options when challenges such
as disconnection and high mobility are added to the set of
assumptions about the network. We perform the analysis on
three representative alternatives:

• Alternative 1: Forwarding, with end-to-end acknowledg-
ment only.

• Alternative 2: Store and forward, with packet reassembly
at each node and selective negative acknowledgments. No
end to end acknowledgments. Data is stored in volatile
memory.

• Alternative 3: Store and forward, with packet reassembly
at each node and selective negative acknowledgments.
End to end acknowledgments. Data is stored in volatile
memory.

• Alternative 4: The PSFQ hybrid approach.

Let us enunciate some of the difficulties exhibited by the
above reliability mechanisms when faced with different types
of challenges. These challenges are not exclusive, and usually
happen simultaneously (e.g. disconnection and high round trip
delay), however we will present their effects one at a time:

• High round trip delay: We assume the round trip delays
between sources and destinations on the order of hours
if not days, mainly due to disconnections. Alternatives
1, 3 and 4 all require final end-to-end acknowledgments.
This means the full message content needs to be stored
at the data source, until every fragment is delivered to
the destination. However, since the round trip delay is so
large, the acknowledgments will arrive much subsequent
the data was actually delivered to the destination, and data
sources will thus have to store a large number of such
messages. This is obviously problematic, since storage is
limited at the data sources, and consequently generation
of new data may be impaired. Alternative 2 does not face
this problem.

• Disconnections: We assume end-to-end connected paths
between source and destination do not always exist, or
they might not exist at any single moment in time.
For all the observed alternatives, the fact that source
and destination are not connected does not stop sensors
from sampling and sending data toward the destination.
However, since no stable storage buffering is used, the
node where the connected path is interrupted will be
overflowed with data it cannot handle, if it has limited
volatile memory(RAM) capacity.

• Flaky nodes: We assume sensor nodes are unreliable and
that they can go to sleep unexpectedly and wake up at a
later time. Under these assumptions, alternative 3 cannot
guarantee reliability, since the messages stored in volatile
memory can be lost, and the data is not backed up at the

source.
• Large messages: If the message size exceeds the avail-

able memory capacity, the packet reassembly cannot
be performed at the intermediary nodes. This renders
alternatives 2 and 3 unusable.

• High mobility: High mobility leads to routing instability
and the underlying routing might not be able to maintain
updated state. If the end-to-end paths are long, then the
message transfers might be frequently aborted especially
if the links are not always symmetrical. On top of these
problems, PSFQ is also very inefficient, because route
changes make the caches of previous nodes in the path
unreachable, and end retransmissions must be performed.

These arguments are also briefly shown in this table I. As
one can observe, all the alternatives prove unsuitable when
faced with some of these challenges.

Taking into account the set of difficulties they alternatives
are facing, we propose a few mechanisms addressing them.
These ideas were inspired from the mechanisms underlying
the Delay Tolerant Networking architecture for IP networks
presented in [4], mainly because IP networks featuring dis-
connections and large delays face a similar set of issues as
the ones presented above. These ideas are:

• Store-and-forward using stable storage: The mechanism
is intended to alleviate buffer overflow problems associ-
ated with disconnections. Since buffered messages might
be stored for long periods of time, buffers are likely to
grow beyond the node volatile memory capacity. More-
over, buffering using stable storage increases reliability,
and flaky nodes cease to be a problem, since data is not
lost during power-downs and resets.

• Custody transfer as an alternative to end-to-end relia-
bility: Keeping a full copy of the data at the source
until an end acknowledgment is received comes with
great storage utilization penalties in networks with large
roundtrip delays. A possible solution is an alternative
reliability paradigm, called custody transfer. A custody
transfer refers to the acknowledged delivery of a mes-
sage from one hop to the next and the corresponding
passing of reliable delivery responsibility. In other words,
the custodian node, after storing the message in stable
storage, becomes responsible for its successful delivery,
and the previous custodian, which might be the source,
can delete its own copy. More detailed issues related to
custody transfers are presented in section V.

IV. DTNLITE FOR SENSOR NETWORKS

This section discusses the design issues for implementing
a custody based reliable transfer mechanism(DTNLite) for
sensor networks and then presents an implementation for the
TinyOS platform. The reliable transfer mechanism proposed
in the previous section is based the abstraction of message
switching. Messages (or bundles) are transferred on an overlay
network formed of nodes that are ready to perform store and
forward functions. The actual node-to-node bundle transfer
between overlay nodes is done using the custody transfer

mechanism. A custody transfer refers to the acknowledged
delivery of a message from one DTNLite hop to the next and
the corresponding passing of reliable delivery responsibility.

A. Design Issues

• Custody transfer with reliability: The most important
problem is the mechanism implementing the one hop
transfer of a bundle from one overlay DTNLite hop to
another. This is especially difficult since the bundles
are application data units(ADUs) which means they are
usually larger than the underlying network packets and
have to be deliver in-order. The underlying networking
layer is also rudimentary and ordinarily does not provide
multiple hop reliability. Other factors like the flakiness of
connections, unreliability of the nodes and the absence of
an any-to-any mulithop routing mechanism make reliable
multi-hop transfer challenging. However various options
are available, some of which are discussed in the previous
sections. The available options include some of the solu-
tions discussed in the section III and include multi-path
sending, packet replication etc.

• Persistent storage management: Reliability demands that
the sensor network nodes persistently store bundles until
they are successfully able to delegate responsibility to
another node. The first requirement is for the nodes
to posses non-volatile storage such as flash. Making
this assumption, the easiest solution is to use database
operations for writing and reading bundles. Unfortunately,
sensor motes are very resource constrained and they
usually lack full-fledged file system. In such a situation
we have to make sure that all bundle writes are forced
(flushed to storage) before a custody transfer can be
acknowledged as completed. The flash storage system
should be capable of supporting some low level atomic
operations that would make sure that the record of stored
bundles is consistent.

• Duplicate management: Since frequent disconnections
are assumed, complete elimination of duplicate bundles
is not possible. The simplest scenario where a duplicate
bundle can be created is when a custody transfer acknowl-
edgment is lost, resulting in both the sender and receiver
maintaining custody. In such situations we can either
assume a deliver at least one model or need to include
some mechanisms to detect duplicates at the basestation.
This issue is discussed in more detail in section V

• Application awareness: This issue concerns the degree to
which applications should be aware of the network condi-
tions. Awareness is desirable because giving applications
the ability to adapt to changing network conditions can
increase the network’s efficiency. Solutions for long term
storage of data in sensor motes can be provided by using
mechanisms such as in-network aging and summarizing
and compression of data in case of communication chal-
lenges.

Challenge Alternative 1 Alternative 2 Alternative 3 Alternative 4
Description Forwarding,end-to-end

acks
Store and forward, selec-
tive nacks, no end-to-end
acks

Store and forward, se-
lective nacks, end-to-end
acks

PSFQ

High roundtrip delay
hours or days

Storage overflow at data
source

Storage overflow at data
source

Storage overflow at data
source

Flaky Nodes or low
duty cycles

unreliable, data loss

Frequent disconnec-
tions

RAM overflow at node
with disconnection

RAM overflow at node
with disconnection

RAM overflow at node
with disconnection

RAM overflow at node
with disconnection

Message size ≥

memory size
impossible reassembly at
intermediary nodes

impossible reassembly at
intermediary nodes

High mobility Frequent aborts, restarts Frequent aborts, restarts Frequent aborts, restarts Frequent aborts, and inef-
ficient - caches at pervious
nodes become unavailable

TABLE I

RELIABILITY MECHANISMS IN THE FACE OF CHALLENGES

B. Architecture and Implementation

Considering the design issues for a generic custody transfer
framework, we propose a network stack architecture for the
TinyOS platform. The design is loosely based on the DTN
overlay architecture proposed in [4]. We have particularly
targeted our implementation for data collection applications
where there is a central basestation. Nodes generate data hav-
ing the base station as the destination. We choose to cover this
particular case because the overlay routing in DTNLite needs
an underlying multi-hop routing protocol, and in this respect
tree-based routing represents a viable alternative. However, as
generic multi-hop protocols for any-to-any routing in sensor
networks become available, the architecture can be easily
adapted to any-to-any delivery.

Addressing is an important issue in disconnected networks,
but we make the simplifying assumption that all nodes have
a unique static address, and that all packets share the same
destination. In these conditions, each message is identified by
a combination of the the source node id and a unique bundle
id (or token) for the originating node.

Figure 1 shows presents the layering of the important
components of the proposed architecture.

1) Bundle Storage Manager: This component
(BundleStorageMgr) is responsible for providing
persistent storage for bundles. For the Berkeley Mica
motes, the flash(about 512K bytes) is the available
storage medium. We use the Matchbox file system([7]),
and its implementation for Mica motes. The Matchbox
filesystem uses atomic write operations for operating
with file meta-data, and provides support for data
corruption detection.

2) Bundle Agent: This component (BundleAgent) corre-
sponds to the overlay routing layer. The Bundle Agent
provides to the application an interface for sending and
receiving bundles. It is responsible for implementing
the custody transfer handshake with the corresponding
Bundle Agent on the next overlay hop. Consequently, it
is responsible for querying the network for an available

BUNDLE LAYER

MATCHBOX

APPLICATION

BUNDLES
STORAGE
MANAGER

CONVERGENCE LAYER

GENERIC COM

CUSTODY QUERY
MANAGER

BUNDLE
TRANSFER
MANAGER

MULTIHOP
ROUTING

Send / Receive
 Messages

Query Connection
Status

Configure DTN
 Options

Store /
Retrieve

Bundles &
Metadata

Read/Write Files
Send/Receive

Custody
Queries / Responses

LRX COMM

Send / Receive
Bundles Accept / Reject

Custody

Read / Write
Memory Blocks

Send / Receive
Packets

Send / Receive
Packets

Send / Receive
Packets

Select Next Hop

Fig. 1. DTNLite architecture

next custody hop, and for selecting the best among the
candidates. It uses the convergence layer for the actual
transfer of a bundle to the next custody hop. It also relies
on the convergence layer for performing and getting
responses for custody queries, and for sending out
custody transfer acknowledgment messages. Currently,
the allocation of memory for the bundles is done in
the Bundle Agent itself, though this aspect might need
to be modified if the bundle sizes exceed the available
memory size. The interface it provides to the application
is described in the following:
command token_t sendBundle(DTNBundle *bundle);
event result_t sendBundleDone(token_t token);
event result_t receiveBundle(DTNBundle *bundle);
event result_t connectionStatChanged(stat_t *st);

The connectionStatChanged event provides the appli-
cation with information about changes in the network
connectivity state.

3) Convergence Layer: This component(ConvLayer) is
analogous to the components that provide neighbor-
hood discovery and maintenance in traditional sensor
networks. It provides the Bundle Agent with basic
primitives for transferring a bundle to another custody
hop, for sending and receiving custody query requests
and custody acknowledgments. It uses the following
components:

a) LRX: This component(LRX) is used for the reliable
multi-hop transfer of a bundle from one custody
hop to another. It basically provides a primitive
for high-speed transfer of a bundle over one hop.
It uses a basic windowing scheme along with
selective NACKs . However the Convergence Layer
uses source routing for specifying the route of
a bundle over multiple network hops to the next
custody hop.

b) MultiHop: This component is used by Convergence
Layer for sending/receiving custody queries and
acknowledgments. The custody responses from po-
tential custody hops contain the route of the path
to the respondent.

The Convergence Layer provides the following interface
to the Bundle Agent:
command result_t sendCustodyQuery(query_t *query);
event result_t receiveCustodyQuery(query_t *query);

command result_t sendCustodyQueryResp(resp_t *resp);
event result_t receiveCustodyQueryResp(resp_t *resp);

command result_t transferBundle(bundle_t *bnd);
event result_t receiveBundle(bundle_t *bnd);

command result_t sendCustodyAck(ack_t *ack);
event result_t receiveCustodyAck(ack_t *ack);

Table II illustrates the mapping of analogous components
between traditional sensor networking and DTNLite.

Sensor network func-
tion

DTNLite function DTNLite
Component

Packets Messages(in-order) -
Neighborhood
discovery and
maintenance

Custody Query and
Discovery

ConvLayer

Multihop packet
transfer

Custody hop bundle
transfer

BundleAgent

Network Hop
packet transfer
GenericComm

Network hop bundle
transfer

LRX

TABLE II

MAPPING BETWEEN COMPONENTS

V. CUSTODY TRANSFER

This section discusses an important aspect of the DTNLite
framework - the custody transfer mechanism. The discussion
covers the discovery and selection of potential custody nodes
and the mechanics of the custody handshake.

A. Custody transfer and duplicate creation

The reliable custody transfer of a message requires a hand-
shaking protocol between the source and destination nodes.
Unfortunately, handshaking cannot insure both of the follow-
ing properties: no message loss and no message duplication.
In other words, we need to choose between having a reliable
transfer and having a duplicate-free transfer. Since reliability
is more important in our design, message duplication must be
accepted and dealt with.

Let us illustrate the handshaking mechanism between a
source node A and a destination B: A sends a message to
B; when B receives the messages, it saves it to stable storage,
it assumes custody and sends back an acknowledgment to A.
Upon receiving the acknowledgment, A deletes the message
from its storage and renounces its custody.

If our goal is reliability alone, the message exchange can
already stop here: if the acknowledgment is successfully
received by A, we have one owner, otherwise we have two
owners, a duplicate being produced. However, there is another
property we are interested in: the awareness of the participants
in the transfer of the possibility of a duplicate being produced.
More precisely, if only the message exchanges described above
are performed, B can never estimate whether a duplication has
happened or not. If, on the other hand, a final acknowledgment
is sent from A to B, B will have more information about a pos-
sible duplication: if the final acknowledgment is successfully
received, B knows it is the only owner, otherwise it knows it
might share the ownership with A. This type of information
can be useful when doing in-network aggregation, or when
running duplication elimination algorithms.

1) Dealing with duplicates: Duplicates are problematic
because they consume storage and bandwidth resources, both
of them scarce in sensor networks. The extreme case when
the ratio of duplicates to regular messages in the system
keeps increasing until the normal network functioning is
impaired must be prevented. In this sense, nodes must check
for more than one copy of the same message, and eliminate
them. Explicit duplicate elimination can be initiated at the
destination, by broadcasting deletion packets containing lists
of unique ids for messages already delivered.

However, in many cases, duplicates may pose a larger
problem, because they hinder the in-network processing ability
of the nodes. More precisely, duplicate-sensitive in-network
operations, such as averaging, are problematic in the presence
of duplicates, as opposed to duplicate-insensitive operations,
such as computing the minimum value. This is one good use
of information obtained during custody transfers regarding
the duplication possibility: if a node is sure it has exclusive
ownership of the message, it can safely use it for in-network
aggregation.

2) Congestion and custody transfer: An additional problem
related to custody transfer is the fact that once custody has
been transferred from the source, the messages cannot be
safely discarded. The only possible ways to reuse the storage
allocated to these messages is either to transfer them to another
custodian or to drop them after their expiration deadline

passes. This makes the network very difficult to manage during
congestion, when message dropping is extremely valuable.
Since the only place messages can be dropped is at the
source, care has to be taken when accepting new messages for
transfer. A possible mechanism to alleviate this predicament
involves keeping additional information with every message,
that would help the intermediary custodians assess whether
they are authorized to discard it. In this case, the intermediary
node act as a placeholder for the source.

3) Choosing the next custody hop: In a given sensor net-
work, some or all the nodes may act as potential custodians for
messages. In effect the custodians form an overlay network on
top of the underlying sensor network. The problem of finding
the next custody hop is reduced to the problem of routing in
the overlay network.

Choosing the next custody hop incurs specific issues that
need to be addressed, and that make the routing metrics in
the custodians overlay substantially different from the routing
metrics used in the underlying network.

In today’s sensornets, stable storage is usually provided
by flash memory. Since writing to flash is an expensive
operation in terms of energy consumption, the number of times
a message needs to be written to flash must be minimized,
meaning that the number of custody transfers needs to be
minimized.

Another concerns is related to network disconnections.
If, due to temporary disconnection, a route making forward
progress toward the destination does not exist, the message
must remain in custody, until a valid route toward destination
is discovered.

In order to address these concerns, the routing protocol must
make the following decisions:

• Choosing the best neighbor in the overlay to transfer
custody to.

• After having decided on the best neighbor, establishing
whether transferring custody to this node is worthy at this
time.

The routing strategy can be targeted toward achieving one
or more of the following global optimizations:

• Minimizing the overall energy consumption in the net-
work. Very roughly, energy consumption in the network
can be modeled as the sum between the energy spent
for packet transmissions, retransmissions and acknowl-
edgments, and the energy consumed by writing/reading
the messages to flash. On one hand, minimizing the
number of custody hops reduces the energy spent for flash
writing/reading. This recommends always taking long
leaps toward the destination, by choosing the neighbor
in the overlay that is closest to the destination. However,
transferring the custody over a long underlying network
path is not recommended for several reasons. Transferring
custody at a distant node takes a significant amount of
time, and because the network conditions are dynamic,
the probability of the path between custody hops chang-
ing or ceasing to exist altogether is much higher. Thus,

failure to transfer custody happens more often if done
over longer underlying routes. Moreover, for the case
where packet retransmissions are not performed at each
hop, the number of end-to-end retransmissions increases
with path length. Thus, when optimizing for energy
consumption, we need to balance between minimizing
the number of custody transfers and minimizing number
of retrials and retransmissions.

• Obtaining a uniform distribution of the energy levelsof
nodes. This optimization has the effect of improving the
overall network lifetime, preventing some of the nodes
from dying prematurely.

• Minimizing the delay in message delivery, and the
number of undelivered messages due to unavailable
storage capacity in the network. These two optimizations
are very closely related. Minimizing the delivery delay
has the effect of minimizing the storage used in the whole
network. If we regard the network as a queuing system,
the average delivery time of messages is the average time
spent in the queue. Applying Little’s Law:

Lengthqueue = Arrival Rate × T imequeue (1)

, we notice that the amount of used storage is directly
proportional to delivery time. If the storage requirement
surpasses the available storage, the arrival rate cannot be
maintained, and packets must be dropped. This means
either losing data altogether, or compressing data and
diluting information quality. Moreover, storage usage is
not uniformly distributed throughout the network, making
the problem worse. Consequently, especially for applica-
tion with high sampling rates, delivery delay must be
minimized in order to minimize data loss.

Having identified candidate network metrics to optimize, let
us establish what type of routing information would enable us
to achieve these optimizations. Usually global routing informa-
tion is preferable to local information. However, considering
the following factors, we choose to employ local information:

• Global information is expensive to maintain due to lim-
ited storage.

• Global information is expensive and slow to deliver,
generating additional protocol overhead.

• Due to dynamic network changes and high mobility,
global information presents an outdated view of the sys-
tem, not very useful in assessing the appropriate routing
decisions.

We propose simple schemes, relying on local self-
assessments, for routing decision making. Choosing the neigh-
bor in the overlay means choosing the node with the best
local metric. Any combination of the following metrics can
be employed:

• Energy level remaining: Choosing the node with the
highest energy level remaining is intended to yield a
uniform energy distribution.

• Average delivery time: This represents the average time in
which messages owned by the node are delivered to their

Basestation

Source

Fig. 2. Example Custody Query

final destination. A choice based on the average delivery
delay is intended to minimize data loss.

• Average energy consumption for message delivery: This
metric represents the average energy consumed by mes-
sages sent by the node until they are delivered. Choosing
the neighbor with the minimum average energy consump-
tion will decrease the overall energy consumption in the
network.

B. A custody transfer mechanism implementation

In our initial implementation of the DTN architecture we
propose a simple custody transfer mechanism, relying on the
principles defined previously. Our implementation assumes the
existence of an underlying multi-hop routing protocol. Since
our system is intended for data collection, with messages
sent to a single destination - the base-station, tree-routing can
be assumed. However, this mechanism can also be used for
applications with multiple message destinations and any-to-
any multi-hop routing. The protocol relies on the fact that
nodes maintain local estimates of the metric used. Quality
estimates of links between nodes are also maintained at both
link ends.

1) Querying mechanisms: The querying mechanism works
as follows: the custodian of a message sends a query, asking
for nodes that are able to accept custody for the given message,
and that have a better local metric estimate than itself. The
query packet contains the estimate of its originator as well as

characteristics of the message to be transferred. Sending the
query can proceed in several ways:

• Unicast toward destination, using the route provided by
the underlying tree-based routing.

• Flood limited to a given number of hops, continuing with
unicast toward destination.

• Full flood
Each of these techniques has advantages and disadvantages,
that will become evident once we discuss the entire mecha-
nism. The query packet advances as far as possible toward
destination, and the path traversed is added to the packet. All
hops on the way are queried, and the ones that are willing
to accept custody and have a better metric than the current
custodian send a response to the query. In order for a node to
decide whether it can accept custody, it needs to estimate if it
has enough available storage. The response is sent back to the
custodian using the reverse of the path recorded in the query.
Please note that symmetry of links is assumed. The response
contains the local metric estimate of the respondent. Quality
estimates of the traversed links are recorded in the response
as well. The custodian selects the best candidate among query
respondents, using the metric of the candidates, as well as the
quality estimate of the paths to these candidates.

Based on the quality of the best candidate, the custodian
estimates whether the custody transfer is worth doing at the
current time. If it decides to attempt a custody transfer, it
sends the message to the best candidate, using source routing
on the path recorded in the query response. The message
advances one hop at a time, using a reliable hop-to-hop
message delivery mechanism based on selective nacks and
retransmissions, implemented by Kim in [3].

Figure 2 presents an example of the query packet propaga-
tion. The source broadcasts the query to all its neighbors in the
real network, and they all forward it toward the base-station;
the paths of the query packets are represented by red arrows.
The red nodes are the ones that can accept custody, and among
those, the ones circled with blue are the ones that have better
metrics than the source, and consequently represent candidates
for the next custody hop. Candidates respond to the query; the
response packets are represented as blue arrows arrows.

2) Metric estimates: present the mechanisms used to main-
tain local estimates and link quality estimates. The reliability
of a link can be expressed as the ratio of packet retransmissions
to the total number of transmissions on the given link. Every
time a message is transferred on the link, using the hop-
to-hop reliable delivery mechanism, this number is updated.
Estimating the energy level remaining in a node is trivial. The
average delivery time and the average energy consumption,
as defined in section V-A.3, can be maintained either using a
distance vector like approach, or by piggybacking information
on messages and let the base-station compute the estimate. We
favor the first approach. Thus, the average delivery time of a
node(Avg delay) is updated every time a custody transfer is
completed:

delaynew = Avg delaynext hop + Avg waiting timelocal

Avg delaylocal = α×Avg delaylocal + (1− α)×Delaynew

(2)
Avg waiting timelocal is the average time spent by messages
at the current node.

Very similarly, the average energy consumption(Avg EC)
is updated as follows:

ECnew = Avg Etransfer + Avg Estore + Avg ECnext hop

Avg EClocal = α × Avg EClocal + (1 − α) × ECnew (3)

where Avg Etransfer and Avg Estore are the average ener-
gies required to transfer and store a message respectively at
the current node.

VI. EVALUATION OF CUSTODY TRANSFER MECHANISMS

In this section we investigate the various custody transfer
mechanisms presented in more detail in V. In particular, we
study the following custody query/discovery mechanisms:

1) Unicast: The query is sent along the routing tree up to
the destination.

2) Multicast: The query is flooded up to some levels and
then sent along the routing tree to the destination.

and the following custody hop selection policies:
1) Nearest Hop: This policy chooses the very nearest

node among the nodes that are ready to accept custody
transfer. It is expected to lead to more custody transfers
than necessary, and as a result to consume more energy.

2) Farthest Hop: This policy chooses as the next custody
hop the node that is farthest away, i.e the node that is
closest to the destination. While this policy minimizes
the number of custody transfers performed, each transfer
is expected to take longer, especially in flaky networks
where the probability of a reliable transfer decreases
with distance.

3) Most Energy Level: This policy chooses the node with
the most energy to be the next custody hop . The
policy is expected to maximize the overall lifetime of
the network by minimizing the variations in the energy
levels of the nodes

4) Least Average Delay: Every node maintains an estimate
of the average delivery delay, and the node having the
smallest delay is chosen.

5) Least Average Energy Consumption: The policy chooses
the node that on average consumes the least energy for
sending a message to the destination.
The following table presents the symbols used to rep-
resent the choices mentioned above on the evaluation
graphs.

A. Simulation Setup

We are using a discrete event based simulator that was
developed for simulating routing algorithms for networks with
scheduled disconnections. We made the appropriate modifica-
tions necessary for handling unscheduled disconnections and
packet collisions. For the connectivity model, we assume that
all nodes within a certain radius are connected by a link. To

Term/heading Description
MULTICAST Use multicast for queries
UNICAST Use unicast for queries
FARTHEST Node closest to base
NEAREST Node closest to source
ENERGY LEV Node with most energy
AVG DELAY Node with least delay to base
ENERGY CONS Node with least avg. energy per message to base

TABLE III

LEGEND FOR GRAPHS

model the intermittent nature of the network, we assume that
a link can go up or down at exponentially separated intervals
- the time that a link stays up is determined by the length of
the link. The radio collision model is simplified in the sense
that collisions can occur only at nodes - packets collide only
if they are destined for the same node. The flood level for
the multicast queries is set at three i.e the queries are flooded
for three levels and are then forwarded to the base along the
routing tree.

Parameter Range in simulation Range in Mica motes
Time 1 1s
Packet size 1 25 B
Bundle size 25 625 B
Bandwidth 40/unit 1KB/s
Flash storage 5K-20K 125KB-500KB
Average degree(density) 8 -
Num of nodes 10-100 -

TABLE IV

SIMULATION SETUP

For executing the custody queries, a routing tree is main-
tained by the nodes. The tree is formed by performing a
breadth first search starting from the base-station (root node).
We assume that the effective cumulative bandwidth that the
base station node can handle is constant - but to normalize
for all network sizes, the rate of data generation for the
nodes is determined according to the number of nodes. All
the various custody selection policies are modeled using the
approaches mentioned in the last section V. However we do
not model the query mechanisms at packet level - we assume
full knowledge of the network for selecting potential custody
nodes. We choose to do so because we are more interested in
comparing the custody hop selection policies per se. To make
the parameters more realistic, we use the Berkeley Mica motes
as the basis for parameter choosing. The mapping between
Mica motes and simulation parameters is shown in table IV.

B. Evaluation

We compare the different metrics by considering a number
of parameters. We perform all experiments for both unicast
and multicast queries. However, since all the policies have
very similar behaviors with unicast queries, we mostly present
the results for the multicast queries.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 100 200 300 400 500 600 700 800 900 1000 1100

Fr
ac

tio
n

de
liv

er
ed

Latency (units)

MULTICAST.FARTHEST
MULTICAST.NEAREST

MULTICAST.AVG_DELAY
MULTICAST.ENERGY_LEVEL
MULTICAST.ENERGY_CONS

Fig. 3. Cumulative delivery time

 0

 100

 200

 300

 400

 500

 600

 700

10 20 30 40 50 60 70 80 90 100

La
te

nc
y(

un
its

)

Number of nodes

FARTHEST
NEAREST

ENERGY_LEVEL
AVG_DELAY

ENERGY_CONS

Fig. 4. Average latency for message delivery

1) Delivery Time: The first set of graphs compare the
different custody transfer policies with respect to the delivery
time of messages. Figure 3 shows cumulative delivery time of
messages for a network of 100 nodes. We can clearly see that
the AVG DELAY policy expectedly performs better than the
other policies, though none of them is able to deliver all the
messages within the simulation interval. Not surprisingly the
NEAREST and the FARTHEST policies have the worst average
latency, also illustrated in figure 4.

Figure 5 shows the fraction of messages that are delivered
at the end of simulation time for varying network sizes. An
interesting trend that can be observed is that delivery ratios
decrease as the network size gets larger - this is because of
the congestion at the single sink and suggests that the data
generation rates should be lower for reliable delivery.

2) Hops per message: Here we compare the number of
hops needed for messages to reach the base-station for each
of the observed policies. Figure 6 plots the average number
of custody hops needed for each successful message received
at the base. We see that the FARTHEST policy minimizes
this criteria, although, as we see in figure 5, it sacrifices the
delivery ratio.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10 20 30 40 50 60 70 80 90 100

Fr
ac

tio
n

de
liv

er
ed

Number of nodes

FARTHEST
NEAREST

ENERGY_LEVEL
AVG_DELAY

ENERGY_CONS

Fig. 5. Fraction of messages delivered

 0

 2

 4

 6

 8

 10

 12

 14

10 20 30 40 50 60 70 80 90 100

H
op

s
co

un
t

Number of nodes

FARTHEST
NEAREST

ENERGY_LEVEL
AVG_DELAY

ENERGY_CONS

Fig. 6. Custody hops per message

Figure 7 plots the average number of network (not custody!)
hops needed for each successful message. Here we see that the
NEAREST policy uses the maximum number of network hops
for delivering a message.

 0

 5

 10

 15

 20

 25

10 20 30 40 50 60 70 80 90 100

H
op

s
co

un
t

Number of nodes

FARTHEST
NEAREST

ENERGY_LEVEL
AVG_DELAY

ENERGY_CONS

Fig. 7. Networks hops per message

3) Energy: In this experiment we compare the energy
efficiency of different policies. Figure 8 shows the average
node energy level over time for all the policies, while figure 9
shows the standard deviation in the energy levels with time.
While we see that the FARTHEST policy uses the least energy
overall(since it has to perform fewer custody transfers and
therefore fewer writes to non-volatile storage), it has far worse
delivery performance. However the ENERGY LEVEL policy is
able to equalize the energy level differences among the nodes.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500 600 700 800 900 1000 1100

E
ne

rg
y

(u
ni

ts
)

Time (units)

MULTICAST.FARTHEST (Avg Energy)
MULTICAST.NEAREST (Avg Energy)

MULTICAST.AVG_DELAY (Avg Energy)
MULTICAST.ENERGY_LEVEL (Avg Energy)
MULTICAST.ENERGY_CONS (Avg Energy)

Fig. 8. Average Node energy level over time(nodes=100)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 100 200 300 400 500 600 700 800 900 1000 1100

S
ta

nd
ar

d
D

ev

Time(units)

Deviation in Energy

MULTICAST.FARTHEST (Std Dev)
MULTICAST.NEAREST (Std Dev)

MULTICAST.AVG_DELAY (Std Dev)
MULTICAST.ENERGY_LEVEL (Std Dev)
MULTICAST.ENERGY_CONS (Std Dev)

Fig. 9. Standard deviation of energy level with time(nodes=100)

Finally, figures 10 and 11 compare the average energy spent
per successful message and per custody transfer respectively.
Here we see that there is little to choose from between the
policies, except for the ones that use either short or long
custody hops.

C. Results

We can conclude from the above results that the selection
policies based on energy are able to minimize the energy usage
variation among the nodes while those based on delay are
able to minimize latency of message delivery. This implies
that variation in the link qualities can be exploited even while

 0

 200

 400

 600

 800

 1000

 1200

 1400

10 20 30 40 50 60 70 80 90 100

E
ne

rg
y(

un
its

)

Number of nodes

FARTHEST
NEAREST

ENERGY_LEVEL
AVG_DELAY

ENERGY_CONS

Fig. 10. Energy per message

 0

 50

 100

 150

 200

 250

 300

10 20 30 40 50 60 70 80 90 100

E
ne

rg
y(

un
its

)

Number of nodes

FARTHEST
NEAREST

ENERGY_LEVEL
AVG_DELAY

ENERGY_CONS

Fig. 11. Energy per custody transfer

using purely local information and estimates. However, since
no policy was able to satisfactorily optimize both energy and
delay, we need to devise better metrics that can combine
energy and delay.

D. Simulation shortcomings

Our aim for the above evaluation was to study custody
transfer mechanisms at a high level. The simulation results are
optimistic, because they do not model the query mechanisms
for selecting custody hops at packet level. However, modelling
the delay and overhead implied by the queries might not alter
the relative differences among the mechanisms. The radio
collision model in the simulation is very simplistic as well.
In the future we wish to modify our simulator to rectify these
issues and to obtain more realistic experimental results.

VII. CONCLUSION AND FUTURE WORK

We have implemented DTNLite, a custody transfer based
reliable transfer mechanism for sensor networks that face
challenges like low memory resources, high mobility, frequent
disconnections and flaky nodes. We have discussed some of
the important issues in custody transfer and investigated one of

them, namely querying and selecting of the next best custody
hop in more detail.

We separately simulated custody transfer and evaluated the
performance of various selection criteria based on energy and
delay. The key conclusion of the evaluation was that it is
possible to optimize for a particular objective like energy
or delay while using purely local information. This means
that the different selection policies were able to successfully
exploit the network asymmetries in connectivity and resources.
However, we realize the need for better selection policies that
can optimize for both energy and delay.

In the future, we intend to perform a comparative evaluation
of our architecture, relying on the custody transfer mechanism,
with other reliable transfer protocols that have been proposed
(II). We plan to perform extensive testing of the DTNLite
implementation for TinyOS on Mica motes as well as using
TOSSIM, in order to measure the overhead and performance
of the custody transfer mechanism. Finally, there are plenty
of other issues in reliable custody transfer, such as routing,
duplicate detection, interaction with application-specific com-
pression and aggregation of data that need to be explored in
more detail.

ACKNOWLEDGMENT

We would like to thank Professor David Culler, the class
instructor, and Kevin Fall, for their guidance and insightful
advice. We also thank Sukun Kim for letting us use his LRX
data transfer protocol.

REFERENCES

[1] C.-Y. Wan, A. T. Campbell, and L. Krishnamurthy, “PSFQ: A Reliable
Transport Protocol for Wireless Sensor Networks,” First Workshop on
Sensor Networks and Applications (WSNA), September 28, 2002, Atlanta,
GA.

[2] F. Stann and J. Heidemann, “RMST: Reliable Data Transport in Sensor
Networks,” 1st IEEE International Workshop on Sensor Net Protocols
and Applications, 2003.

[3] S.Kim, “Structure Monitoring using Wireless Sensor Networks,” CS294-1
Deeply Embedded Network Systems class project, 2003.

[4] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Inter-
nets,” ACM SIGCOMM, 2003.

[5] K. F. et al., “DTN Implementation,” http://www.dtnrg.org, 2003.
[6] P.Juang, H.Oki, Y.Wang, M.Martonosi, L.S.Peh, and D.Rubenstein,

“Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs and
Early Experiences with ZebraNet,” Proceedings of ASPLOS-X, San Jose,
October 2002.

[7] D. Gay, “The Matchbox File System,” http://webs.cs.berkeley.edu/tos/
tinyos-1.x/doc/matchbox-design.pdf, 2003.

