
The Synergy Between Non-blocking Synchronization and Operating System
Structure

Michael Greenwald and David Cheriton �
Computer Science Department

Stanford University
Stanford, CA 94305-9040

Abstract

Non-blocking synchronization has significant advantages over
blocking synchronization: however, it has not been used to a
significant degree in practice. We designed and implemented
a multiprocessor operating system kernel and run-time library
for high-performance, reliability and modularity. We used non-
blocking synchronization, not because it was an objective in
itself, but because it became the approach of choice. It was
an attractive approach because of the synergy between other
structuring techniques we used to achieve our primary goals
and the benefits of non-blocking synchronization.

This paper describes this synergy: the structuring techniques
we used which facilitated non-blocking synchronization and
our experience with this implementation.

1 Introduction

We chose to use non-blocking synchronization in the de-
sign and implementation of the Cache Kernel [7] oper-
ating system kernel and supporting libraries for several
reasons. First, non-blocking synchronization allows syn-
chronized code to be executed in an (asynchronous) sig-
nal handler without danger of deadlock. For instance,
an asynchronous RPC handler (as described in [25]) can
directly store a string into a synchronized data structure
such as a hash table even though it may be interrupting
another thread updating the same table. With locking,
the signal handler could deadlock with this other thread.

Second, non-blocking synchronization minimizes in-
terference between process scheduling and synchroniza-
tion. For example, the highest priority process can access
a synchronized data structure without being delayed or
blocked by a lower priority process. In contrast, with
blocking synchronization, a low priority process hold-
ing a lock can delay a higher priority process, effectively�fmichaelg, cheritong@cs.stanford.edu. This work
was sponsored in part by ARPA under US Army contract DABT63-91-
K-0001. Michael Greenwald was supported by a Rockwell Fellowship.

defeating the process scheduling. Blocking synchro-
nization can also cause one process to be delayed by
another lockholding process that has encountered a page
fault or a cache miss. The delay here can be hundreds of
thousands of cycles in the case of a page fault. This type
of interference is particularly unacceptable in an OS like
the Cache Kernel where real-time threads are supported
and page faults (for non-real-time threads) are handled
at the library level. Non-blocking synchronization also
minimizes the formation of convoys which arise because
several processes are queued up waiting while a single
process holding a lock gets delayed.

Finally, non-blocking synchronization provides greater
insulationfrom failures such as fail-stopprocess(or)s fail-
ing or aborting and leaving inconsistent data structures.
Non-blocking techniques allow only a small window of
inconsistency, namely during the atomic compare-and-
swap sequence itself. In contrast, with lock-based syn-
chronization the window of inconsistency spans the entire
locked critical section. These larger critical sections and
complex locking protocols also introduce the danger of
deadlock or failure to release locks on certain code paths.

There is a strong synergy between non-blocking syn-
chronization and the design and implementation of the
Cache Kernel for performance, modularity and reliabil-
ity. First, signals are the only kernel-supported form
of notification, allowing a simple, efficient kernel im-
plementation compared to more complex kernel message
primitives, such as those used in V [6]. Class libraries im-
plement higher-level communication like RPC in terms of
signals and shared memory regions [25]. Non-blocking
synchronization allows efficient library implementation
without the overhead of disabling and enabling signals
as part of access and without needing to carefully restrict
the code executed by signal handlers.

Second, we simplified the kernel and allows spe-
cialization of these facilities using the C++ inheritance
mechanism by implementating of most operating sys-
tem mechanisms at the class library level, particularly



the object-oriented RPC system [25]. Non-blocking syn-
chronization allows the class library level to be tolerant of
user threads being terminated (fail-stopped) in the mid-
dle of performing some system library function such as
(re)scheduling or handling a page fault.

Finally, the isolation of synchronization from schedul-
ing and thread deletion provided by non-blocking syn-
chronization and the modularityof separate class libraries
and user-level implementation of services leads to a more
modular and reliable system design than seems feasible
by using conventional approaches.

This synergy between non-blocking synchronization
and good system design and implementation carries for-
ward in the more detailed aspects of the Cache Kernel
implementation. In this paper, we describe aspects of
this synergy in some detail and our experience to date.

The main techniques we use for modularity,
performance and reliability are atomic DCAS(or
Double-Compare-and-Swap), type-stable memory
management (TSM), and contention-minimizing data
structures (CMDS).

DCAS (discussed in detail in Section 5) is defined in
Figure 1. That is, DCAS atomically updates locations
addr1 and addr2 to values new1 and new2 respec-
tively if addr1 holds value old1 and addr2 holds
old2 when the operation is invoked.

The next section describes type-stable memory man-
agement, which facilitates implementing non-blocking
synchronization as well as providing several independent
benefits to the software structure. Section 3 describes the
contention-minimizing data structures which have bene-
fits in performance and reliability for lock-based as well
as non-blockingsynchronization. Section 4 describes our
approach to minimizing the window of inconsistency and
the systems benefits of doing so. Section 5 describes
the non-blocking synchronization implementation in fur-
ther detail with comparison to a blocking implementa-
tion. Section 6 describes the non-blocking synchroniza-
tion primitives that we assumed for our approach and a
potential hardware implementation. Section 7 describes
the performance of our implementation using simulation
to show its behavior under high contention. Section 8
describes how our effort relates to previous and current
work in this area. We close with a summary of our con-
clusions and directions for future work.

2 Type-Stable Memory Management
(TSM)

Type-stable memory management (TSM) refers to the
management of memory allocation and reclamation so
that an allocated portion of memory, a descriptor, does
not change type within some time bound tstable. This is a

int DCAS(int *addr1, int *addr2,
int old1, int old2,
int new1, int new2)

{
<begin atomic>
if ((*addr1 == old1) && (*addr2 == old2)) {

*addr1 = new1; *addr2 = new2;
return(TRUE);

} else {
return(FALSE);

}
<end atomic>
}

Figure 1: Pseudo-code definition of DCAS
(Double-Compare-and-Swap)

fancy name for an extension of an old idea. For example,
the process descriptors in many operating systems are
statically allocated at system initialization and are thus
type-stable for the lifetime of the system execution.

Our notion of TSM incorporates three basic extensions
to this conventional type of implementation. First, a
descriptor remains a valid instance of the type even when
it is not active, i.e. on the free list. Second, TSM allows
multiple memory allocation pools for the same type. For
example, there can be a pool of thread descriptors per
cluster of processors on a large-scale multiprocessor to
minimize contention between clusters. Finally, the type
of a portion of memory can change over time, but only
as long as it is type-stable over some time tstable. More
specifically, a descriptor has to be inactive for at leasttstable before it can be reallocated as a different type1.
However, for simplicity, we assume an infinite tstable for
this discussion.

TSM simplifies the implementation of non-blocking
synchronization algorithms. That is, because a descriptor
of type T1 is type-stable, a pointer of type T1 * to
the descriptor cannot end up pointing to a descriptor of
another type as a result of this area of memory being freed
and reallocated as type T2.

Consider, for example, the code shown in Figure 2 to
do a non-blocking deletion from a linked list2.

The delete operation searches down a linked list of
descriptors to find the desired element or detect the end of

1An example of a TSM implementation is a collection of descriptors
that are stored in a set of page frames which are allocated and released
over time. When more descriptors are required, additional page frames
can be allocated from the general pool and when the number of descrip-
tors falls, the descriptors may be consolidated into a smaller number
of pages and the excessive page frames returned to the general pool.
However, the release of page frames to the general pool must be delayed
sufficiently to ensure the type-stability property. This delay provides
a useful hysteresis to the movement of pages between this descriptor
collection and the general page pool.

2The list is initialized with a dummy node at the head, thus deletion
of the first element works correctly.



/* Delete elt */
do {
retry:
backoffIfNeeded();
version = list->version;

for (p = list->head;
(p->next != elt);
p = p->next) {

if (p == NULL) { /* Not found */
if (version != list->version)
{ goto retry; } /* Changed */

return NULL; /* Really not found */
}

}
} while(!DCAS(&(list->version), &(p->next),

version, elt,
version+1, elt->next))

Figure 2: Deletion from the middle of list, protected by
DCAS and version number.

the list. If the element is found, the element is atomically
deleted from the list by the DCAS operation. The DCAS
succeeds only if the list has not been modified since the
delete operation started, as determined from the version
field.

The code only checks for conflicts once it reaches the
desired element or the end of the list. The descriptors are
TSM so each pointer is guaranteed to point to a descriptor
of this type. Without TSM, the link pointer, p, may point
to a descriptor that has been deleted and reallocated as a
different type. This type error can cause a random bit-
field to be interpreted as a pointer, and cause the search to
perform incorrectly, raise an exception due to unaligned
access, or read a device register. TSM is a simpler and
more efficient way of ensuring this type safety than other
techniques we are aware of that prevent reallocation (such
as automatic garbage collection mechanisms or reference
counts), or that detect potential reallocation (such as per-
list-element version numbers).

Besides these benefits to non-blocking synchroniza-
tion, TSM has several important advantages in the con-
struction of modular, reliable, high-performance oper-
ating systems. First, TSM is efficient because a type-
specific memory allocator can normally allocate an in-
stance of the type faster than a general-purpose allocator
can. For example, allocation of a new thread from a
free list of (fixed-size) thread descriptors is a simple de-
queue operation whereas a general-purpose allocator like
malloc may have to do a search and subdivision of its
memory resources. The class-specific new and delete
operators of C++ support a clean source code represen-
tation of TSM. This allocation can be made even more
efficient with many types because a free (or inactive) de-
scriptor is already an instance of this type, and so may
require less initialization on allocation than a random

portion of memory.
Second, TSM aids reliability because it is easier to au-

dit the memory allocation, locating all the descriptors of a
given type and ensuring that pointers that are supposed to
point to descriptors of a given type actually do so. With
fixed-size descriptors, TSM also avoids fragmentation
of memory that arises with general-purpose allocators.
Fragmentation can cause failure as well as poor perfor-
mance. Relatedly, TSM makes it easier to regulate the
impact of one type of descriptor on the overall system
resources. For example, with a collection of descriptors
that are allocated dynamically using the page frame ap-
proach described above, the number of pages dedicated to
this type can be controlled to avoid exhausting the mem-
ory available for other uses, both from overallocation and
from fragmentation of memory.

TSM also minimizes the complexity of implementing
the caching model [7] of descriptors in the operating sys-
tem kernel. In this approach, the number of descriptors
of a given type is limited but an allocation never fails. In-
stead, as in a cache, a descriptor is made available by its
dirty data being written back to the higher-level system
management and then reused to satisfy the new allocation
request. This mechanism relies on limiting the number of
descriptors, being able to locate an allocated descriptor
to reclaim, and being able to determine the dependencies
on these descriptors. TSM simplifies the code in each of
these cases.

TSM also allows a modular implementation. From
an object-oriented programming standpoint, there can
be a base class descriptor manager class that is special-
ized to each type of descriptor. For example, there is a
CacheKernelObjMan class in our operating system
kernel that provides the basic TSM allocation mecha-
nism, which is specialized by C++ derivation to imple-
mentThread,AddressSpaceKernel and MemMap
types as well as several other types.

3 Data Structures that Minimize Con-
tention

The Cache Kernel was also designed and implemented to
minimize both logical and physical contention to provide
for efficient non-blocking synchronization. By logical
contention, we mean contention for access to data struc-
tures that need to be controlled to maintain the consis-
tency and semantics of these data structures. By physical
contention, we mean the contention for access to shared
memory that needs to be controlled to maintain the con-
sistency and semantics of the memory system3.

3Physical contention is separate from logical contention because
one can have logical contention without physical contention as well as
vice versa, so called false sharing. For example, if two shared vari-



Minimizing logical contention with non-blocking syn-
chronization minimizes the overhead of conflicting oper-
ations failing and being retried. It also avoids the com-
plexity of complex backoff mechanisms as part of the
retry.

Most of our techniques for contention minimization
are well-known. For example, one aspect of contention
minimization is replicating data structures for each pro-
cessor. In particular, there are per-processor ready and
delay queues in the Cache Kernel, so contention on these
structures is limited to signal/interrupt handlers and man-
agement operations to load balance, etc. being executed
by a separate processor.

Similarly, there is a signal delivery cache per proces-
sor which allows a significant number of signals to be
delivered by a processor without accessing the shared
signal mapping data structure, which cannot be made per-
processor without replicating the entire structure. This
per-processor “cache” approach is similar to that provided
by a per-processor TLB for address translation. The TLB
reduces access to the real virtual address space mapping
structure, which is necessarily shared among threads in
the address space.

Contention on a data structure is also reduced in some
cases by structuring it as a multi-level hierarchy. For
example, a list that is searched frequently may be revised
to be a hash table with a version number or lock per
bucket. Then, searches and updates are localized to a
single bucket portion of the list, reducing the conflict
with other operations, assuming they hash to different
buckets. The upper levels of the hierarchy are read-only
or read-mostly: descriptors are only added at the leaves.

Physical contention is also reduced by using cache-
aligned descriptors. TSM with its restricted allocation
of descriptors can also reduce the number of pages ref-
erenced as part of scan and search operations, reducing
the TLB miss rate, another source of physical contention.
Finally, in this vein, commonly updated fields are placed
contiguously and aligned to hopefully place them in the
same cache line, thereby making the updates more effi-
cient.

The spatial locality of data access achieved by these
techniques provides significant benefit for synchroniza-
tion, whether non-blocking or conventional locks. This
spatial locality also minimizes the consistency overhead
when the system is running across multiple processors,
with each caching portions of this shared data. In gen-
eral, our experience (e.g. [10]) suggests that it is bet-
ter to (re)structure the data structures to reduce con-
tention rather than attempt to improve the behavior of

able can reside in the same cache line unit so there can be physical
contention without logical contention if two processor attempt to up-
date the variables simultaneously, each processor updating a separate
variable.

synchronization techniques under high contention. Low-
contention algorithms are simpler and thus easier to get
right, and faster as long as contention is actually low.

4 Minimizing the Window of Inconsistency

The Cache Kernel was also structured to minimize the
window in which a data structure was inconsistent. This
provides temporal locality to a critical section. Again,
we use familiar techniques. The basic pattern is to read
all the values, compute the new values to be written, and
then write these new values all at once after verifying
that the values read have not changed. Since a structure
is generally inconsistent from the time of the first write
to the point that the last write completes, removing the
computation from this phase minimizes the window of
inconsistency. To minimize the cost of verifying that the
read values have not changed, we use a version number
that covers the data structure and is updated whenever the
data structure changes. The use of a version number also
avoids keeping track of the actual location read as part of
the operation.

The window of inconsistency is also minimized by
structuring to minimize physical contention as part of
data structure access.

Physical contention increases the time for a processor
to perform an operation because it increases the effective
memory access time.

These techniques allow efficient non-blocking syn-
chronization. In particular, an update typicallyconsists of
a DCAS operation that updates the version number plus
one other location, with the version number ensuring that
the data structure has not been changed by another con-
current update. That is, the window of inconsistency is
reduced to the execution of the DCAS operation itself.

These techniques have other benefits as well. In par-
ticular, the reduced window of inconsistency reduces the
probability of a failure, such as a thread termination, cor-
rupting the system data structures. They also reduce the
complexity of gettingcritical section code right because it
is shorter with fewer separate control paths through it and
therefore easier to test. Some of this structuring would be
beneficial, if not required, for an implementation using
lock-based synchronization because it reduces lock hold
time, thereby further reducing contention.

5 Non-Blocking Synchronization Imple-
mentation

With the structuring of the Cache Kernel and supporting
class libraries described above, non-blocking synchro-
nization is relatively simple to implement. Most data



structures are collections of fixed-size descriptors. Sev-
eral collections are queues for service. For example,
thread descriptors are queued in the ready queue and a
delay queue of their associated processor. Other collec-
tions are lookup or search structures such as a hash table
with linked list buckets. For example, we organize page
descriptors into a lookupstructure per address space, sup-
porting virtual-to-physical mapping for the address space.

5.1 The Base Approach
The non-blocking synchronization for these structures
follows a common base structure. There is a version num-
ber per list. The DCAS primitive is used to atomically
perform a write to a descriptor in a list and increment the
version number, checking that the previous value of both
has not been changed by a conflicting access to the list.
Figure 2 illustrated this structure for deleting a descrip-
tor from a list, where the single write to the descriptor
was to change the link field of the predecessor descrip-
tor. Inserting a new descriptor D entails initializing D,
locating the descriptor in the linked list after which to
insert D, writing the D’s link field to point to the next
descriptor, and then performing the DCAS to write the
link field of this prior descriptor to D and to increment the
version, checking both locations for contention as part of
the update.

Dequeuing a descriptor from a TSM free list is a de-
generate case of deletion because the dequeue always
takes place from the head. It is possible to optimize this
case and use a single CAS to dequeue without a version
number. However, with efficient DCAS support, it is
attractive to use DCAS with a version number to allow
the version number to count the number of allocations
that take place. (As another special case, an operation
requiring at most two locations for the reads and writes
can be updated directly using DCAS. We have used this
approach with array-based stacks and FIFO queues.)

Some operations that involve multiple writes to the
same descriptor can be performed by creating a dupli-
cate of this descriptor, performing the modifications and
then atomically replacing the old descriptor by the new
descriptor if the list has not changed since the duplicate
descriptor was created. This approach is a variant of
Herlihy’s general methodology [13] which can convert
a sequential implementation of any data structure into a
wait-free, concurrent one. However, we use DCAS to
ensure atomicity with respect to the entire data structure
(the scope of the version number) even though we are
only copying a single descriptor4. As a variant of this

4The basic Herlihy approach involves copying the entire data struc-
ture, modifying the copy, and then atomically replacing the old copy
with the new copy using CAS, and retrying the entire copy and mod-
ifying if there is a conflict. Our approach reduces the allocation and
copy cost to a single descriptor rather than the entire data structure but
requires DCAS.

approach, the code can duplicate just a portion of the de-
scriptor, update it and use DCAS to insert it in place of
the original while updating a version number. If a thread
fails before completing the insertion, we rely on a TSM-
based audit to reclaim the partially initialized descriptor
after it is unclaimed for tstable time.

As a further optimization, some data structures allow
a descriptor to be removed, modified and then reinserted
as long as the deletion and the reinsertion are each done
atomically. This optimization saves the cost of allocating
and freeing a new descriptor compared to the previous ap-
proach. This approach requires that other operations can
tolerate the inconsistency of this descriptor not being in
the list for some period of time. For example, the Cache
Kernel signal delivery relies on a list of threads to which a
signal should be delivered. A thread fails to get the signal
if it is not in the list at the time a signal is generated. How-
ever, we defined signal delivery to be best-effort because
there are (other) reasons for signal drop so having signal
delivery fail to a thread during an update is not a viola-
tion of the signal delivery semantics. Programming the
higher-level software with best-effort signal delivery has
required incorporating timeout and retry mechanisms but
these are required for distributed operation in any case and
do not add significant overhead [25]. These techniques,
related to the transport-layer in network protocols, also
make the system more resilient to faults.

Note that just having a search mechanism retry a search
when it fails in conjunction with this approach can lead to
deadlock. For example, if a signal handler that attempts
to access descriptorD, retrying until successful, is called
on the stack of a thread that has removed D to perform
an update, the signal handler effectively deadlocks with
the thread.

5.2 Dealing with Multiple Lists
A descriptor that is supposed to be on multiple lists simul-
taneously complicates these procedures. So far, we have
found it feasible to program so that a descriptor can be in
a subset of the lists, and inserted or deleted in each list
atomically as separate operations. In particular, all the
data structures that allow a descriptor to be absent from
a list allow the descriptor to be inserted incrementally.

Overall, the major Cache Kernel [7] data structures are
synchronized in a straightforward manner. Threads are
in two linked lists: the ready queue and the delay queue.
Descriptor free lists are operated as stacks, making alloca-
tion and deallocation simple and inexpensive. The virtual
to physical page maps are stored in a tree of depth 3 with
widths of 128, 128, and 64 respectively. Although the
128 immediate descendants of the root are never deleted,
sub-trees below them can be unloaded. Modifications
to a map on level 3 are synchronized using DCAS with
its parent’s version number to make sure that the entire



subtree has not been modified in conflict with this up-
date. Finally, the Cache Kernel maintains a “dependency
map” that records dependencies between objects, includ-
ing physical to virtual mappings. It is implemented as
a fixed-size hash table with linked lists in each bucket.
The signal mapping cache structure, (an optimization for
signal delivery to active threads), is also a direct mapped
hash table with linked lists in each bucket. The majority
of uses of single CAS are for audit and counters.

Synchronization of more complex data structures than
we have encountered can be handled by each operation
allocating, initializing and enqueuing a “message” for a
server process that serially executes the requested opera-
tions. Read-only operations can still proceed as before,
relying on a version number incremented by the server
process. Moreover, the server process can run at high
priority, and include code to back out of an operation on
a page fault and therefore not really block the operation
anymore than if the operation was executed directly by
the requesting process. The server process can also be
carefully protected against failure so the data structure is
protected against fail-stop behavior of a random applica-
tion thread, which may be destroyed by the application.

This approach was used by Pu and Massalin [17]. For
example, a general-purpose memory page allocator can
be synchronized in this manner, relying on a TSM mem-
ory pool to minimize the access to the general allocator.
However, in our code to date, the only case of queueing
messages for a server module arises with device I/O. This
structure avoids waiting for the device I/O to complete
and is not motivated by synchronization issues.

Other work has investigated other alternatives or op-
timizations of this approach, in which helper functions
are executed by a new thread if there is work left to
complete or rollback by a previous thread accessing this
data structure. For example, Israeli et al. [16] describe
a non-blocking heap implemented using 2-word LL/SC
along these lines, performing multiple updates as multi-
ple distinct operations. However, to date, we have not
needed to employ these so-called helper techniques and
therefore cannot comment on their actual practicality or
utility. Moreover, it seems questionable from a reliability
standpoint to have threads from separate address spaces
sharing access to complex data structures. These data
structures are also more difficult to program and to main-
tain and often provide marginal performance benefits in
practice, particularly when synchronization overhead is
taken into account. Their asymptotic performance bene-
fits are often not realized at the scale of typical operating
system data structures.

5.3 Comparison to Blocking Synchroniza-
tion

Much of the structuring we have described would be
needed, or at least beneficial, even if the software used
blocking synchronization. For instance, TSM has a
strong set of benefits as well as contributing to the other
techniques for minimizing contention and reducing the
window of inconsistency.

We have found that the programming complexity of
non-blocking synchronization is similar to conventional
blocking synchronization. This differs from the experi-
ence of programmers using CAS-only systems. DCAS
plays a significant part in the complexity reduction. Using
the crude metric of lines of code, a CAS implementation
(Valois) of concurrent insertion/deletion from a linked
list requires 110 lines, while the corresponding DCAS
implementation requires 38 (a non-concurrent DCAS im-
plementation takes 25). The CAS-only implementation
of a FIFO queue described in [18] requires 37 lines, our
DCAS version only 24. The DCAS versions are corre-
spondingly simpler to understand and to informally verify
as correct. In many cases, using DCAS, the translation
from a well-understood blocking implementation to a
non-blocking one is straightforward. In the simple case
described in Figure 2, the initial read of the version num-
ber replaces acquiring the lock and the DCAS replaces
releasing the lock.

In fact, version numbers are analogous to locks in many
ways. A version number has a scope over some shared
data structure and controls contention on that data struc-
ture just like a lock. The scope of the version number
should be chosen so that the degree of concurrency is
balanced by the synchronization costs. (The degree of
concurrency is usually bounded by memory contention
concerns in any case). Deciding the scope of a version
number is similar to deciding on the granularity of lock-
ing: the finer the granularity the more concurrency but the
higher the costs incurred. However, a version number is
only modified if the data structure is modified whereas a
lock is always changed. Given the frequency of read-only
operations and the costs of writeback of dirty cache lines,
using read-only synchronization for read-only operations
is attractive. Finally, version numbers count the number
of times that a data structure is modified over time, a
useful and sometimes necessary statistic.

Finally, the overall system complexity using blocking
synchronization appears to be higher, given the code re-
quired to get around the problems it introduces compared
to non-blocking synchronization. In particular, special
coding is required for signal handlers to avoid deadlock.
Special mechanisms in the thread scheduler are required
to avoid the priority inversion that locks can produce.
And, additional code complexity is required to achieve
reliable operation when a thread can be terminated at a



random time. For example, some operations may have to
be implemented in a separate server process.

A primary concern with non-blocking synchroniza-
tion is excessive retries because of contending operations.
However, our structuring has reduced the probability of
contention and the conditional load mechanism described
in the next section can be used to achieve behavior similar
to lock-based synchronization.

6 Non-blocking Synchronization Primi-
tives

Our approach assumes an efficient implementation
of DCAS functionality. In this section, we
briefly outline an instruction set extension to the
load-linked/store-conditional) instructions
to support DCAS. (A software implementation is dis-
cussed in Section 6.1.) With a processor support-
ing load-linked (LL) and store-conditional
(SC) instructions, add two instructions:

1. LLP (load-linked-pipelined): load and link to a sec-
ond address after a LL. This load is linked to the
following SCP.

2. SCP (store-conditional-pipelined): Store to the
specified location provided that no modifications
have been made to either of the memory cells des-
ignated by either of the most recent LL and LLP
instructions and these cache lines have not been in-
validated in the cache of the processor performing
the SCP.

If aLLP/SCP sequence nested within an LL/SC pair fails,
the outer LL/SC pair fails too.

DCAS is then implemented by the instruction sequence
shown in Figure 3 (using R4000 instructions in addition to
the LL/SC(P) instructions). The LL and LLP instructions
in lines 1 and 2 “link” the loads with the respective
stores issued by the following SC and SCP instructions.
Lines 3 and 4 verify that (T0) and (T1) contain V0
and V1, respectively. The SCP and SC in lines 5 and 6
are conditional. They will not issue the stores unless
(T0) and (T1) have been unchanged since lines 1 and
2. This guarantees that the results of CAS in lines 3 and
4 are still valid at line 6, or else the SC fails. Further, the
store issued by a successful SCP is buffered pending
a successful SC. Thus, SC in line 6 writes U1 and U0 to
(T1) and (T0) atomically with the comparison to V0
and V15.

5Given data structures that are protected by a version number, te
DCAS is actually a Compare-And-Double-Swap (CADS) — the
second value cannot have changed if the version number is unchanged.
In these cases a minor optimization is possible and line 4 can be deleted.

/*
* If (T0) == V0, and (T1) == V1, then
* atomically store U0 and U1 in T0 and T1
*/
DCAS(T0, T1, V0, V1, U0, U1)

;; Get contents of addresses in registers.
1 LL T3, (T1)
2 LLP T2, (T0)

;; Compare to V0 and V1. If unequal, fail.
3 BNE T2, V0, FAIL
4 BNE T3, V1, FAIL

;; If equal, and unchanged since LOAD,
;; store new values

5 SCP U0, (T0)
6 SC U1, (T1)

;; Success of SC and SCP is stored in U1
BLEZ U1, FAIL
...

FAIL:

Figure 3: DCAS Implementation using LL/SC and LLP/SCP.
Success or failure of SC (and thus of the DCAS operation) is
returned in U1 or whatever general register holds the argument
toSC. 1 denotes success,0 failure. If the next instruction tries to
read U1, the hardware interlocks (as it already does for LL/SC)
if the result of SC is not already in U1.

We have worked out a detailed design for the imple-
mentation of these two instructions in a RISC proces-
sor such as the R4000 but the description is omitted for
brevity.

6.1 Software Implementation of DCAS
DCAS functionality can be implemented in software us-
ing a technique introduced by Bershad [4]. DCAS is im-
plemented using a lock known to the operating system.
If a process holding this locks is delayed by a context
switch, the operating system rolls back the process out of
the DCAS procedure and releases the lock. The rollback
procedure is relatively simple because the DCAS imple-
mentation is simple and known to the operating system.
Moreover, the probability of a context switch in the mid-
dle of the DCAS procedure is low because it is so short,
typically a few instructions. Thus, the rollback cost is
incurred infrequently.

This technique can be used more generally to imple-
ment other primitives such as n-location CAS. We focus
on DCAS implementation because the primary relation to
our work is offering a software implementation of DCAS
as an alternative to our proposed hardware support. It
also seems simpler to just implement rollback for DCAS
compared to more general primitives.

This approach has the key advantage of not requiring
hardware extensions over the facilities in existing sys-
tems. Moreover, its performance may be comparable to
our hardware extensions, especially on single processors
or small-scale multiprocessors. Further measurements
are required here. However, there are a few concerns.



First, there is the cost of locking. The straight-forward
implementation requires the DCAS procedure to access a
common global lock from all processes. In a multi-level
memory with locks in memory, the memory contention
between processors for this lock can be significant. For
example, the data structure may be in a shared segment
that is mapped in by two independent processes. If the
locks are associated with each DCAS instance, there is
more cost and complexity to designate the locks and crit-
ical section to the operating system and to implement the
rollback. The locking and unlocking also modifies the
cache line containing the lock, further increasing the cost
of this operation because writeback is required.

Second, Bershad’s approach requires rereading the two
locations from memory as well as an extra read and write
to set the lock and write to clear the lock.

Third, on multiprocessors, care must be used by readers
of shared data structures if they want to support unsyn-
chronized reads. Without depending on the lock, read-
ers can see intermediate states of the DCAS, and read
tentative values that are part of a DCAS that fails. Re-
quiring synchronization for reads significantly increases
contention on the global lock. Note that in many cases
TSM reduces the danger of unsynchronized reads because
the reads cannot cause type errors. Writes are protected
by the global lock, and the final DCAS will detect that
the unsynchronized reads were suspect, and fail. Sys-
tems that provide hardware DCAS require no additional
read synchronization beyond that performed automati-
cally by the memory system. Further experience and
measurements are required to determine whether this is a
significant issue on real systems.

Finally, the Bershad mechanism seems harder to test
under all conditions. For instance, it is possible that one of
the write operations that the rollback needs to undo is to an
area of memory that has been paged out or that one of the
addresses is illegal. The system also needs to ensure that
a thread is rolled back out of any DCAS critical section if
it is terminated. We believe our hardware implementation
is simpler to verify and naturally operates on top of the
virtual memory management of the system and on top of
directly accessible physical memory at the lowest level
of the system software. It is of concern that a minor
change to the software mechanisms in Bershad’s scheme
could result in very subtle errors in execution that could
go undetected in a system for a long period of time.

6.2 Hardware Contention Control
As a further extension, a processor can provide a condi-
tional load instructionorCload. TheCload instruction
is a load instruction that succeeds only if the location be-
ing loaded does not have an advisory lock set on it, setting
the advisory lock when it does succeed.

With Cload available, the version number is loaded

initially using Cload rather than a normal load. If the
Cload operation fails, the thread waits and retries, up
to some maximum, and then uses the normal load in-
struction and proceeds. This waiting avoids performing
the update concurrently with another process updating
the same data structure. It also prevents potential starva-
tion when one operation takes significantly longer than
other operations, causing these other frequently occuring
operations to perpetually abort the former. It appears par-
ticularly beneficial in large-scale shared memory systems
where the time to complete a DCAS-governed operation
can be significantly extended by wait times on mem-
ory because of contention, increasing the exposure time
for another process to perform an interfering operation.
Memory references that miss can take 100 times as long,
or more, because of contention misses. Without �Cload, a
process can significantly delay the execution of another
process by faulting in the data being used by the other
process and possibly causing its DCAS to fail as well.

The cost of usingCload in the common case is simply
testing whether the Cload succeeded, given that a load
of the version number is required in any case.
Cload can be implemented using the cache-

based advisory locking mechanism implemented in
ParaDiGM [8]. Briefly, the processor advises the cache
controller that a particular cache line is “locked”. Normal
loads and stores ignore the lock bit, but the Cload
instruction tests and sets the cache-level lock for a given
cache line or else fails if it is already set. A store operation
clears the bit. This implementation costs an extra 3 bits
of cache tags per cache line plus some logic in the cache
controller. Judging by our experience with ParaDiGM,
Cload is quite feasible to implement.

7 Performance

The performance on the ParaDiGM experimental multi-
processor is first discussed. We then discuss results from
simulation indicating the performance of our approach
under high contention. Finally, we discuss aspects of
overall system performance.

7.1 Experimental Implementation
The operating system kernel and class libraries run on the
ParaDiGM architecture [8]. The basic configuration con-
sists of 4-processor Motorola 68040-based multiproces-
sors running with 25 MHz clocks. The 68040 processor
has a DCAS instruction, namely CAS2. This software
also runs with no change except for a software implemen-
tation of DCAS, on a uniprocessor 66 MHz PowerPC
603. We have not implemented it on a multiprocessor
PowerPC-based system to date.

Kernel synchronization uses DCAS in 27% of the crit-
ical sections and otherwise CAS. However, the DCAS



uses are performance-critical, e.g. insert and deletion for
key queues such as the ready queue and delay queue.
The only case of blocking synchronization is on machine
startup, to allow Processor 0 to complete initialization
before the other processors start execution.

The overhead for non-blocking synchronization is min-
imal in extra instructions. For example, deletion from a
priority queue imposes a synchronization overhead of 4
instructions compared to no synchronization whatsoever,
including instructions to access the version number, test
for DCAS success and retry the operation if necessary.
This instruction overhead is comparable to that required
for locked synchronization, given that lock access can fail
thus requiring test for success and retry.

The Motorola 68040’s CAS2 [26] is slow, apparently
because of inefficient handling of the on-chip cache so
synchronization takes about 3.5 microseconds in proces-
sor time. In comparison, spin locks take on average 2.1�secs and queuelocks take about 3.4 �secs. In contrast,
the extended instructions we propose in Section 6 would
provide performance comparable to any locking imple-
mentation. In particular, it requires 16 extra instructions
(including the required no-ops) plus an implicit SYNC
in an R4000-like processor. A careful implementation
would allow all instructions other than the SYNC to exe-
cute at normal memory speed. The performance would
then be comparable to the roughly 24 instruction times
required by the R4000 lock/unlock sequence. Figure 4
compares the overhead in terms of instruction times.

Operation Instruction
Times

DCAS using CAS2 on 68040 114
DCAS using LLP/SCP 26
SGI R3000 lock/unlock 70
R4000 lock/unlock 24

Figure 4: Approximate instruction times of extra over-
head to synchronize deletion from a priority queue. This
overhead does not include the backoff computation.

7.2 Simulation-Based Evaluation
The actual contention for the kernel data structures in our
current implementation is low and we did not have the
ability to create high contention at the time of writing.

To understand how our system behaves under heavy
load, we have simulated insertion/deletion into a singly
linked list under loads far heavier than would ever be
encountered in the Cache Kernel.

Our simulation was run on the Proteus simulator [5],
simulating 16 processors, a cache with 2 lines per set,
a shared bus, and using the Goodman cache-coherence
protocol. All times are reported in cycles from start of test
until the last processor finishes executing. Memory la-

tency is modeled at 10 times the cost of a cache reference.
The cost of a DCAS is modeled at 17 extra cycles above
the costs of the necessary memory references. The addi-
tional cost of a CAS over an unsynchronized instruction
referencing shared memory is 9 cycles.

Four algorithms were simulated:

1. DCAS/Cload: Our DCAS algorithm with contention
controlled by advisory locking, as implemented on
Paradigm.

2. DCAS/A&F: DCAS algorithm with contention con-
trolled by OS intervention as proposed by Allemany
and Felten [1] and described in Section 8.4.

3. CAS: An implementation using only CAS and sup-
porting a much higher degree of concurrency based
on a technique by Valois [24] 6.

4. SpinLock: Spin-lock with exponential back-off as a
base case.

Each test performed a total of 10,000 insertions and dele-
tions, divided evenly between all processes. We varied
the number of processors from 1 to 16 and the number of
processes per processor from 1 to 3. We also controlled
the rate of access to the list by each process by doing lo-
cal “work” between the insertion and deletion. The work
varied from 20 to 2000 cycles.

These simulations indicate that the Cache Kernel
DCAS algorithms perform as well or better than CAS
or spin locks.

Figure 5 shows the performance with 1 process per
processor, and minimal work between updates. The ba-
sic cost of 10,000 updates is shown at N = 1, where
all accesses are serialized and there is no synchroniza-
tion contention or bus contention. At N = 1, cache
contention due to collisions is small, the hit rate in the
cache was over 99% in all algorithms. At more than one
processor, even assuming no synchronization contention
and no bus contention, completion time is significantly
larger because the objects must migrate from the cache
of one processor to another. When processes/processor
= 1 no processes are preempted. In this case the differ-
ence between the non-concurrent algorithmsis simply the
bus contention and the fixed overhead because we are not
modelling page faults. All degrade comparably, although
DCAS/A&F suffers from bus-contention on the count of
active threads. The Valois algorithm using CAS exploits
concurrency as the number of processors increase but the
overhead is large relative to the simpler algorithms. The
bus and memory contention are so much greater that the

6It was necessary to derive our own version of the algorithm, as the
algorithm presented in [24] is not strictly correct. This is the natural
result of the complicated contortions necessary when using only CAS.
The DCAS algorithm is relatively straightforward.



Work=20 cycles

0E+0

5E+6

1E+7

2E+7

2E+7

3E+7

3E+7

1 3 5 7 9 11 13 15

Processors

C
yc

le
s

DCAS/A&F DCAS/Cload
SpinLock CAS

Figure 5: Performance of several synchronization algo-
rithms with local work = 20 and the number of processes
per processor = 1

concurrency does not gain enough to offset the loss due to
overhead. Further, synchronization contention causes the
deletion of auxiliary nodes to fail, so the number of nodes
traversed increases with a larger number of processes7 .
Our DCAS algorithm performs substantially better than
CAS, even with concurrency.

Figure 6 displays the results from reducing the rate
of access and interleaving list accesses in parallel with
the local work. Insertion/delete pairs appear to take 400
cycles with no cache interference so adding 2000 cycles
of “local work” lets even the non-concurrent algorithms
use about 4 or 5 processors concurrently to do useful
work in parallel. Beyond that number of processors, the
accesses to the list are serialized, and completion time
is dominated by the time to do 10,000 insertion/deletion
pairs. DCAS with either form of contention control per-
forms comparably to spin-locks in the case of no delays
and performance is significantlybetter than the CAS-only
algorithm.

Figure 7 shows the results when 3 processes run on each
processor. In this scenario, processes can be preempted
— possibly while holding a lock. As is expected, spin-
locks are non-competitive once delays are introduced. In

7The Valois simulation in Michael and Scott [18] reports better
asymptotic behavior than we do. The difference appears because the
authors are only simulating a FIFO queue. In the FIFO queue algorithm
– where insertion always occurs at the tail and deletion at the head
– auxiliary nodes are not traversed in general and thus don’t affect
completion time. In fully general lists auxiliary nodes increase the
execution time and memory traffic.

Work=2000 cycles

0E+0

1E+7

2E+7

3E+7

4E+7

5E+7

6E+7

1 3 5 7 9 11 13 15
Processors

C
yc

le
s

Figure 6: Performance of several synchronization algo-
rithms with local work = 2000 and the number of pro-
cesses per processor = 1

contrast, the non-blocking algorithms are only slightly
affected by the preemption. The completion time of CAS
is mostly unaffected, however the variance (not shown
in the figures) increases due to reference counts held by
preempted processes delaying the deletion of nodes —
when a process resumes after a delay, it can spend time
releasing hundreds of nodes to the free list. These results
also indicate how hardware advisory locking performs
compared to operating system support in the style of
Allemany and Felten. In the normal case, the lockholder
experiences no delays and the waiters are notified im-
mediately when the advisory lock is released. However,
when a process is preempted, the waiters are not noti-
fied. When the waiter has backed off beyond a certain
maximum threshold, it uses a normal Load rather than
a Cload and no longer waits for the lock-holder. With
a large number of processes, the occasional occurence of
this (bounded) delay enables DCAS/A&F to outperform
the cache-based advisory locking. However, the expected
behavior of the Cache Kernel is for the waiters to be on
the same processor as the lock-holder (either signal han-
dlers or local context switch). In this case, the advisory
lock does not prevent the waiter from making progress.
Therefore, there is no advantage to the operating system
notification and the lower overhead of advisory locking
makes it preferable.

Overall, DCAS performs comparably to, or better than,
spin locks and CAS algorithms. Moreover, the code is
considerably simpler than the CAS algorithm of Valois.

In these simulations, the number of processors access-
ing a single data structure is far higher than would occur
under real loads and the rate of access to the shared data
structure is far higher than one would expect on a real sys-
tem. As previously noted, contention levels such as these
are indicative of a poorly designed system and would



Work=2000 cycles, 3 procs/processor

0.0E+0

2.0E+7

4.0E+7

6.0E+7

8.0E+7

1.0E+8

1.2E+8

1.4E+8

1 3 5 7 9 11 13 15
Processors

C
yc

le
s

Figure 7: Performance of several synchronization algo-
rithms with local work = 2000 and the number of pro-
cesses per processor = 3

have caused us to redesign this data structure. However,
they do indicate that our techniques handle stress well.

7.3 Overall System Performance
We do not have the ideal measurements to show the ben-
efit of non-blocking synchronization for overall system
performance. However, in other work [25], system per-
formance has been shown to benefit considerably from
the ability to execute code in signal handlers as exploited
extensively by the Cache Kernel object-oriented remote
procedure call system. This system allows restricted pro-
cedures, namely those that do not block, to be executed di-
rectly as part of the signal handler invocation that handles
a new call. With this optimization, many performance-
critical RPCs can be invoked directly in the signal han-
dler without the overhead of allocating and dispatching a
separate thread to execute the RPC. Our measurements,
reported in the cited paper, indicate a significant savings
from this optimization, particularly for short-execution
calls that are common to operating system services and
simulations.

8 Related Work

Previous work has explored lock-free operating systems
implementations, general techniques for wait-free con-
current data structures, and hardware and operating sys-
tem support for non-blocking synchronization.

8.1 Lock-Free Operating Systems
Massalin and Pu [17] describe the lock-free (non-
blocking) implementation of the Synthesis V.1 multipro-
cessor kernel, using just CAS and DCAS, the same as our
work. Their work supports our contention that DCAS
is sufficient for the practical implementation of large

systems using non-blocking synchronization. However,
their work focused on using a small number of wait-free
and lock-free data structures inside their operating sys-
tem kernel. One reason their work has not been further
emulated is their exploitation of application-specific op-
timizations to implement data structures. One example
is their implementation of linked list with insertion and
deletion from the middle of the list: it is efficient only
because the usage within the Synthesis kernel is highly
constrained and a single bit suffices where a reference
count is normally needed. In contrast, our implementa-
tion of linked lists is general, and is usable by arbitrary
application code.

8.2 Methodologies for Implementing Con-
current Data Objects

Herlihy [14] presents a methodology for converting se-
quential implementations of data structures into wait-free
concurrent implementations. The goal is to provide a
specification and transformation that is provably correct
and can be applied automatically to sequential code. It
converts a sequential implementation of any data struc-
ture into a wait-free, concurrent one, just using CAS
(or, slightly more efficiently [14] using load-linked
and store-conditional). However, this method
involves copying the entire data structure, modifying the
copy, and then atomically replacing the old copy with
the new copy using CAS, and retrying the entire copy
and modifying if there is a conflict. Performance can
be improved using other, more ad-hoc, techniques [14],
but these techniques tend to add hard-to-catch subtle syn-
chronization problems and are still expensive. Overall,
we regard this approach as impractically expensive be-
cause of the copy overhead.

In contrast, our contribution is a set of general tech-
niques that the programmer incorporates in the software
design and implementation, allowing the software to be
used in both sequential and parallel execution with no
modification and with acceptable performance.

Barnes [3], Turek [23], and Valois [24] provide tech-
niques for increasing the concurrency with some non-
blocking synchronization. However, the cost of concur-
rent updates appears to outweigh the actual benefit, be-
cause the low rates of contention in our system. Studies
such as [22], which also reported a low level of contention
on kernel data structures, suggest that this phenomenon
might be more widely true than just in the Cache Kernel.

8.3 Hardware Support
Most processors provide at
most single Compare-and-Swap (CAS) functional-
ity to support non-blocking synchronization. Herlihy’s
general methodology [13] shows that that single CAS is
adequate in theory but appears too inefficient in practice.



A few processors such as the Motorola 68040 provide
a multi-word atomic instruction but that functionality is
rare and is not present in any RISC processor to our
knowledge. The RISC-like extension that we propose in
Section 6 suggests that it is feasible to support in modern
processors. The CISC approach does not appear viable
with most current and future processors and seems likely
to die out with the current processors that support it.

Transactional Memory [12] provides hardware support
for multiple-address atomic memory operations. It is
more general than DCAS but comes at a correspondingly
higher cost. The proposed hardware implementation re-
quires six new instructions, a second set of caches in the
processor, twice the storage for cache lines actively in-
volved in a transaction, and a more complicated “commit”
protocol. Double LL/SC appears to be a more practical
solution because DCAS functionality is sufficient and
significantly simpler to implement.

Oklahoma Update [21] provides an alternate imple-
mentation of multiple-address atomic memory opera-
tions. Rather than duplicating entire cache lines involved
in transactions (as Transactional Memory does), Okla-
homa Update requires onlya reservation register per word
used in their version of Load Linked. This register
contains flags plus two words (and optionally two more).
This contrasts with our implementation which requires
a “link address retained” register per synchronized word
and a single cache-line buffer for the delayed SCP. Our
design can also work with a word register instead of an en-
tire cache line to buffer the SCP. However, this approach
adds complexity to the chip’s logic, slows down the SC
and increases the time the cache is locked so the sav-
ings are questionable. The Oklahoma Update attempts to
implement some features in hardware (e.g. exponential
backoff) which are better done in software, and which
needlessly increase the complexity and size of the chip.
Also, buffering of certain requests that come in during
the “pre-commit” phase can cause two processors with
non-interfering reservation sets to delay each other8.

These different designs arise because of different as-
sumptions regarding the number of memory locations that
should be atomically updatable at one time. Transactional
Memory paper conjectures between 10 and 100 and Ok-
lahoma Update places the knee at 3 or 4. In general,
more locations are better and more powerful. However,
our implementation at 2 (DCAS) is by far the simplest
extension to existing processor designs. A key contribu-
tion of our work is experience that indicates that DCAS
is sufficient for practical performance, making the extra

8Consider processors P1, P2 and P3. P1 accesses cache lines Y,Z,P2 X,Y, and P3 W,X (addressed in ascending alphabetical order). P1
andP3 should not interact. However, if P1 holds Y and Z andP2 holds
X, then when P2 asks P1 for Y, P2 stalls, and buffers P3’s request for
X. Thus, P1 delays P3. Longer chains can be constructed.

hardware complexity of the other schemes unnecessary.

8.4 Operating System Support
Allemany and Felten [1] reduce useless concurrency with
OS support to provide the same functionality that we
support in hardware using cache-based advisory locking.
The method is a variation on the technique of Bershad
discussed in Section 6.1. They propose incrementing a
counter of active threads on entrance to a critical sec-
tion, and decrementing on exit. The OS decrements the
counter while an active thread is switched out. Processes
must wait until the count of active threads is below some
threshold (1, in our case) before being allowed to pro-
ceed. Delayed processes do not excessively delay other
processes because the count is decremented by the OS.

These techniques appear valuable for systems without
hardware support for advisory locking and in fact their
approach works better than ours under high contention.
However, hardware advisory locking and conditional load
are more resilient to processor failure and have lower
overhead in the low-contention case. As with hardware
versus software DCAS, the hardware implementation is
simple and fast; further measurements are required to
determine if it is compellingly so.

In other work, Israeli and Rappaport [15] implement n-
way atomic Compare and Swap and n-way LL/SC
for P processors out of single CAS. However, this ap-
proach is primarily of theoretical interest because it re-
quires a large amount of space (at least P bits for every
word in the shared memory), requires words to be P
bits wide, takes O(P ) to execute, and only interlocks
against other multi-word atomic instructions. Anderson
and Moir [2] improve upon this, requiring only realistic
sized words, O(1) time, but still requiring a prohibitively
large amount of space.

Finally, Software Transactional Memory [19] is
an attempt to implement Transactional Memory in
software, depending only on LL/SC . Unfortunately,
their implementation will not work correctly on ex-
isting implementations of LL/SC because their code
(AcquireOwnerships) depends on the ability to in-
terleave two outstandingLL/SC’s simultaneously, which
is not supported. The LLP/SCP instructions we proposed
would enable their techniques to be used to provide soft-
ware transactional memory for multiple, independently
chosen, words of memory. However, the space and com-
putational overhead in their implementation is excessive
for general use9. Moreover, the STM operations are only
atomic with respect to other STM operations, and not to
general reads and writes.

9Their scheme requires twice the memory for every possibly shared
location and extra overhead of at least a factor of three for reads and
writes even in the case of no contention.



9 Concluding Remarks

Our experience suggests that there is a powerful syn-
ergy between non-blocking synchronization and several
good structuring techniques for the design and implemen-
tation of an operating system and supporting run-time
libraries. Non-blocking synchronization significantly re-
duces the complexity and improves the performance of
software in the signal-rich environment implemented by
the Cache Kernel and supporting class libraries. More-
over, the structuring techniques we have used to achieve
our overall system design goals facilitate implementing
non-blocking synchronization. The biggest problem has
been inadequate performance of the non-blocking syn-
chronization instructions.

This work makes several contributions. First, we show
that careful design and implementation of operating sys-
tem software for efficiency, reliability and modularity
makes implementing simple, efficient non-blocking syn-
chronization far easier. In particular, type-stable mem-
ory (TSM), contention-minimizing data structuring and
minimal inconsistency window structuring are impor-
tant for all these reasons. These techniques are bene-
ficial even with blocking synchronization and yet sig-
nificantly reduce the complexity and improve the per-
formance of non-blocking synchronization. Conversely,
non-blocking synchronization has significant advantages
in the signal-centric design of the Cache Kernel and its
associated libraries, especially with the large amount of
conventional operating system functionality that is im-
plemented at the library, rather than kernel, level.

Second, we describe a number of techniques for imple-
menting non-blocking synchronization using TSM, ver-
sion numbers and DCAS. These techniques are simple
to write, read, and understand, and perform well. in
contrast to the CAS Our experience suggests that good
DCAS support is sufficient for a practical non-blocking
OS and run-time system implementation, and that single
CAS is not sufficient. In fact, lack of efficient DCAS
support in systems is a potential impediment to using our
techniques.

Fortunately, our proposed hardware implementation
indicates that it is feasible to implement efficient DCAS
functionality in a modern processor with minimal addi-
tional complexity and full compatibility with the load-
store architecture. The conditional load capability cou-
pled to cache-based advisory locking further improves
the hardware support, providing the advantages of lock-
ing in a lock-free implementation. The existence of soft-
ware implementations of DCAS and contention reduc-
tion demonstrates that our approach is reasonable even
on platforms lacking hardware support.

Efficiently supported DCAS would allow fully-
synchronized standard libraries and operating system

software to be portable across multiprocessors and
uniprocessors without extra overhead or code compli-
cation. It would allow parallel architectures to use soft-
ware developed for uniprocessors, relying on the (non-
blocking) synchronization required for signals to han-
dle serialization in the parallel processing context. This
would significantly reduce the software bottleneck that
has slowed the deployment of parallel processing to date.

Further work is required to evaluate the merits of hard-
ware support for DCAS versus various software alterna-
tives, particularly for overall system performance. Fur-
ther work is also required to validate our experience that
DCAS is in fact adequate in practice. However, our
experience to date convinces us that the non-blocking ap-
proach is an attractive and practical way to structure op-
erating system software. Locks will become more prob-
lematic as signals are used more extensively in libraries,
synchronization becomes finer grained, and as the cost
of memory delays and descheduling become even higher
relative to processor speed. We hope our work encour-
ages additional efforts in this area.

References

[1] J. Allemany and E.W.Felton, Performance issues
in non-blocking synchronization on shared mem-
ory multiprocessors. Proceedings of the 11th An-
nual ACM Symposium on Principles of Distributed
Computing, pp 125-134, August 1992.

[2] J.H. Anderson and M. Moir, Universal Construc-
tions for Multi-Object Operations, Proceedings of
the 14th Annual ACM Symposium on Principles of
Distributed Computing, Ottawa, Ont. Canada, pp
184-193, August 20-23, 1995

[3] G. Barnes, A Method for Implementing Lock-Free
Shared Data Structures Proceedings of the 5th ACM
Symposium on Parallel Algorithms and Architec-
tures 1993

[4] B.N. Bershad, Practical considerations for non-
blocking concurrent objects. Proceedings 13th
IEEE International Conference on Distributed
Computing Systems, Los Alamitos CA, IEEE Com-
puter Society Press, pp 264-273, May 25-28, 1993.

[5] E.A. Brewer, C.N. Dellarocas, A. Colbrook, and
W.E. Weihl, “PROTEUS: A High-Performance
Parallel-Architecture Simulator”, Technical Report
MIT/LCS/TR-516, MIT Laboratory for Computer
Science, September 1991.

[6] D.R. Cheriton, The V Distributed System. Commu-
nications of the ACM, 31(3), pp 314-333, March
1988



[7] D.R. Cheriton and K. Duda. A Caching Model of
Operating System Kernel Functionality. Proceed-
ings of 1st Symposium on Operation Systems Design
and Implementation, Monterey, CA, pp 179-193,
Nov 14-17, 1994.

[8] D.R. Cheriton, H. Goosen, and P. Boyle,
ParaDiGM: A highly scalable shared-memory
multi-computer architecture. IEEE Computer,
24(2), February 1991.

[9] D.R. Cheriton and R. Kutter. Optimizing memory-
based messaging for scalable shared memory multi-
processor architectures. To appear in USENIX Com-
puter Systems Journal 1996. (available as Stanford
Computer Science Technical Report CS-93-123,
December 1993.)

[10] D.R. Cheriton, H. Goosen, and P. Machanick, Re-
structuring a Parallel Simulation to Improve Cache
Behavior in a Shared-Memory Multiprocessor: A
First Experience. In Proceedings of the Interna-
tional Symposium on Shared Memory Multiprocess-
ing, pp 23-31, Tokyo, April 1991.

[11] Joseph Heinrich. MIPS R4000 User’s Manual, PTR
Prentice Hall, Englewood Cliffs NJ, 1993

[12] M.P. Herlihy and J.E.B. Moss. Transactional Mem-
ory: Architectural support for lock-free data struc-
tures. 1993 20th Annual Symposium on Computer
Architecture San Diego, Calif. pp. 289-301. May
1993.

[13] M. P. Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and Sys-
tems, 13(1), pp 123-149, January, 1991

[14] M. Herlihy. A Methodology for Implementing
Highly Concurrent Data Objects ACM Transactions
on Programming Languages and Systems, 15(5),
745-770, November, 1993

[15] A. Israeli and L. Rappaport, Disjoint-Access-
Parallel Implementations of Strong Shared Memory
Primitives, Proceedings of the 13th Annual ACM
Symposium on Principles of Distributed Comput-
ing, Los Angeles, CA, pp 151-160, August 14-17,
1994

[16] A. Israeli and L. Rappaport, Efficient wait-free im-
plementation of a concurrent priority queue 7th Intl
Workshop on Distributed Algorithms ’93,Lausanne,
Switzerland, Lecture Notes in Computer Science
725, Springer Verlag, pp 1-17, Sept. 1993

[17] H. Massalin and C. Pu. A lock-free multiprocessor
OS kernel. Technical Report CUCS-005-01, Com-
puter Science Department, Columbia University,
October 1991.

[18] M. Michael and M. Scott, Simple, Fast, and Practi-
cal Non-Blocking and Blocking Concurrent Queue
Algorithms”, Proceedings of the 15th Annual ACM
Symposium on Principles of Distributed Comput-
ing, Philadelphia, PA, pp 267-276, May 1996.

[19] N. Shavit and D. Tovitov, Software Transactional
Memory, Proceedings of the 14th Annual ACM Sym-
posium on Principles of Distributed Computing, Ot-
tawa, Ont. Canada, pp 204-213, August 20-23, 1995

[20] R. Sites, ed., DEC Alpha Architecture, Digital
Press, Burlington, Mass. 1992

[21] J. Stone, H. Stone, P. Heidelbergher, and J. Turek.
Multiple Reservations and the Oklahoma Update.
IEEE Parallel and Distributed Technology, vol 1,
no.4, pp 58-71, November, 1993

[22] J. Torrellas, A. Gupta, and J. Hennessy. Characteriz-
ing the Caching and Synchronization Performance
of a Multiprocessor Operating System. In Fifth In-
ternational Conference on Architectural Support for
Programminlg Languages and Operating Systems,
pp 162-174, October 1992

[23] J. Turek, D. Shasha and S. Prakash. Locking with-
out blocking: Making Lock-Based Concurrent Data
Structure Algorithms Non-Blocking. Proceedings
of the 1992 Principles of Database Systems pp 212-
222, 1992.

[24] J. Valois, Lock-Free Linked Lists Using Compare-
and-Swap, Proceedings of the 14th Annual ACM
Symposium on Principles of Distributed Comput-
ing, Ottawa, Ont. Canada, pp 214-222, August 20-
23, 1995

[25] M. Zelesko and D. R. Cheriton, Specializing Object
Oriented RPC for Functionality and Performance,
Proceedings 16th IEEE International Conference
on DistributedComputingSystems, IEEE Computer
Society Press, May 27-30, 1996.

[26] M68000 Family Programmer’s Reference Manual,
Motorola, Inc. 1989

[27] PowerPC 601 RISC Mircroprocessor User’s Man-
ual, Motorola Inc, 1993


