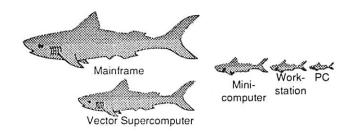
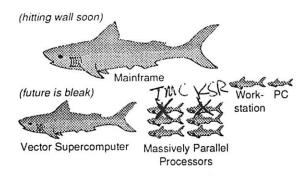
A Case for Networks of Workstations (NOW)

Tom Anderson, David Culler, Dave Patterson *et al*


Computer Science Division
EECS Department
University of California, Berkeley

NOW 1

Original Food Chain Picture


1984 Computer Food Chain

NOW 3

1994 Computer Food Chain

MPP: A Near Miss

⇒near commodity procs,DRAMs, boards => delayed shipment:

```
≅ MPP
                             =WS
          Proc
                       Year
 ≅ T3D
          150 MHz Alpha =93/94 =92/93
 ≅ Paragon 50 MHz i860
                       ≘92/93 ≘91
                       ≘91/92 ≘89/90
 ≅ CM-5
          32 MHz SS-2
proc perf. improves 50% / yr (4%/month)
  1 year lag:WS = 1.50 MPP node perf.
  2 year lag:WS = 2.25 MPP node perf.
No economy of scale in 100s
                                 => +$
SW incompatibility (OS & apps) => +$$$$
```

NOW 5

Volume vs. Cost/Price

Rule of thumb on applying learning curve to Manufacturing:

∍When volume doubles, costs reduce 10%

A DEC View of Computer Engineering by C. G. Bell, J. C. Mudge, and J. E. McNamara, Digital Press, Bedford, MA., 1978.

=> Costs should be 1/2 when volume is 64X

e.g., 64X = 26 => 90% x 90% x 90% x 90% x 90% x 90% = 0.53 x Cost

MPPs more expensive to develop than WS or networks yet amortized over fewer machines => Price multiplier over costs >> for MPPs to recover high development costs over few machines

Moreover, Software costs >> Hardware costs

1990s Building Blocks

There is no ∋near commodity component

Building block = complete computers
(HW & SW) shipped in 100,000s:

Killer micro, Killer DRAM, Killer disk,

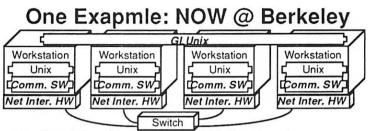
Killer OS, Killer packaging, Killer investment

≥ Leverage billion \$ per year investment

Interconnecting Building Blocks => Killer Net

- ≅ High Bandwidth
- ≅ Reliable
- ≅ Commodity (ATM?)

NOW 7


Why NOW now? (Beyond technology and cost)

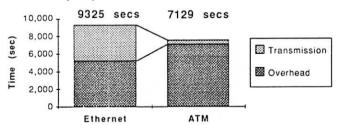
Building block is big enough (v. Intel 8086) Networks are faster

- ≅ Higher link bandwidth (v. 10 Mbit Ethernet)
- ≅ Switch based networks coming (ATM)
- ≅ New simple & fast paradigm for net. Interfaces (Active Msgs)

Striped files preferred (RAID)

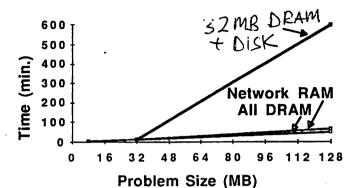
Demise of mainframes, supercomputers, & MPPs

Design & Implementation of higher-level system


- ≅ Global OS (Glunix)
- ≅ Parallel File Systems (xFS)
- ≅ Fast Communication (Low overhead HW for Active Messages)

NOW Goal: Faster for Sequential (and Parallel)

NOW 9


Importance of Overhead (and Latency)

NFS trace over 1 week: 95% msgs < 200 bytes Ethernet: 9 Mb/s BW, 456 secs overhead ATM Synoptics: 78 Mbit/s BW, 626 secs ovhd.

Bandwidth MIPS for processors; misleading? (625 sec overhead ATM vs. 155 Mb/s BW ATM)

Network RAM simulation

1.1X to 1.3X slower v. all DRAM: => Virtual Memory is reborn (4X to 9X faster v. DRAM+disk)

NOW 11

3 Paths for Applications on NOW?

- · Revolutionary (MPP Style): write new programs from scratch using MPP languages, compilers, libraries, ...
- · Porting: port programs from mainframes, supercomputers, MPPs, ...
- Evolutionary: take sequential program & use

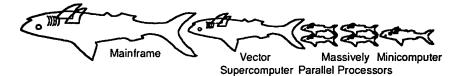
increasing difficulty

- 1) Network RAM: first use memory of many computers to reduce disk accesses; if not fast enough, then:
- programming 2) Parallel I/O: use many disks in parallel for accesses not in file cache; if not fast enough, then:
 - 3) Parallel program: change program until it uses enough processors that it is fast
 - => Large speedup without fine grain parallel program => Enabling new parallel programs without MPP cost

Pitfalls for NOWs

- · Design NOW to only help parallel programs
 - Few applications are parallel => hard to justify fast NOW
 - Many large programs just need memory and disk BW
- Rewrite/Modify WS operating system for NOW
 - New HW waits for OS port => lower performance
 - Leverage of OS improvements by vendors?
- Custom Network Interface per WS for NOWs
 - New HW waits for NI => lower performance
 - OK for now research; NOW success => commercially available, low NI as soon as next WS announced
- Serial file system
 - can't take advantage of 100s of parallel disks

NOW 13


Research Focus at New Level

- "Higher Order" Systems Research: building on top of other systems vs. bottom-up
 - Must avoid time lag: neither HW nor OS can delay putting new machines to use
 - NOW is one example
- Advantages:
 - + easier to track technological advances
 - + less development time
 - + easier to transfer technology (reduce lag)
- New challenges:
 - maintaining performance goals
 - system is changing underneath you
 - underlying system has other people's bugs
 - underlying system is poorly documented

Conclusion

- · Technologies aligned to exploit NOW now
 - 32-bit µprocessors, switch based LANs, active messages, striped files, file caches, process migration
- 1990s building block is desktop HW&SW
 - Need higher-level system research use building blocks: stand on shoulders, not toes
 - Challenges for NOW: Leveraging technology yet add low overhead user communication, global OS, parallel file system
- Comparative Value of Metrics:
 Network Bandwidth = MPP MFLOPS?
- · Goal: Make sequential users happy NOW

NOW 15

2004 Computer Food Chain

Networks of Workstations