The Synergy Between Non-blocking Synchronization and Operating System
Structure

Michael Greenwald and David Cheriton *
Computer Science Department
Sanford University
Sanford, CA 94305-9040

Abstract

Non-blocking synchronization has significant advantages over
blocking synchronization: however, it has not been used to a
significant degree in practice. We designed and implemented
a multiprocessor operating system kernel and run-time library
for high-performance, reliability and modularity. We used non-
blocking synchronization, not because it was an objective in
itself, but because it became the approach of choice. It was
an attractive approach because of the synergy between other
structuring techniques we used to achieve our primary goals
and the benefits of non-blocking synchronization.

This paper describesthis synergy: the structuring techniques
we used which facilitated non-blocking synchronization and
our experience with this implementation.

1 Introduction

We chose to use non-blocking synchronization in the de-
sign and implementation of the Cache Kernel [7] oper-
ating system kernel and supporting libraries for severa
reasons. First, non-blocking synchronization allowssyn-
chronized code to be executed in an (asynchronous) sig-
nal handler without danger of deadlock. For instance,
an asynchronous RPC handler (as described in [25]) can
directly store a string into a synchronized data structure
such as a hash table even though it may be interrupting
another thread updating the same table. With locking,
the signal handler could deadl ock with this other thread.

Second, non-blocking synchronization minimizes in-
terference between process scheduling and synchroniza-
tion. For example, the highest priority process can access
a synchronized data structure without being delayed or
blocked by a lower priority process. In contrast, with
blocking synchronization, a low priority process hold-
ing alock can delay a higher priority process, effectively

*{m chael g, cheriton}@s. stanford. edu. Thiswork
was sponsoredin part by ARPA under US Army contract DABT63-91-
K-0001. Michael Greenwald was supported by a Rockwell Fellowship.

defeating the process scheduling. Blocking synchro-
nization can also cause one process to be delayed by
another lockhol ding process that has encountered a page
fault or a cache miss. The delay here can be hundreds of
thousands of cycles in the case of a page fault. Thistype
of interference is particularly unacceptablein an OS like
the Cache Kernel where real-time threads are supported
and page faults (for non-real-time threads) are handled
at the library level. Non-blocking synchronization also
minimizesthe formation of convoyswhich arise because
several processes are queued up waiting while a single
process holding alock gets delayed.

Finally, non-blocking synchronization providesgreater
insulationfromfailuressuch asfail-stop process(or)sfail-
ing or aborting and leaving inconsistent data structures.
Non-blocking techniques allow only a small window of
inconsistency, namely during the atomic compare-and-
swap sequence itsalf. In contrast, with lock-based syn-
chroni zationthewindow of inconsistency spanstheentire
locked critical section. These larger critica sections and
complex locking protocols aso introduce the danger of
deadlock or failureto rel ease |ocks on certain code paths.

There is a strong synergy between non-blocking syn-
chronization and the design and implementation of the
Cache Kerndl for performance, modularity and reliabil-
ity. First, signals are the only kernel-supported form
of notification, allowing a simple, efficient kernel im-
plementation compared to more complex kernel message
primitives, such asthoseusedinV [6]. Classlibrariesim-
plement higher-level communication like RPC intermsof
signals and shared memory regions [25]. Non-blocking
synchronization alows efficient library implementation
without the overhead of disabling and enabling signals
as part of access and without needing to carefully restrict
the code executed by signal handlers.

Second, we simplified the kernel and alows spe-
ciadization of these facilities using the C++ inheritance
mechanism by implementating of most operating sys-
tem mechanisms at the class library level, particularly

the obj ect-oriented RPC system [25]. Non-blocking syn-
chronizationalowstheclasslibrary level to betol erant of
user threads being terminated (fail-stopped) in the mid-
dle of performing some system library function such as
(re)scheduling or handling a page fault.

Finally, theisolation of synchronization from schedul-
ing and thread deletion provided by non-blocking syn-
chronization and themodul arity of separate classlibraries
and user-level implementation of servicesleadstoamore
modular and reliable system design than seems feasible
by using conventional approaches.

This synergy between non-blocking synchronization
and good system design and implementation carries for-
ward in the more detailed aspects of the Cache Kernel
implementation. In this paper, we describe aspects of
this synergy in some detail and our experience to date.

The main techniques we use for modularity,
performance and reliability are atomic DCAS(or
Doubl e- Conpar e- and- Swap), type-stable memory
management (TSM), and contention-minimizing data
structures (CMDS).

DCAS (discussed in detail in Section 5) is defined in
Figure 1. That is, DCAS atomicaly updates locations
addr 1 and addr 2 to values newl and new2 respec-
tively if addr 1 holds value ol d1 and addr 2 holds
ol d2 when the operation isinvoked.

The next section describes type-stable memory man-
agement, which facilitates implementing non-blocking
synchronization aswell as providing severa independent
benefitsto the software structure. Section 3 describes the
contenti on-minimizing data structures which have bene-
fitsin performance and reliability for lock-based as well
as non-blocking synchronization. Section 4 describesour
approach to minimizing thewindow of inconsistency and
the systems benefits of doing so. Section 5 describes
the non-blocking synchronization implementation in fur-
ther detail with comparison to a blocking implementa-
tion. Section 6 describes the non-blocking synchroniza-
tion primitives that we assumed for our approach and a
potentia hardware implementation. Section 7 describes
the performance of our implementation using simulation
to show its behavior under high contention. Section 8
describes how our effort relates to previous and current
work in thisarea. We close with a summary of our con-
clusionsand directionsfor future work.

2 Type-Stable
(TSM)

Memory Management

Type-stable memory management (TSM) refers to the
management of memory allocation and reclamation so
that an allocated portion of memory, a descriptor, does
not change typewithin sometimebound?;;,;.. Thisisa

int DCAS(int *addrl, int *addr?2,
int ol di, int old2,
int newl, int new2)
{
<begi n at omi c>
if ((*addr1 == oldl) && (*addr2 == ol d2)) {
*addrl = newl; *addr2 = newZ;
return(TRUE);
} else {
return(FALSE);
}

<end at om c>

}

Figure 1 Pseudo-code definition of
(Doubl e- Conpar e- and- Swap)

DCAS

fancy name for an extension of an oldidea. For example,
the process descriptors in many operating systems are
statically allocated at system initiaization and are thus
type-stablefor the lifetime of the system execution.

Our notionof TSM incorporatesthreebasi c extensions
to this conventiona type of implementation. First, a
descriptor remains avalid instance of the type even when
itisnot active, i.e. onthefreelist. Second, TSM dlows
multiple memory allocation poolsfor the same type. For
example, there can be a pool of thread descriptors per
cluster of processors on a large-scale multiprocessor to
minimize contention between clusters. Finaly, the type
of a portion of memory can change over time, but only
aslong asit istype-stable over sometime ¢;;44;.. More
specifically, a descriptor has to be inactive for at least
ts1ap10 Defore it can be reallocated as a different typel.
However, for simplicity, we assume an infinite 5. for
this discussion.

TSM simplifies the implementation of non-blocking
synchronizationagorithms. That is, because adescriptor
of type T1 is type-stable, a pointer of type T1 * to
the descriptor cannot end up pointing to a descriptor of
another typeasaresult of thisareaof memory being freed
and reallocated as type T2.

Consider, for example, the code shown in Figure 2 to
do a non-blocking deletion from a linked list?.

The delete operation searches down a linked list of
descriptorstofind thedesired element or detect the end of

1An exampleof a TSM implementationisacollection of descriptors
that are stored in a set of page frames which are allocated and released
overtime. When more descriptors are required, additional page frames
can be alocated from the general pool and when the number of descrip-
tors falls, the descriptors may be consolidated into a smaller number
of pages and the excessive page frames returned to the general pool.
However, therelease of pageframesto the general pool must be delayed
sufficiently to ensure the type-stability property. This delay provides
a useful hysteresis to the movement of pages between this descriptor
collection and the general page pool.

2Thelist isinitialized with adummy nodeat the head, thus deletion
of the first element works correctly.

/* Delete elt */

do {
retry:
backof f | f Needed() ;
version = |ist->version;
for (p = list->head;
(p->next !'=elt);
p = p->next) {
if (p == NULL) { /* Not found */
if (version !=1list->version)

{ goto retry; } /* Changed */
return NULL; /* Really not found */
}

}
} while(!DCAS(&(Iist->version), & p->next),
version, elt,
ver si on+1, el t->next))

Figure 2: Deletion from the middle of list, protected by
DCAS and version number.

thelist. If theelement isfound, the element isatomically
deleted from the list by the DCAS operation. The DCAS
succeeds only if the list has not been modified since the
delete operation started, as determined from the version
field.

The code only checks for conflicts once it reaches the
desired element or the end of thelist. The descriptorsare
TSM so each pointer isguaranteed to point to adescriptor
of thistype. Without TSM, thelink pointer, p, may point
to a descriptor that has been deleted and reallocated as a
different type. This type error can cause a random bit-
field to beinterpreted as a pointer, and cause the search to
perform incorrectly, raise an exception due to unaligned
access, or read a device register. TSM isa simpler and
more efficient way of ensuring thistype safety than other
techniquesweare aware of that prevent reallocation (such
as automatic garbage coll ection mechanisms or reference
counts), or that detect potential reallocation (such as per-
list-element version numbers).

Besides these benefits to non-blocking synchroniza-
tion, TSM has several important advantages in the con-
struction of modular, reliable, high-performance oper-
ating systems. First, TSM is efficient because a type-
specific memory alocator can normaly allocate an in-
stance of the type faster than a general-purpose allocator
can. For example, alocation of a new thread from a
freelist of (fixed-size) thread descriptorsis a simple de-
gueue operation whereas agenera -purpose allocator like
mal | oc may have to do a search and subdivision of its
memory resources. The class-specific newand del et e
operators of C++ support a clean source code represen-
tation of TSM. This allocation can be made even more
efficient with many types because afree (or inactive) de-
scriptor is aready an instance of this type, and so may
require less initialization on allocation than a random

portion of memory.

Second, TSM aidsreliability becauseit iseasier to au-
ditthememory allocation, locating al the descriptorsof a
given type and ensuring that pointersthat are supposed to
point to descriptors of agiven type actually do so. With
fixed-size descriptors, TSM also avoids fragmentation
of memory that arises with general-purpose alocators.
Fragmentation can cause failure as well as poor perfor-
mance. Relatedly, TSM makes it easier to regulate the
impact of one type of descriptor on the overall system
resources. For example, with a collection of descriptors
that are allocated dynamicaly using the page frame ap-
proach described above, the number of pages dedicated to
thistype can be controlled to avoid exhausting the mem-
ory availablefor other uses, both from overall ocation and
from fragmentation of memory.

TSM also minimizes the complexity of implementing
the caching model [7] of descriptorsin the operating sys-
tem kernel. In this approach, the number of descriptors
of agiventypeislimited but an allocation never fails. In-
stead, as in a cache, a descriptor is made available by its
dirty data being written back to the higher-level system
management and then reused to satisfy thenew allocation
request. Thismechanism relieson limitingthe number of
descriptors, being able to locate an allocated descriptor
toreclaim, and being able to determine the dependencies
on these descriptors. TSM simplifies the code in each of
these cases.

TSM aso dlows a modular implementation. From
an object-oriented programming standpoint, there can
be a base class descriptor manager class that is specid-
ized to each type of descriptor. For example, thereis a
CacheKer nel Cbj Man class in our operating system
kernel that provides the basic TSM alocation mecha
nism, which is specialized by C++ derivation to imple-
ment Thr ead, Addr essSpace Ker nel and Menivap
types aswell as several other types.

3 Data Structures that Minimize Con-
tention

The Cache Kernel was al so designed and implemented to
minimizeboth logica and physical contentionto provide
for efficient non-blocking synchronization. By logical
contention, we mean contention for access to data struc-
tures that need to be controlled to maintain the consis-
tency and semantics of these data structures. By physical
contention, we mean the contention for access to shared
memory that needs to be controlled to maintain the con-
sistency and semantics of the memory system?.

Sphysical contention is separate from logical contention because
one can havelogical contention without physical contention as well as
vice versa, so called false sharing. For example, if two shared vari-

Minimizinglogica contentionwith non-blocking syn-
chroni zati on minimizes the overhead of conflicting oper-
ations failing and being retried. It also avoids the com-
plexity of complex backoff mechanisms as part of the
retry.

Most of our techniques for contention minimization
are well-known. For example, one aspect of contention
minimization is replicating data structures for each pro-
cessor. In particular, there are per-processor ready and
delay queuesin the Cache Kernel, so contention on these
structuresislimited to signal/interrupt handlers and man-
agement operationsto load balance, etc. being executed
by a separate processor.

Similarly, there isa signal delivery cache per proces-
sor which allows a significant number of signals to be
delivered by a processor without accessing the shared
signal mapping datastructure, which cannot be made per-
processor without replicating the entire structure. This
per-processor “ cache” approachissimilar tothat provided
by aper-processor TLB for addresstrandation. The TLB
reduces access to therea virtua address space mapping
structure, which is necessarily shared among threads in
the address space.

Contention on a data structureis also reduced in some
cases by structuring it as a multi-level hierarchy. For
example, alist that is searched frequently may be revised
to be a hash table with a version number or lock per
bucket. Then, searches and updates are localized to a
single bucket portion of the list, reducing the conflict
with other operations, assuming they hash to different
buckets. The upper levels of the hierarchy are read-only
or read-mostly: descriptorsare only added at the |eaves.

Physical contention is aso reduced by using cache-
aligned descriptors. TSM with its restricted allocation
of descriptors can also reduce the number of pages ref-
erenced as part of scan and search operations, reducing
the TLB missrate, another source of physical contention.
Finally, in thisvein, commonly updated fields are placed
contiguously and aligned to hopefully place them in the
same cache line, thereby making the updates more effi-
cient.

The spatial locality of data access achieved by these
techniques provides significant benefit for synchroniza-
tion, whether non-blocking or conventiona locks. This
spatial locality aso minimizes the consistency overhead
when the system is running across multiple processors,
with each caching portions of this shared data. In gen-
eral, our experience (e.g. [10]) suggests that it is bet-
ter to (re)structure the data structures to reduce con-
tention rather than attempt to improve the behavior of

able can reside in the same cache line unit so there can be physical
contention without logical contention if two processor attempt to up-
date the variables simultaneously, each processor updating a separate
variable.

synchronization techniques under high contention. Low-
contention algorithms are simpler and thus easier to get
right, and faster as long as contention is actually [ow.

4 Minimizing theWindow of Inconsistency

The Cache Kernd was also structured to minimize the
window in which a data structure was inconsistent. This
provides temporal locality to a critical section. Again,
we use familiar techniques. The basic patternisto read
all the values, compute the new values to be written, and
then write these new values al at once after verifying
that the values read have not changed. Since a structure
is generdly inconsistent from the time of the first write
to the point that the last write completes, removing the
computation from this phase minimizes the window of
inconsistency. To minimize the cost of verifying that the
read values have not changed, we use a version number
that coversthe datastructure and is updated whenever the
data structure changes. The use of aversion number aso
avoids keeping track of the actual location read as part of
the operation.

The window of inconsistency is also minimized by
structuring to minimize physical contention as part of
data structure access.

Physical contention increases the time for a processor
to perform an operation because it increases the effective
memory access time.

These techniques dlow efficient non-blocking syn-
chronization. In particular, an updatetypically consists of
a DCAS operation that updates the version number plus
one other location, with the version number ensuring that
the data structure has not been changed by another con-
current update. That is, the window of inconsistency is
reduced to the execution of the DCAS operation itself.

These techniques have other benefits as well. In par-
ticular, the reduced window of inconsistency reduces the
probability of afailure, such as athread termination, cor-
rupting the system data structures. They also reduce the
complexity of gettingcritical section coderight becauseit
isshorter with fewer separate control pathsthroughit and
thereforeeasier to test. Some of thisstructuringwould be
beneficid, if not required, for an implementation using
lock-based synchronization because it reduces lock hold
time, thereby further reducing contention.

5 Non-Blocking Synchronization Imple-
mentation

With the structuring of the Cache Kernel and supporting
class libraries described above, non-blocking synchro-
nization is relatively simple to implement. Most data

structures are collections of fixed-size descriptors. Sev-
eral collections are queues for service. For example,
thread descriptors are queued in the ready queue and a
delay queue of their associated processor. Other collec-
tionsare lookup or search structures such as ahash table
with linked list buckets. For example, we organize page
descriptorsinto alookup structure per address space, sup-
porting virtual -to-physical mapping for the address space.

5.1 TheBase Approach

The non-blocking synchronization for these structures
followsacommon basestructure. Thereisaversion num-
ber per list. The DCAS primitiveis used to atomically
perform awriteto adescriptor inalist and increment the
version number, checking that the previous value of both
has not been changed by a conflicting access to the list.
Figure 2 illustrated this structure for deleting a descrip-
tor from a list, where the single write to the descriptor
was to change the link field of the predecessor descrip-
tor. Inserting a new descriptor D entails initializing D,
locating the descriptor in the linked list after which to
insert D, writing the D’s link field to point to the next
descriptor, and then performing the DCAS to write the
link field of thisprior descriptor to D and toincrement the
version, checking both locationsfor contention as part of
the update.

Dequeuing a descriptor from a TSM free list is a de-
generate case of deletion because the dequeue aways
takes place from the head. It is possible to optimize this
case and use a single CAS to dequeue without a version
number. However, with efficient DCAS support, it is
attractive to use DCAS with a version number to allow
the version number to count the number of alocations
that take place. (As another special case, an operation
requiring at most two locations for the reads and writes
can be updated directly using DCAS. We have used this
approach with array-based stacks and FIFO queues.)

Some operations that involve multiple writes to the
same descriptor can be performed by creating a dupli-
cate of this descriptor, performing the modifications and
then atomically replacing the old descriptor by the new
descriptor if the list has not changed since the duplicate
descriptor was created. This approach is a variant of
Herlihy’s general methodology [13] which can convert
a sequential implementation of any data structure into a
wait-free, concurrent one. However, we use DCAS to
ensure atomicity with respect to the entire data structure
(the scope of the version number) even though we are
only copying a single descriptor®. As a variant of this

4The basic Herlihy approachinvolves copying the entire data struc-
ture, modifying the copy, and then atomically replacing the old copy
with the new copy using CAS, and retrying the entire copy and mod-
ifying if there is a conflict. Our approach reduces the allocation and
copy cost to a single descriptor rather than the entire data structure but
requiresDCAS.

approach, the code can duplicate just a portion of the de-
scriptor, update it and use DCAS to insert it in place of
the origina while updating a version number. If athread
fails before completing the insertion, we rely on a TSM-
based audit to reclaim the partially initialized descriptor
after itisunclamed for ¢,;45;. time.

As afurther optimization, some data structures allow
adescriptor to be removed, modified and then reinserted
as long as the deletion and the reinsertion are each done
atomically. Thisoptimization saves the cost of alocating
and freeing anew descriptor compared to the previousap-
proach. This approach requires that other operations can
tolerate the inconsistency of this descriptor not being in
thelist for some period of time. For example, the Cache
Kernel signal delivery reliesonalist of threadstowhich a
signal should bedelivered. A threadfailsto get thesigna
ifitisnotinthelist at thetimeasignal isgenerated. How-
ever, we defined signal delivery to be best-effort because
there are (other) reasons for signal drop so having signal
delivery fail to a thread during an update is not a viola
tion of the signal delivery semantics. Programming the
higher-level software with best-effort signal delivery has
required incorporating timeout and retry mechanisms but
thesearerequiredfor distributed operationin any caseand
do not add significant overhead [25]. These techniques,
related to the transport-layer in network protocols, also
make the system more resilient to faults.

Notethat just having asearch mechanism retry asearch
whenit failsin conjunctionwith thisapproach can lead to
deadlock. For example, if asigna handler that attempts
to access descriptor D, retrying until successful, iscalled
on the stack of a thread that has removed D to perform
an update, the signal handler effectively deadlocks with
the thread.

5.2 Dealingwith MultipleLists

A descriptor that issupposed to beon multiplelistssimul -
taneously complicates these procedures. So far, we have
found it feasible to program so that a descriptor can bein
a subset of the lists, and inserted or deleted in each list
atomically as separate operations. In particular, al the
data structures that alow a descriptor to be absent from
alist alow the descriptor to be inserted incrementally.
Overdl, themaor Cache Kernd [7] datastructuresare
synchronized in a straightforward manner. Threads are
intwo linked lists: the ready queue and the delay queue.
Descriptor freelistsare operated as stacks, making all oca-
tionand deall ocation simpleand inexpensive. The virtual
to physical page maps are stored in atree of depth 3 with
widths of 128, 128, and 64 respectively. Although the
128 immediate descendants of theroot are never deleted,
sub-trees below them can be unloaded. Modifications
to amap on level 3 are synchronized using DCAS with
its parent’s version number to make sure that the entire

subtree has not been modified in conflict with this up-
date. Finally, the Cache Kernel maintains a“dependency
map” that records dependenci es between objects, includ-
ing physical to virtual mappings. It is implemented as
a fixed-size hash table with linked lists in each bucket.
The signal mapping cache structure, (an optimizationfor
signal delivery to active threads), is also adirect mapped
hash table with linked listsin each bucket. The mgjority
of uses of single CAS are for audit and counters.

Synchronization of more complex data structuresthan
we have encountered can be handled by each operation
allocating, initializing and enqueuing a “message” for a
server process that serialy executes the requested opera-
tions. Read-only operations can still proceed as before,
relying on a version number incremented by the server
process. Moreover, the server process can run at high
priority, and include code to back out of an operation on
a page fault and therefore not really block the operation
anymore than if the operation was executed directly by
the requesting process. The server process can aso be
carefully protected against failure so the data structurei s
protected against fail-stop behavior of arandom applica
tion thread, which may be destroyed by the application.

This approach was used by Pu and Massalin [17]. For
example, a genera -purpose memory page allocator can
be synchronized in this manner, relyingona TSM mem-
ory pool to minimize the access to the genera allocator.
However, in our code to date, the only case of queueing
messages for aserver module ariseswith devicel/O. This
structure avoids waiting for the device 1/0 to complete
and is not motivated by synchronization i ssues.

Other work has investigated other aternatives or op-
timizations of this approach, in which helper functions
are executed by a new thread if there is work left to
complete or rollback by a previous thread ng this
data structure. For example, Isragli et a. [16] describe
a non-blocking heap implemented using 2-word LL/SC
along these lines, performing multiple updates as multi-
ple distinct operations. However, to date, we have not
needed to employ these so-called helper techniques and
therefore cannot comment on their actual practicality or
utility. Moreover, it seems questionablefromardiability
standpoint to have threads from separate address spaces
sharing access to complex data structures. These data
structures are a so more difficult to program and to main-
tain and often provide margina performance benefitsin
practice, particularly when synchronization overhead is
taken into account. Their asymptotic performance bene-
fits are often not realized at the scale of typical operating
system data structures.

5.3 Comparison to Blocking Synchroniza-
tion

Much of the structuring we have described would be
needed, or at least beneficid, even if the software used
blocking synchronization. For instance, TSM has a
strong set of benefits as well as contributing to the other
techniques for minimizing contention and reducing the
window of inconsistency.

We have found that the programming complexity of
non-blocking synchronization is similar to conventional
blocking synchronization. This differs from the experi-
ence of programmers using CAS-only systems. DCAS
playsasignificant partinthecomplexity reduction. Using
the crude metric of lines of code, a CAS implementation
(Valois) of concurrent insertion/deletion from a linked
list requires 110 lines, while the corresponding DCAS
implementati on requires 38 (anon-concurrent DCASim-
plementation takes 25). The CAS-only implementation
of a FIFO queue described in [18] requires 37 lines, our
DCAS version only 24. The DCAS versions are corre-
spondingly simpler to understand and toinformally verify
as correct. In many cases, using DCAS, the trandation
from a well-understood blocking implementation to a
non-blocking one is straightforward. 1n the smple case
described in Figure 2, theinitia read of the version num-
ber replaces acquiring the lock and the DCAS replaces
releasing the lock.

Infact, version numbersareana ogousto locksin many
ways. A version number has a scope over some shared
data structure and control s contention on that data struc-
ture just like a lock. The scope of the version number
should be chosen so that the degree of concurrency is
balanced by the synchronization costs. (The degree of
concurrency is usually bounded by memory contention
concerns in any case). Deciding the scope of aversion
number is similar to deciding on the granularity of lock-
ing: thefiner thegranularity themore concurrency but the
higher the costsincurred. However, aversion number is
only modified if the data structure is modified whereas a
lock isalwayschanged. Giventhefreguency of read-only
operationsand the costs of writeback of dirty cache lines,
using read-only synchronizationfor read-only operations
is attractive. Finally, version numbers count the number
of times that a data structure is modified over time, a
useful and sometimes necessary statistic.

Finally, the overall system complexity using blocking
synchronization appears to be higher, given the code re-
quired to get around the problemsit introduces compared
to non-blocking synchronization. In particular, specia
coding isrequired for signal handlersto avoid deadlock.
Specia mechanisms in the thread scheduler are required
to avoid the priority inversion that locks can produce.
And, additiona code complexity is required to achieve
reliable operation when a thread can be terminated at a

random time. For example, some operationsmay haveto
be implemented in a separate server process.

A primary concern with non-blocking synchroniza-
tionisexcessive retriesbecause of contending operations.
However, our structuring has reduced the probability of
contention and the conditional |oad mechanism described
inthenext section can be used to achieve behavior similar
to lock-based synchronization.

6 Non-blocking Synchronization Primi-
tives

Our approach assumes an efficient implementation
of DCAS functionadlity. In this section, we
briefly outline an instruction set extension to the
| oad- | i nked/st or e- condi ti onal) instructions
to support DCAS. (A software implementation is dis-
cussed in Section 6.1.) With a processor support-
ingl oad-1i nked (LL) and st or e- condi ti onal

(SC) instructions, add two instructions:

1. LLP (load-linked-pipelined): load and link to a sec-
ond address after aLL. This| oad islinked to the
following SCP.

2. SCP (store-conditional-pipelined): Store to the
specified location provided that no modifications
have been made to either of the memory cells des-
ignated by either of the most recent LL and LLP
instructions and these cache lines have not been in-
validated in the cache of the processor performing
the SCP.

If aLLP/SCP sequence nested withinan LL/SC pair fails,
the outer LL/SC pair failstoo.

DCASisthenimplemented by theinstruction sequence
showninFigure 3 (using R4000instructionsinadditionto
the LL/SC(P) instructions). TheLL and LLPinstructions
inlines 1 and 2 “link” the | oads with the respective
st or esissued by thefollowing SC and SCPinstructions.
Lines 3 and 4 verify that (TO) and (T1) contain VO
and V1, respectively. The SCP and SC in lines5 and 6
are conditional. They will not issue the st or es unless
(TO) and (T1) have been unchanged sincelines 1 and
2. This guarantees that the results of CASin lines 3 and
4 arestill valid at line 6, or elsethe SC fails. Further, the
st or e issued by a successful SCP is buffered pending
a successful SC. Thus, SCinline 6 writes U1 and UO to
(T1) and (TO) atomicaly with the comparison to VO
and V1°.

5Given data structures that are protected by a version number, te
DCAS s actualy a Conpar e- And- Doubl e- Swap (CADS) — the
second value cannot have changed if the version number is unchanged.
In these casesaminor optimizationis possibleand line 4 can bedel eted.

/*
* | f (TO) == VO, and (T1l) == V1, then
* atomically store U0 and Ul in TO and T1
*
/
DCAS(TO, T1, VO, Vi, U0, U1)
;; Get contents of addresses in registers.

1 LL T3, (T1)
2 LLP T2, (TO)
;; Conpare to VO and V1. |f unequal, fail.
3 BNE T2, VO, FAIL
4 BNE T3, Vi, FAIL

I f equal, and unchanged since LOAD,
store new val ues

5 SCP uwo, (TO)

6 SC Ui, (T1)
7, Success of SC and SCP is stored in Ul
BLEZ Ul, FAIL

FAI L:

Figure 3: DCAS Implementation using LL/SC and LLP/SCP.
Success or failure of SC (and thus of the DCAS operation) is
returned in U1 or whatever general register holds the argument
to SC. 1 denotessuccess, O failure. |f the nextinstruction tries to
read U1, the hardwareinterlocks (asit already doesfor LL/ SC)
if the result of SCisnot already in U1.

We have worked out a detailed design for the imple-
mentation of these two instructions in a RISC proces-
sor such as the R4000 but the description is omitted for
brevity.

6.1 Softwarelmplementation of DCAS

DCAS functionality can be implemented in software us-
ing atechnique introduced by Bershad [4]. DCASisim-
plemented using a lock known to the operating system.
If a process holding this locks is delayed by a context
switch, the operating system rollsback the process out of
the DCAS procedure and releases the lock. The rollback
procedureis relatively simple because the DCAS imple-
mentation is simple and known to the operating system.
M oreover, the probability of a context switchinthe mid-
die of the DCAS procedureis low because it is so short,
typicaly a few instructions. Thus, the rollback cost is
incurred infrequently.

This technique can be used more generally to imple-
ment other primitives such as n-location CAS. We focus
on DCAS implementation because the primary relationto
our work is offering a software implementation of DCAS
as an aternative to our proposed hardware support. |t
also seems simpler to just implement rollback for DCAS
compared to more general primitives.

This approach has the key advantage of not requiring
hardware extensions over the facilities in existing sys-
tems. Moreover, its performance may be comparable to
our hardware extensions, especially on single processors
or small-scale multiprocessors. Further measurements
are required here. However, there are a few concerns.

First, there is the cost of locking. The straight-forward
implementation requiresthe DCAS procedure to access a
common global lock from &l processes. In a multi-level
memory with locks in memory, the memory contention
between processors for thislock can be significant. For
example, the data structure may be in a shared segment
that is mapped in by two independent processes. If the
locks are associated with each DCAS instance, there is
more cost and complexity to designatethelocks and crit-
ical section to the operating system and to implement the
rollback. The locking and unlocking also modifies the
cache line containing thelock, further increasing the cost
of this operation because writeback is required.

Second, Bershad’ sapproach requiresrereading thetwo
locationsfrom memory aswell as an extraread and write
to set the lock and write to clear the lock.

Third, on multiprocessors, caremust beused by readers
of shared data structures if they want to support unsyn-
chronized reads. Without depending on the lock, read-
ers can see intermediate states of the DCAS, and read
tentative values that are part of a DCAS that fals. Re-
quiring synchronization for reads significantly increases
contention on the global lock. Note that in many cases
TSM reducesthedanger of unsynchronized readsbecause
the reads cannot cause type errors. Writes are protected
by the global lock, and the fina DCAS will detect that
the unsynchronized reads were suspect, and fail. Sys-
tems that provide hardware DCAS require no additional
read synchronization beyond that performed automati-
caly by the memory system. Further experience and
measurements are required to determine whether thisisa
significant issue on red systems.

Finally, the Bershad mechanism seems harder to test
under all conditions. Forinstance, itispossiblethat oneof
thewriteoperationsthat therollback needsto undoistoan
area of memory that has been paged out or that one of the
addresses isillegal. The system aso needsto ensure that
athread isrolled back out of any DCAS critical sectioniif
itisterminated. Webelieve our hardwareimplementation
is simpler to verify and naturaly operates on top of the
virtual memory management of the system and on top of
directly accessible physical memory at the lowest level
of the system software. It is of concern that a minor
change to the software mechanisms in Bershad’s scheme
could result in very subtle errors in execution that could
go undetected in a system for along period of time.

6.2 Hardware Contention Control

As afurther extension, a processor can provide a condi-
tiona loadinstructionor Cl oad. TheCl oad instruction
isaload instruction that succeeds only if thelocation be-
ing loaded does not have an advisory lock set onit, setting
the advisory lock when it does succeed.

With Cl oad available, the version number is loaded

initially using Cl oad rather than a norma load. If the
Cl oad operation fails, the thread waits and retries, up
to some maximum, and then uses the normal load in-
struction and proceeds. This waiting avoids performing
the update concurrently with another process updating
the same data structure. 1t also prevents potentia starva
tion when one operation takes significantly longer than
other operations, causing these other frequently occuring
operationsto perpetually abort theformer. 1t appears par-
ticularly beneficial inlarge-scal e shared memory systems
where the time to complete a DCA S-governed operation
can be significantly extended by wait times on mem-
ory because of contention, increasing the exposure time
for another process to perform an interfering operation.
Memory references that miss can take 100 times as long,
or more, because of contention misses. Without Cload, a
process can significantly delay the execution of another
process by faulting in the data being used by the other
process and possibly causing its DCASto fail aswell.

Thecost of usingCl oad inthecommon caseissimply
testing whether the Cl oad succeeded, given that a load
of the version number isrequired in any case.

Cl oad can be implemented using the cache-
based advisory locking mechanism implemented in
ParaDiGM [8]. Briefly, the processor advises the cache
controller that a particul ar cache lineis“locked”. Normal
| oadsand st or esignore the lock bit, but the Cl oad
instruction tests and sets the cache-level lock for a given
cachelineor elsefailsif itisaready set. A storeoperation
clears the bit. Thisimplementation costs an extra 3 bits
of cache tags per cache line plus some logic in the cache
controller. Judging by our experience with ParaDiGM,
C oad isquite feasible to implement.

7 Performance

The performance on the ParaDiGM experimental multi-
processor isfirst discussed. We then discussresultsfrom
simulation indicating the performance of our approach
under high contention. Finaly, we discuss aspects of
overdl system performance.

7.1 Experimental Implementation

Theoperating system kernel and class librariesrun onthe
ParaDiGM architecture[8]. The basic configuration con-
sists of 4-processor Motorola 68040-based multiproces-
sors running with 25 MHz clocks. The 68040 processor
has a DCAS instruction, namely CAS2. This software
also runswith no change except for asoftwareimplemen-
tation of DCAS, on a uniprocessor 66 MHz PowerPC
603. We have not implemented it on a multiprocessor
PowerPC-based system to date.

Kernel synchronization usesDCASin 27% of thecrit-
ical sections and otherwise CAS. However, the DCAS

uses are performance-critical, e.g. insert and deletion for
key queues such as the ready queue and delay queue.
The only case of blocking synchronization is on machine
startup, to alow Processor O to complete initiaization
before the other processors start execution.

Theoverhead for non-blocking synchronizationismin-
imal in extra instructions. For example, deletion from a
priority queue imposes a synchronization overhead of 4
instructionscompared to no synchronization whatsoever,
including instructionsto access the version number, test
for DCAS success and retry the operation if necessary.
This instruction overhead is comparable to that required
for locked synchronization, given that lock access can fail
thus requiring test for success and retry.

The Motorola 68040's CAS2 [26] is Slow, apparently
because of inefficient handling of the on-chip cache so
synchronization takes about 3.5 microsecondsin proces-
sor time. In comparison, spin locks take on average 2.1
psecs and queuel ocks take about 3.4 psecs. In contrast,
the extended instructionswe propose in Section 6 would
provide performance comparable to any locking imple-
mentation. In particular, it requires 16 extra instructions
(including the required no-ops) plus an implicit SYNC
in an R4000-like processor. A careful implementation
would allow all instructions other than the SYNCto exe-
cute at norma memory speed. The performance would
then be comparable to the roughly 24 instruction times
required by the R4000 lock/unlock sequence. Figure 4
compares the overhead in terms of instruction times.

Operation Instruction

Times
DCAS using CAS2 on 68040 114
DCASusing LLP/SCP 26
SGI R3000 lock/unlock 70
R4000 lock/unlock 24

Figure 4: Approximate instruction times of extra over-
head to synchronize deletion from a priority queue. This
overhead does not include the backoff computation.

7.2 Simulation-Based Evaluation

The actual contentionfor thekernel data structuresin our
current implementation is low and we did not have the
ability to create high contention at the time of writing.

To understand how our system behaves under heavy
load, we have simulated insertion/deletion into a singly
linked list under loads far heavier than would ever be
encountered in the Cache Kernd.

Our simulation was run on the Proteus simulator [5],
simulating 16 processors, a cache with 2 lines per set,
a shared bus, and using the Goodman cache-coherence
protocol. All timesarereportedincyclesfrom start of test
until the last processor finishes executing. Memory la

tency ismodeled at 10timesthe cost of acache reference.
The cost of aDCASismodeled at 17 extra cycles above
the costs of the necessary memory references. The addi-
tional cost of a CAS over an unsynchronized instruction
referencing shared memory is 9 cycles.

Four algorithms were simul ated:

1. DCAS/Cload: Our DCASalgorithmwith contention
controlled by advisory locking, as implemented on
Paradigm.

2. DCASA&F: DCAS algorithm with contention con-
trolled by OSintervention as proposed by Allemany
and Felten [1] and described in Section 8.4.

3. CAS An implementation using only CAS and sup-
porting a much higher degree of concurrency based
on atechnique by Valois[24] ©.

4. SpinLock: Spin-lock with exponential back-off as a
base case.

Each test performed atotal of 10,000 insertionsand dele-
tions, divided evenly between &l processes. We varied
the number of processorsfrom 1 to 16 and the number of
processes per processor from 1 to 3. We aso controlled
the rate of access to the list by each process by doing lo-
cal “work” between theinsertion and deletion. The work
varied from 20 to 2000 cycles.

These simulations indicate that the Cache Kernd
DCAS algorithms perform as well or better than CAS
or spin locks.

Figure 5 shows the performance with 1 process per
processor, and minimal work between updates. The ba-
sic cost of 10,000 updates is shown a N = 1, where
all accesses are seridized and there is no synchroniza
tion contention or bus contention. At N = 1, cache
contention due to collisionsis smdl, the hit rate in the
cache was over 99% in all agorithms. At more than one
processor, even assuming no synchronization contention
and no bus contention, completion time is significantly
larger because the objects must migrate from the cache
of one processor to another. When processes/processor
=1 no processes are preempted. In this case the differ-
ence between the non-concurrent algorithmsissimply the
bus contention and the fixed overhead because we are not
modelling page faults. All degrade comparably, athough
DCAS/A&F suffers from bus-contention on the count of
active threads. The Valois agorithm using CAS exploits
concurrency as the number of processorsincrease but the
overhead islarge relative to the simpler algorithms. The
bus and memory contention are so much greater that the

61t was necessary to derive our own version of the algorithm, asthe
agorithm presented in [24] is not strictly correct. This is the natural
result of the complicated contortions necessary when using only CAS.
The DCAS dgorithm is relatively straightforward.

Work=20 cycles
3E+7

3E+7

2E+7

2E+7

Cycles

1E+7

1 3 5 7 9

Processors

11 13 15

—l— DCAS/A&F
—>— SpinLock

—g--~DCAS/Cload
—&€—CAS

Figure 5: Performance of several synchronization ago-
rithmswith local work = 20 and the number of processes
per processor = 1

concurrency does not gain enough to offset thelossdueto
overhead. Further, synchronization contention causesthe
deletion of auxiliary nodestofail, so the number of nodes
traversed increases with a larger number of processes’.
Our DCAS agorithm performs substantially better than
CAS, even with concurrency.

Figure 6 displays the results from reducing the rate
of access and interleaving list accesses in parallel with
the local work. Insertion/delete pairs appear to take 400
cycles with no cache interference so adding 2000 cycles
of “local work” lets even the non-concurrent algorithms
use about 4 or 5 processors concurrently to do useful
work in paralld. Beyond that number of processors, the
accesses to the list are serialized, and completion time
is dominated by the time to do 10,000 insertion/del etion
pairs. DCAS with either form of contention control per-
forms comparably to spin-locksin the case of no delays
and performanceissignificantly better thanthe CAS-only
algorithm.

Figure7 showstheresultswhen 3 processesrun oneach
processor. In this scenario, processes can be preempted
— possibly while holding alock. Asis expected, spin-
locks are non-competitive once delays are introduced. In

"The Valois simulation in Michael and Scott [18] reports better
asymptotic behavior than we do. The difference appears because the
authorsare only simulating aFIFO queue. Inthe FIFO queueagorithm
— where insertion always occurs at the tail and deletion at the head
— auxiliary nodes are not traversed in general and thus don’t affect
completion time. In fully general lists auxiliary nodes increase the
executiontime and memory traffic.

Work=2000 cycles

Cycles

1 3 5 7 9
Processors

11 13 15

Figure 6: Performance of severa synchronization ago-
rithms with local work = 2000 and the number of pro-
Cesses per processor = 1

contrast, the non-blocking algorithms are only dightly
affected by the preemption. The completiontimeof CAS
is mostly unaffected, however the variance (not shown
in the figures) increases due to reference counts held by
preempted processes delaying the deletion of nodes —
when a process resumes after a delay, it can spend time
releasing hundreds of nodesto thefreelist. These results
also indicate how hardware advisory locking performs
compared to operating system support in the style of
Allemany and Felten. In the normal case, the lockholder
experiences no delays and the waiters are notified im-
mediately when the advisory lock isreleased. However,
when a process is preempted, the waiters are not noti-
fied. When the waiter has backed off beyond a certain
maximum threshold, it uses a normal Load rather than
aCl oad and no longer waits for the lock-holder. With
alarge number of processes, the occasional occurence of
this (bounded) delay enables DCAS/A&F to outperform
thecache-based advisory locking. However, theexpected
behavior of the Cache Kernel isfor the waiters to be on
the same processor as the lock-holder (either signal han-
diersor local context switch). In this case, the advisory
lock does not prevent the waiter from making progress.
Therefore, there is no advantage to the operating system
notification and the lower overhead of advisory locking
makes it preferable.

Overdl, DCASperformscomparably to, or better than,
spin locks and CAS algorithms. Moreover, the code is
considerably simpler than the CAS agorithm of Valois.

In these simulations, the number of processors access-
ing asingle data structureisfar higher than would occur
under real 1oads and the rate of access to the shared data
structureisfar higher than onewould expect onared sys-
tem. Aspreviously noted, contention levels such asthese
are indicative of a poorly designed system and would

Work=2000 cycles, 3 procs/processor

7~

Cycles

1 3 5 7 9 11 13 15
Processors

Figure 7: Performance of several synchronization ago-
rithms with local work = 2000 and the number of pro-
Cesses per processor = 3

have caused us to redesign this data structure. However,
they do indicate that our techniques handle stress well.

7.3 Overall System Performance

We do not have theideal measurements to show the ben-
efit of non-blocking synchronization for overal system
performance. However, in other work [25], system per-
formance has been shown to benefit considerably from
the ability to execute code in signal handlers as exploited
extensively by the Cache Kernel object-oriented remote
procedure call system. This system alowsrestricted pro-
cedures, namely thosethat do not block, to be executed di-
rectly aspart of the signal handler invocation that handles
anew cal. With this optimization, many performance-
critical RPCs can be invoked directly in the signa han-
dler without the overhead of allocating and dispatching a
separate thread to execute the RPC. Our measurements,
reported in the cited paper, indicate a significant savings
from this optimization, particularly for short-execution
cals that are common to operating system services and
simulations.

8 Redated Work

Previous work has explored |ock-free operating systems
implementations, genera techniques for wait-free con-
current data structures, and hardware and operating sys-
tem support for non-blocking synchronization.

8.1 Lock-FreeOperating Systems

Massalin and Pu [17] describe the lock-free (non-
bl ocking) implementation of the SynthesisV.1 multipro-
cessor kernel, usingjust CASand DCAS, the same as our
work. Their work supports our contention that DCAS
is sufficient for the practical implementation of large

systems using non-blocking synchronization. However,
their work focused on using a small number of wait-free
and lock-free data structures inside their operating sys-
tem kernel. One reason their work has not been further
emulated is their exploitation of application-specific op-
timizations to implement data structures. One example
istheir implementation of linked list with insertion and
deletion from the middle of the list: it is efficient only
because the usage within the Synthesis kernd is highly
congtrained and a single bit suffices where a reference
count is normally needed. In contrast, our implementa
tion of linked listsis general, and is usable by arbitrary
application code.

8.2 Methodologies for Implementing Con-
current Data Objects

Herlihy [14] presents a methodology for converting se-
guentia implementationsof datastructuresinto wait-free
concurrent implementations. The goal is to provide a
specification and transformation that is provably correct
and can be applied automatically to sequential code. It
converts a sequential implementation of any data struc-
ture into a wait-free, concurrent one, just using CAS
(or, dlightly more efficiently [14] using | oad- | i nked
and st or e-condi ti onal). However, this method
involves copying the entire data structure, modifying the
copy, and then atomically replacing the old copy with
the new copy using CAS, and retrying the entire copy
and modifying if there is a conflict. Performance can
be improved using other, more ad-hoc, techniques [14],
but these techni questend to add hard-to-catch subtle syn-
chronization problems and are still expensive. Overal,
we regard this approach as impractically expensive be-
cause of the copy overhead.

In contrast, our contribution is a set of general tech-
niques that the programmer incorporates in the software
design and implementation, alowing the software to be
used in both sequential and parallel execution with no
modification and with acceptable performance.

Barnes [3], Turek [23], and Valois [24] provide tech-
niques for increasing the concurrency with some non-
blocking synchronization. However, the cost of concur-
rent updates appears to outweigh the actual benefit, be-
cause the low rates of contention in our system. Studies
suchas[22], whichalso reported alow level of contention
on kernel data structures, suggest that this phenomenon
might be more widely true than just in the Cache Kerndl.

8.3 Hardware Support

Most processors provide a
most single Conpar e- and- Swap (CAS) functional-
ity to support non-blocking synchronization. Herlihy’'s
genera methodology [13] shows that that single CASis
adequate in theory but appearstoo inefficient in practice.

A few processors such as the Motorola 68040 provide
a multi-word atomic instruction but that functionality is
rare and is not present in any RISC processor to our
knowledge. The RISC-like extension that we proposein
Section 6 suggeststhat it isfeasible to support in modern
processors. The CISC approach does not appear viable
with most current and future processors and seems likely
to die out with the current processors that support it.

Transactional Memory [12] provideshardware support
for multiple-address atomic memory operations. It is
more general than DCA S but comes at a correspondingly
higher cost. The proposed hardware implementation re-
quires six new instructions, a second set of caches in the
processor, twice the storage for cache lines actively in-
volvedinatransaction, and amorecomplicated “ commit”
protocol. Double LL/SC appears to be a more practica
solution because DCAS functiondlity is sufficient and
significantly simpler to implement.

Oklahoma Update [21] provides an alternate imple-
mentation of multiple-address atomic memory opera-
tions. Rather than duplicating entire cache linesinvol ved
in transactions (as Transactiona Memory does), Okla
homaUpdaterequiresonly areservation register per word
used in their version of Load Li nked. This register
contains flags plustwo words (and optionaly two more).
This contrasts with our implementation which requires
a“link address retained” register per synchronized word
and a single cache-line buffer for the delayed SCP. Our
design can also work with aword register instead of anen-
tire cache lineto buffer the SCP. However, thisapproach
adds complexity to the chip’s logic, dows down the SC
and increases the time the cache is locked so the sav-
ingsare questionable. The OklahomaUpdate attemptsto
implement some features in hardware (e.g. exponentia
backoff) which are better done in software, and which
needlessly increase the complexity and size of the chip.
Also, buffering of certain requests that come in during
the “pre-commit” phase can cause two processors with
non-interfering reservation sets to delay each other®.

These different designs arise because of different as-
sumptionsregarding the number of memory locationsthat
should beatomically updatableat onetime. Transactional
Memory paper conjectures between 10 and 100 and Ok-
lahoma Update places the knee a 3 or 4. In generdl,
more locations are better and more powerful. However,
our implementation a 2 (DCAYS) is by far the smplest
extension to existing processor designs. A key contribu-
tion of our work is experience that indicatesthat DCAS
is sufficient for practical performance, making the extra

8Consider processors P1, P, and P3. P accesses cachelinesY,Z,
P, XY, and P3 W,X (addressed in ascending alphabetical order). Py
and P3 should not interact. However, if P1 holdsY and Z and P> holds
X, then when P, asks P for Y, P, stalls, and buffers P5’s request for
X. Thus, P; delays P5. Longer chains can be constructed.

hardware complexity of the other schemes unnecessary.

8.4 Operating System Support

Allemany and Felten [1] reduce usel ess concurrency with
OS support to provide the same functionality that we
support in hardware using cache-based advisory locking.
The method is a variation on the technique of Bershad
discussed in Section 6.1. They propose incrementing a
counter of active threads on entrance to a critical sec-
tion, and decrementing on exit. The OS decrements the
counter while an active thread is switched out. Processes
must wait until the count of active threadsis below some
threshold (1, in our case) before being alowed to pro-
ceed. Delayed processes do not excessively delay other
processes because the count is decremented by the OS.

These techniques appear valuable for systems without
hardware support for advisory locking and in fact their
approach works better than ours under high contention.
However, hardwareadvisory |ocking and conditional load
are more resilient to processor failure and have lower
overhead in the low-contention case. As with hardware
versus software DCAS, the hardware implementation is
simple and fast; further measurements are required to
determineif it is compellingly so.

In other work, Isragli and Rappaport [15] implement r.-
way atomic Conpare and Swap and n-way LL/ SC
for P processors out of single CAS. However, this ap-
proach is primarily of theoretical interest because it re-
quires a large amount of space (at least P bitsfor every
word in the shared memory), requires words to be P
bits wide, takes O(P) to execute, and only interlocks
against other multi-word atomic instructions. Anderson
and Moir [2] improve upon this, requiring only realistic
sized words, O(1) time, but still requiring aprohibitively
large amount of space.

Finally, Software Transactiona Memory [19] is
an attempt to implement Transactional Memory in
software, depending only on LL/SC . Unfortunately,
their implementation will not work correctly on ex-
isting implementations of LL/SC because their code
(Acqui r eOnner shi ps) depends on the ability to in-
terleavetwo outstandingLL/ SC ssimultaneously, which
isnot supported. The LLP/SCP instructionswe proposed
would enable their techniques to be used to provide soft-
ware transactional memory for multiple, independently
chosen, words of memory. However, the space and com-
putational overhead in their implementation is excessive
for general use®. Moreover, the STM operationsare only
atomic with respect to other STM operations, and not to
genera reads and writes.

9Their scheme requires twice the memory for every possibly shared
location and extra overhead of at least a factor of three for reads and
writes even in the case of no contention.

9 Concluding Remarks

Our experience suggests that there is a powerful syn-
ergy between non-blocking synchronization and severa
good structuring techni quesfor thedesign and implemen-
tation of an operating system and supporting run-time
libraries. Non-blocking synchronization significantly re-
duces the complexity and improves the performance of
software in the signal-rich environment implemented by
the Cache Kernel and supporting class libraries. More-
over, the structuring techniques we have used to achieve
our overall system design goals facilitate implementing
non-blocking synchronization. The biggest problem has
been inadequate performance of the non-blocking syn-
chronization instructions.

Thiswork makes several contributions. First, we show
that careful design and implementation of operating sys-
tem software for efficiency, reliability and modularity
makes implementing simple, efficient non-blocking syn-
chronization far easier. In particular, type-stable mem-
ory (TSM), contention-minimizing data structuring and
minima inconsistency window structuring are impor-
tant for al these reasons. These techniques are bene-
ficia even with blocking synchronization and yet sig-
nificantly reduce the complexity and improve the per-
formance of non-blocking synchronization. Conversaly,
non-blocking synchronization has significant advantages
in the signal-centric design of the Cache Kerndl and its
associated libraries, especialy with the large amount of
conventional operating system functiondity that is im-
plemented at the library, rather than kerndl, level.

Second, we describe anumber of techniquesfor imple-
menting non-blocking synchronization using TSM, ver-
sion numbers and DCAS. These techniques are simple
to write, read, and understand, and perform well. in
contrast to the CAS Our experience suggests that good
DCAS support is sufficient for a practical non-blocking
OS and run-time system implementation, and that single
CAS is not sufficient. In fact, lack of efficient DCAS
support in systems isa potential impediment to using our
techniques.

Fortunately, our proposed hardware implementation
indicates that it is feasible to implement efficient DCAS
functionality in a modern processor with minimal addi-
tional complexity and full compatibility with the load-
store architecture. The conditiona load capability cou-
pled to cache-based advisory locking further improves
the hardware support, providing the advantages of lock-
ing in alock-freeimplementation. The existence of soft-
ware implementations of DCAS and contention reduc-
tion demonstrates that our approach is reasonable even
on platformslacking hardware support.

Efficiently supported DCAS would dlow fully-
synchronized standard libraries and operating system

software to be portable across multiprocessors and
uniprocessors without extra overhead or code compli-
cation. It would alow parald architectures to use soft-
ware developed for uniprocessors, relying on the (non-
blocking) synchronization required for signals to han-
die seridization in the parallel processing context. This
would significantly reduce the software bottleneck that
has sl owed the deployment of parallel processingto date.

Further work is required to eval uate the merits of hard-
ware support for DCAS versus various software aterna
tives, particularly for overal system performance. Fur-
ther work is also required to validate our experience that
DCAS is in fact adequate in practice. However, our
experience to date convinces usthat the non-blocking ap-
proach isan attractive and practical way to structure op-
erating system software. Locks will become more prob-
lematic as signals are used more extensively in libraries,
synchronization becomes finer grained, and as the cost
of memory delays and descheduling become even higher
relative to processor speed. We hope our work encour-
ages additional effortsinthisarea.

References

[1] J. Allemany and E.W.Felton, Performance issues
in non-blocking synchronization on shared mem-
ory multiprocessors. Proceedings of the 11th An-
nual ACM Symposium on Principles of Distributed
Computing, pp 125-134, August 1992.

[2] JH. Anderson and M. Mair, Universal Construc-
tions for Multi-Object Operations, Proceedings of
the 14th Annual ACM Symposium on Principles of
Distributed Computing, Ottawa, Ont. Canada, pp
184-193, August 20-23, 1995

[3] G. Barnes, A Method for Implementing Lock-Free
Shared Data Structures Proceedings of the 5th ACM
Symposium on Parallel Algorithms and Architec-
tures 1993

[4] B.N. Bershad, Prectical considerations for non-
blocking concurrent objects. Proceedings 13th
IEEE International Conference on Distributed
Computing Systems, Los Alamitos CA, |EEE Com-
puter Society Press, pp 264-273, May 25-28, 1993.

[5] E.A. Brewer, C.N. Ddlarocas, A. Colbrook, and
W.E. Weihl, “PROTEUS: A High-Performance
Parallel-Architecture Simulator”, Technica Report
MIT/LCS/TR-516, MIT Laboratory for Computer
Science, September 1991.

[6] D.R. Cheriton, TheV Distributed System. Commu-
nications of the ACM, 31(3), pp 314-333, March
1988

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D.R. Cheriton and K. Duda. A Caching Mode of
Operating System Kernel Functionality. Proceed-
ingsof 1st Symposiumon Operation SystemsDesign
and Implementation, Monterey, CA, pp 179-193,
Nov 14-17, 1994,

D.R. Cheriton, H. Goosen, and P. Boyle,
ParaDiGM: A highly scaable shared-memory
multi-computer architecture. |EEE Computer,
24(2), February 1991.

D.R. Cheriton and R. Kutter. Optimizing memory-
based messaging for scal abl e shared memory multi-
processor architectures. To appear in USENIX Com-
puter Systems Journal 1996. (available as Stanford
Computer Science Technical Report CS-93-123,
December 1993.)

D.R. Cheriton, H. Goosen, and P. Machanick, Re-
structuring a Parallel Simulation to Improve Cache
Behavior in a Shared-Memory Multiprocessor: A
First Experience. In Proceedings of the Interna-
tional Symposiumon Shared Memory Multiprocess-
ing, pp 23-31, Tokyo, April 1991.

Joseph Heinrich. MIPSR4000 User’'sManua, PTR
Prentice Hall, Englewood CliffsNJ, 1993

M.P. Herlihy and J.E.B. Moss. Transactional Mem-
ory: Architectural support for lock-free data struc-
tures. 1993 20th Annual Symposium on Computer
Architecture San Diego, Calif. pp. 289-301. May
1993.

M. P Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languagesand Sys-
tems, 13(1), pp 123-149, January, 1991

M. Herlihy. A Methodology for Implementing
Highly Concurrent Data Objects ACM Transactions
on Programming Languages and Systems, 15(5),
745-770, November, 1993

A. lsraeli and L. Rappaport, Digoint-Access-
Parallel Implementationsof Strong Shared Memory
Primitives, Proceedings of the 13th Annual ACM
Symposium on Principles of Distributed Comput-
ing, Los Angeles, CA, pp 151-160, August 14-17,
1994

A. Isradli and L. Rappaport, Efficient wait-free im-
plementation of a concurrent priority queue 7th Intl
Workshop on Distributed Algorithms’ 93, Lausanne,
Switzerland, Lecture Notes in Computer Science
725, Springer Verlag, pp 1-17, Sept. 1993

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

H. Massdin and C. Pu. A lock-free multiprocessor
OS kerndl. Technical Report CUCS-005-01, Com-
puter Science Department, Columbia University,
October 1991.

M. Michael and M. Scott, Simple, Fast, and Practi-
ca Non-Blocking and Blocking Concurrent Queue
Algorithms’, Proceedings of the 15th Annual ACM
Symposium on Principles of Distributed Comput-
ing, Philadelphia, PA, pp 267-276, May 1996.

N. Shavit and D. Tovitov, Software Transactional
Memory, Proceedingsof the 14th Annual ACM Sym-
posiumon Principlesof Distributed Computing, Ot-
tawa, Ont. Canada, pp 204-213, August 20-23, 1995

R. Sites, ed., DEC Alpha Architecture, Digital
Press, Burlington, Mass. 1992

J. Stone, H. Stone, P. Heidelbergher, and J. Turek.
Multiple Reservations and the Oklahoma Update.
|IEEE Parallel and Distributed Technology, vol 1,
no.4, pp 58-71, November, 1993

J. Torrellas, A. Gupta, and J. Hennessy. Characteriz-
ing the Caching and Synchronization Performance
of a Multiprocessor Operating System. In Fifth In-
ternational Conferenceon Architectural Support for
Programminlg Languages and Operating Systems,
pp 162-174, October 1992

J. Turek, D. Shasha and S. Prakash. Locking with-
out blocking: Making L ock-Based Concurrent Data
Structure Algorithms Non-Blocking. Proceedings
of the 1992 Principl es of Database Systems pp 212-
222,1992.

J. Vaois, Lock-Free Linked Lists Using Compare-
and-Swap, Proceedings of the 14th Annual ACM
Symposium on Principles of Distributed Comput-
ing, Ottawa, Ont. Canada, pp 214-222, August 20-
23,1995

M. Zelesko and D. R. Cheriton, Specializing Object
Oriented RPC for Functionality and Performance,
Proceedings 16th IEEE International Conference
on Distributed Computing Systems, | EEE Computer
Society Press, May 27-30, 1996.

M68000 Family Programmer’s Reference Manual,
Motorola, Inc. 1989

PowerPC 601 RISC Mircroprocessor User's Man-
ual, Motorolalnc, 1993

