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VHF Free–Free Beam High-Q
Micromechanical Resonators
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Abstract—Free–free-beam flexural-mode micromechanical
resonators utilizing nonintrusive supports to achieve measured

s as high as 8400 at VHF frequencies from 30 to 90 MHz are
demonstrated in a polysilicon surface micromachining tech-
nology. The microresonators feature torsional-mode support
springs that effectively isolate the resonator beam from its
anchors via quarter-wavelength impedance transformations,
minimizing anchor dissipation and allowing these resonators
to achieve high- with high stiffness in the VHF frequency
range. The free–free-beam micromechanical resonators of this
paper are shown to have an order of magnitude higher than
clamped–clamped-beam versions with comparable stiffnesses.
[499]

Index Terms—Anchor loss, electromechanical coupling, IF
filter, MEMS, microelectromechanical devices, motional resis-
tance, quality factor, resonator, VHF.

NOMENCLATURE

Transmission gain measured on a network ana-
lyzer.
Measurement circuit bias-tee capacitor.
Resonator beam thickness.
Electrode-to-resonator gap spacing at location
along the resonator beam length.
Initial electrode-to-resonator gap spacing before
pull-down.
Young’s modulus of elasticity.
Permittivity in vacuum (= 8.854 10 F/m).
Resonance frequency of a mechanical resonator
with no electromechanical coupling.
Resonance frequency of a mechanical resonator
including electromechanical coupling.
Shear modulus of elasticity.
Torsion constant.
Bending moment of inertia (resonator beam).
Motional current.
Motional current magnitude.
Polar moment of inertia (support beam).
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Shear-deflection coefficient.
Electrical stiffness arising from electromechanical
coupling.
Peak total kinetic energy.
Electrical-to-mechanical stiffness ratio integrated
over the electrode width.
-direction equivalent stiffness of a resonator beam

at location along its length.
-direction mechanical stiffness at locationof a

resonator beam with V.
Combined -direction stiffness of all supporting
beams.
Lower electrode edge location.
Upper electrode edge location.
Measurement circuit bias-tee inductor.
Resonator beam length.
Support beam length.
Equivalent mass of a resonator beam at location

along its length.
Poisson’s ratio.
Density.
Unloaded quality factor.
Loaded quality factor.
Transresistance amplifier gain.
Measurement load resistance.
Parasitic interconnect resistance.

-direction series motional resistance.
-direction series motional resistance.

Input voltage.
Input voltage magnitude.
Velocity at location of a resonator beam.
Catastrophic pull-in voltage.
Dimple-down pull-in voltage.
Resonator dc-bias voltage.
Output voltage developed across .

in radians/seconds.
in radians/seconds.

Electrode width.
Resonator beam width.
Support beam width.
Frequency modification fitting factor.
Mode shape function.

I. INTRODUCTION

V IBRATING beam micromechanical (or “mechanical”)
resonators constructed in a variety of materials, from

poly-crystalline silicon to plated-nickel, have recently emerged

1057–7157/00$10.00 © 2000 IEEE
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as potential candidates for use in a variety of frequency-selec-
tive communications applications [1]. In particular, provided
the needed VHF and UHF ranges can be attained, both low
loss IF and RF filters and high- oscillators stand to benefit
from the tiny size, virtually zero dc power consumption, and
integrability of such devices. To be useful for direct insertion
into present-day cellular and cordless phone applications,

mechanical resonators used in IF filters must be capable of
operating at frequencies from 70 to 250 MHz, while those
aimed at RF filters must attain a range from 800 MHz to 1.8
GHz.

To date, due to the relative ease with which they attain large
stiffness-to-mass ratios, clamped–clamped beammechanical
resonators have been intensively investigated for VHF range
applications [2]–[4]. The ability to simultaneously achieve
high- and high stiffness is paramount forcapacitively driven
communications-grade resonators since stiffness directly
influences the dynamic range of circuits comprised of such res-
onators [5], [6]. In particular, for a flexural modemechanical
resonator using a parallel-plate capacitive transducer, the higher
the stiffness, the higher the dynamic range for the common case
where third-order intermodulation distortion dominates. The
reasons for this are detailed more extensively in [5] and [6], but
a heuristic understanding arises from the recognition that VHF
range flexural-mode beams with lengths from 10 to 30m
and electrode-to-resonator gap spacings from 400 to 1000 Å,
typically operate with peak displacements on the order of only
10–20 Å. At these amplitudes, capacitive (rather than material)
nonlinearity is responsible for generation of third-order inter-
modulation distortion. Thus, for a given electrode-to-resonator
gap spacing, distortion can be reduced by increasing the beam
stiffness since this reduces the displacement amplitudes caused
by out-of-band (off-resonance) interferers faster than it does the
in-band electrical output level (when capacitive transduction is
utilized).

However, for the case of clamped–clamped beam designs,
larger stiffness often comes at the cost of increased anchor
dissipation and, thus, lower resonator. Thus, to date, the
highest s 20 000) for VHF mechanical resonators have
been achieved using submicrometer technologies to scale
dimensions (and masses) down to the point where the required
stiffnesses are small [3]. Unfortunately, although theirs are
impressive, the stiffnesses of these resonators are too small to
achieve adequate dynamic range and power-handling ability
for most communications applications, where large adjacent
channel interferers must often be suppressed.

This paper attempts to address the above problems by
retaining the basic flexural-mode beam design of previous
resonators, but strategically altering their supports so that
anchors and their associated losses are virtually eliminated
from the design. With anchor losses suppressed, high-stiffness
VHF resonator beams can now be utilized, with dynamic
ranges more applicable to communications applications. Using
this approach, free–free beammechanical resonators are
demonstrated with center frequencies from 30 to 90 MHz,
stiffnesses from 30 000 to 80 000 N/m, ands as high as 8400.

This paper begins with a general description of free–free
beam mechanical structure and operation in Section II,

followed by design details in Section III. Fabrication and exper-
imental results then follow in Sections IV and V, respectively.
The paper then concludes with brief comments on the ultimate
frequency range of this free–free beam design.

II. RESONATORSTRUCTURE AND OPERATION

Fig. 1 presents several schematics describing the free–free
beam resonator of this paper, including a perspective view
indicating key features and specifying a preferred electrical
readout scheme, an overhead layout view identifying key
dimensions, and a mode shape schematic generated via fi-
nite-element simulation. As shown, this device is comprised of
a free–free mechanical beam supported at its flexural node
points by four torsional beams, each of which is anchored to
the substrate by rigid contact anchors. An electrode is provided
underneath the free–free beam to allow electrostatic excitation
via an applied ac voltage . The electrical operation of this
structure is very similar to that of previous clamped–clamped
beam resonators [6]–[9], in that a dc-bias voltageapplied
to the resonator structure is required to amplify-derived
force components at the frequency of, and the detected
output current is generated by the action of across the
time-varying (at resonance) electrode-to-resonator capacitor

: . Note that, unlike many of its
two-port predecessors, this device is a one-port device, so its
output current must be taken directly off the resonator struc-
ture [9]. To allow sensing of the output current from the
resonator structure while also applying the dc-bias, a bias
tee consisting of the inductor and coupling capacitor is
utilized. represents the load presented by the measurement
instrument—most often the 50 seen into the sense port of a
network analyzer.

The torsional support beams for this device are strategi-
cally designed with quarter-wavelength dimensions, so as to
affect an impedance transformation that isolates the free–free
beam from the rigid anchors. Ideally, the free–free beam
sees zero-impedance into its supports and, thus, effectively
operates as if levitated without any supports. As a result, anchor
dissipation mechanisms found in previous clamped–clamped
beam resonators are greatly suppressed, allowing much higher
device .

As an additional yield-and -enhancing feature, the trans-
ducer capacitor gap spacing in this device is no longer en-
tirely determined via a thin sacrificial oxide, as was done
(with difficulty) in previous clamped–clamped beam high-fre-
quency devices [1], [4]. Rather, the capacitor gap is now de-
termined by the height of a dimple, set via a timed etch.
As shown in Fig. 2, the height of the dimple is such that
when a sufficiently large dc-bias is applied between the
electrode and resonator, the whole structure comes down and
rests upon the dimples, which are located at flexural node
points and, thus, ideally have little impact on resonator op-
eration. The advantages of using dimples to set the capacitor
gap spacings are twofold: 1) much thicker sacrificial oxide
spacers can now be used, alleviating previous problems due
to pinholes and nonuniformity in ultra-thin sacrificial layers
and 2) the thicker sacrificial oxide is easier to remove than
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Fig. 1. (a) Perspective view schematic of the free–free beam resonator with nonintrusive supports, explicitly indicating important features and specifying a typical
bias, excitation, and off-chip output sensing configuration. (b) Overhead layout view, indicating dimensions to be used in later analyses. (c) The mode shape of the
resonator obtained via finite-element simulation using ANSYS.

Fig. 2. Cross sections (alongAA in Fig. 1) summarizing the electrostatically
activated capacitor gap feature of this design. (a) Immediately after fabrication.
(b) After application of an appropriately sized dc-bias voltageV > V .

previous thinner ones and, thus, decreases the required HF re-
lease etch time and lessens the chance that etch byproducts
remain in the gap (where they might interfere with resonator
operation and [1], [4]).

III. FREE–FREE BEAM MICRORESONATORDESIGN

Proper design of the free–free beammechanical resonator
entails not only the selection of geometries that yield a given
frequency, but also geometries that insure support isolation that
guarantee the beam does not pull into the electrode once pulled
down on its dimples by , and that suppress spurious modes
associated with the more complicated support network. Each of
these topics is now addressed.

A. Resonance Frequency Design for an Uncoupled Beam:
Euler–Bernoulli Versus Timoshenko Methods

For most practical designs, the resonator beam widthis
governed by transducer and length-to-width ratio design con-
siderations, while its thickness is determined primarily by
process constraints. Almost by default then, the lengthbe-
comes the main variable with which to set the overall resonance
frequency. For the case of large -to- and -to- ratios,
the popular Euler–Bernoulli equation for the fundamental mode
frequency of a free–free beam suffices. For a narrow free–free
or clamped–clamped beam with uniform cross section in the ab-
sence of electromechanical coupling, the Euler–Bernoulli equa-
tion for resonance frequency in the-direction is [12]

(1)

where and are the Young’s modulus and density of the struc-
tural material, respectively, andand are indicated in Fig. 1.

Equation (1) constitutes a convenient closed-form relation
that works well for low-frequency designs, where beam lengths
are much larger than their thicknesses. For upper VHF designs,
for which beam lengths begin to approach their thickness di-
mensions, the Euler–Bernoulli equation is no longer accurate
since it ignores shear displacements and rotary inertias. To ob-
tain accurate beam lengths for upper VHFmechanical res-
onators, the design procedure by Timoshenko is more appro-
priate [13], involving the simultaneous solution of the coupled
equations

(2)
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(3)

where

and (4)

and where is the bending moment of inertia, is the shear
modulus of elasticity, is Poisson’s ratio, is the shear-deflec-
tion coefficient (for a rectangular cross section,is 2/3), is
the slope due to bending, and axis definitions are provided in
Fig. 1.

For a free–free beam with uniform cross section, again, sans
any electromechanical coupling, (2)–(4) yield the following
equation that can be solved for the fundamental resonance
frequency [14]:

(5)

where

(6)

and

(7)

For comparative purposes in Section V, the Timoshenko for-
mulation for clamped–clamped beams will also be needed. For a
clamped–clamped beam with uniform cross section and without
any electromechanical coupling, the equation governing the fun-
damental resonance frequency becomes [14]

(8)

B. Frequency Perturbations Due to Electromechanical
Coupling

As stated in the above discussion, (1) and (5) constitute
frequency equations for a free–free beam resonator without
electromechanical coupling. To allow electrical access to its
frequency characteristics, the device of Fig. 1 features an input
electrode that provides capacitive electromechanical coupling
when appropriate dc bias and ac excitation voltages are applied.
However, because the electrode-to-resonator capacitance is a
nonlinear function of beam displacement, the addition of such
capacitive electromechanical coupling can also significantly
perturb the resonance frequency of the device. Specifically,

-derived electric fields in the electrode-to-resonator capaci-
tive gap of a vibrating beam generate a force in quadrature with
the input force. The effect of this quadrature force component
can be modeled by an electrical stiffness, which combines
with the mechanical stiffness of the beam to establish the
resonance frequency of the beam in the presence of capacitive
electromechanical coupling. As described in previous literature

[6]–[9], the electrical stiffness varies with the dc-bias voltage
, making the resonance frequency also a function of.
Among equations for frequency versus proposed in pre-

vious literature [6]–[9], the ones in [6] and [8] best match the ex-
perimental data of this paper. Of these two, the expression from
[6] not only yields a slightly better match to measurements, but
also greatly reduces the required computation time. For these
reasons, this paper uses the expression from [6], which for con-
venience and later use is repeated as

(9)

where the variable now represents the resonance frequency
including electromechanical coupling, and and are
the effective stiffness (including adjustments due to external
coupling) and mass [5], [6], respectively, at any locationon
the resonator beam, indicated in Fig. 3,is a fitting parameter
that accounts for beam topography and finite elasticity in the
anchors [6], [10], [11], and is themechanicalstiffness
of the resonator at location, similar to , but this time,
for the special case when V (i.e., no electromechanical
coupling) and given by

(10)

where is the resonance frequency of the free–free beam
sans electromechanical coupling, obtained from (1) or (5).
In (9), is a parameter representing the combined
electrical-to-mechanical stiffness ratios integrated over the
electrode width , and satisfying the relation [6]

(11)

where is the permittivity in vacuum, is the electrode-to-
resonator gap spacing, which varies as a function of location

along the length of the beam due to -derived forces that
statically deflect the simply supported (by dimples) beam (cf.
Fig. 3) [6], [8], and
for a centered electrode, and all other geometric variables are
given in Figs. 1 and 3.

The location dependences of the mass and stiffness
in the above equations derive from the velocity depen-

dence of these quantities and, thus, are direct functions of the
free–free beam’s resonance mode shape, shown in Fig. 1(c).
Equations for these quantities can be obtained as modifications
of a previous analysis [6] and are as follows:

(12)

(13)
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Fig. 3. Free–free beam resonator cross-sectional schematic, identifying key
variables used in frequency-pulling and impedance formulations.

where is the peak kinetic energy in the system, is
the velocity at location , dimensional parameters are given in
Figs. 1 and 3, and the mode shape function is

(14)

where

and (15)

and where is the radian resonance frequency, andis the
bending moment of inertia. For the fundamental mode,
is 4.73. Node points are obtained by setting (14) to zero and
solving for .

C. Support Structure Design

As discussed in Section II, the free–free beammechanical
resonator is supported by four torsional beams attached at its
fundamental-mode node points, identified in Fig. 1(c) and spec-
ified via evaluation of (14) and (15). Since they are attached
at node points, the support springs (ideally) sustain no trans-
lational movement during resonator vibration and, thus, sup-
port (i.e., anchor) losses due to translational movements—such
as those sustained by clamped–clamped beam resonators—are
greatly alleviated. Furthermore, with the recognition that the
supporting torsional beams actually behave like acoustic trans-
mission lines at the VHF frequencies of interest, torsional loss
mechanisms can also be negated by strategically choosing sup-
port dimensions so that they present virtually no impedance
to the free–free beam. In particular, by choosing the dimen-
sions of a torsional support beam such that they correspond to
an effective quarter-wavelength of the resonator operating fre-
quency, the solid anchor condition on one side of the support
beam is transformed to a free end condition on the other side,
which connects to the resonator. In terms of impedance, the in-
finite acoustic impedance at the anchors is transformed to zero
impedance at the resonator attachment points. As a result, the
resonator effectively “sees” no supports at all and operates as if
levitated above the substrate, devoid of anchors and their asso-
ciated loss mechanisms.

The above transformation is perhaps more readily seen using
the equivalent acoustic network model for a torsional beam
using the current analogy, where force is the across variable
and velocity is the through variable [15]. In particular, when
the dimensions of a given support beam correspond to an effec-
tive quarter-wavelength of the resonator operation frequency, its
equivalent acoustic network takes the form shown in Fig. 4(b),
where shunt and series arm impedances are modeled by equal
and opposite stiffnesses, and . Given that in this current
analogy mechanical circuit [15], anchoring the beam of Fig. 4(a)

Fig. 4. (a) Quarter-wavelength torsional beam withB side anchoring. (b)
Equivalent acoustic network showing zero impedance at portA with port B
open.

at side corresponds to opening the port of Fig. 4(b), it is
clear by cancellation of the remaining impedances, and

in the circuit of Fig. 4(b), that the impedance seen at
port will be zero.

Through appropriate acoustical network analysis, the dimen-
sions of a torsional beam are found to correspond to a quarter-
wavelength of the operating frequency when they satisfy the ex-
pression [15], [16]

(16)

where the subscript denotes a support beam, is the polar
moment of inertia, given by

(17)

and is the torsion constant [16], given for the case of a rectan-
gular cross section with by

(18)

D. Transducer Design

The value of the electrical series motional resistance
(among other impedance elements) seen looking into the input
electrode of a mechanical resonator is of utmost importance
in both filtering and oscillator applications [5], [6]. As with
previous capacitively transduced clamped–clamped beam

mechanical resonators, parameters such as, , and ,
which directly influence the electrode-to-resonator overlap
capacitance, have a direct bearing on the electrical impedance
seen looking into the input electrode, as does the dc-bias
applied to the resonator. By appropriate impedance analysis,
the expression governing for this capacitively transduced
free–free beammechanical resonator takes on the form [6]

(19)

where and for a
centered electrode.

As discussed in Section II, under normal operation, the
free–free beam resonator must be pulled down onto its
supporting dimples via a dc-bias voltage applied to the
resonator. Only when the dimples are “down” is the elec-
trode-to-resonator gap spacing small enough to provide
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Fig. 5. Free–free�mechanical beam fabrication process flow with cross sections taken alongAA andBB in Fig. 1. (a) Cross sections after sacrificial oxide
deposition and patterning to form anchors and dimple molds. (b) Cross sections after structural polysilicon deposition and patterning. (c) Final cross sections after
structural release.

adequate electromechanical coupling for most applications.
Thus, when designing the device input electrode, careful con-
sideration must be given to not only the input impedance seen
when looking into the electrode, but also to the required to
pull the dimples down. This voltage should be sufficient to
pull the resonator down onto its dimples, yet small enough to
avoid further pull-down of the free–free beam into the electrode
after the dimples are down. Symbolically, the dc-bias voltage

must satisfy the relation

(20)

where is the dimple-down voltage, and is the catastrophic
resonator pull-down voltage.

When pulling the resonator down onto its dimples, since
the supporting beams are often much more compliant than
the free–free resonator beam, very little bending occurs in the
resonator itself. (In particular, for the 70-MHz design of Table I
in Section V, the combined stiffness of the supporting beams
is 534 N/m, which is more than 100smaller than the 57 390
N/m at the midpoint of the free–free resonator beam.) Thus,
the restoring force inhibiting pull-down is uniform over the
electrode, and the expression for the dimple-down voltage
takes on the form [17]

where (21)

where is the combined stiffness of all the supporting beams,
and is the initial electrode-to-resonator gap before the beam
is brought down to its dimples.

Once the dimples are down, further movement of the res-
onator beam toward the electrode is attained via bending of the
resonator itself. The electrode now sees a distributed stiffness

inhibiting pull-down, which now must be integrated over the
electrode area to accurately predict the catastrophic resonator
pull-down voltage . The procedure for determining then
amounts to setting (11) equal to unity and solving for the
variable.

IV. FABRICATION

Fig. 5 summarizes the five-mask polysilicon surface-micro-
machining technology used to fabricate the resonator devices
of this paper. The fabrication sequence begins with isolation
layers formed via successive growth and deposition of 2-m
thermal oxide and 2000 Å LPCVD SiN , respectively, over
a lightly doped p-type, silicon wafer. Next, 3000 Å
of LPCVD polysilicon is deposited at 585C and phospho-
rous-doped via ion implantation, then patterned to form ground
planes and interconnects. An LPCVD sacrificial oxide layer
is then deposited to a thickness dictated by (21), after which
successive masking steps are used to achieve dimples and
anchor openings [cf. Fig. 5(a)]. To insure accurate depths,
dimples are defined via a precisely controlled reactive-ion etch
using a CF chemistry. Anchors, on the other hand, are simply
wet etched in a solution of buffered hydrofluoric acid (BHF).

Next, the structural polysilicon is deposited via LPCVD at
585 C and phosphorous dopants are introduced via ion implan-
tation. A 2000-Å-thick oxide mask is then deposited via LPCVD
at 900 C, after which wafers are annealed for 1 h at 1000C to
relieve stress and distribute dopants. Both the oxide mask and
structural layer are then patterned via SF/O - and Cl -based
RIE etches, respectively [cf. Fig. 5(b)], and structures are then
released via a 5-min etch in 48.8 wt HF [cf. Fig. 5(c)]. Note that
this release etch time is significantly shorter than that required
for previous clamped–clamped beam resonators (1 h) that did
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TABLE I
FREE–FREE BEAM DESIGN AND PERFORMANCESUMMARY

not benefit from dimple-activated gap spacings and, thus, re-
quired sacrificial oxide thicknesses on the order of hundreds of
angstroms [2].

After structural release, aluminum is evaporated and pat-
terned over polysilicon interconnects via liftoff to reduce series
resistance. Fig. 6 presents the scanning electron micrograph
(SEM) of a prototype 71.49-MHz free–free beam flexural-mode

mechanical resonator, indicating various components and
dimensions. An SEM showing the underside of this resonator
(obtained via a fortunate wafer cleaving) is shown in Fig. 7,
where the supporting dimples are clearly seen.

V. EXPERIMENTAL RESULTS

Several free–free beamresonators with frequencies from
30 to 90 MHz and with varying initial gaps and dimple depths
were designed using the methods detailed in Section IV,
then fabricated using the process flow described above and
shown in Fig. 5. In addition to free–free beam resonators,
clamped–clamped versions [2], and even folded-beam,

comb-transduced lateral resonators [18] were included in this
run for comparative purposes. Table I summarizes design
and layout data for four of the free–free beam resonators,
with reference to the parameters and dimensions indicated in
Fig. 1. Table II summarizes two of the clamped–clamped beam

resonators, with reference to dimensions and parameters from
[6].

A custom-built vacuum chamber with printed circuit board
support and electrical feedthroughs allowing coaxial and
dc connections to external instrumentation was utilized to
characterize all resonators. In this apparatus, devices-under-test
were epoxied to a custom-built printed circuit board containing
surface-mounted detection electronics, and data was collected
using an HP 4195A Network/Spectrum Analyzer. A turbo-
molecular pump was used to evacuate the chamber to pressures
on the order of 50 torr (which removes viscous gas damping
mechanisms [20]) before testing devices.

To assess the overall quality of the structural polysilicon de-
posited for this paper, 416 –kHz folded-beammechanical res-
onators were tested first under 50-torr vacuum using a previ-
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TABLE II
CLAMPED–CLAMPED BEAM DESIGN AND PERFORMANCESUMMARY

Fig. 6. SEM of a 71.49-MHz free–free beam�mechanical resonator.

Fig. 7. Underside SEM of a free–free beam design, explicitly showing the
supporting dimples.

ously described transresistance amplifier detection circuit with a
gain of k [21], [22]. Fig. 8 presents the measured
frequency characteristic for a typical one of these resonators,
showing a of only 15 000—much lower than the 50 000 of
previous runs [21], [22], indicating suboptimal polysilicon ma-
terial in this particular run. Although lower than desired, this
still proved sufficient for the present clamped–clamped versus
free–free beam comparison.

For later comparison with the single-beammechanical res-
onators of this paper, it is instructive to obtain a value for the
series motional resistance of this resonator. Pursuant to this,
we first note that the decibel value in the-axis of Fig. 8 cor-
responds to the gain from the input of the test resonator to the
output of the transresistance amplifier, given by

[dB] (22)

where is the impedance of the resonator. Using (22) and the
33-dB peak value, shown in Fig. 8, the of this folded-beam

capacitive-comb-transducedmechanical resonator is found to
be 4.47 M —a typical value for this type of resonator with

V [22].
Clamped–clamped beammechanical resonators using par-

allel-plate capacitive transduction were tested next, again under
a pressure of 50torr, but now without the transresistance am-
plifier, using the more direct detection scheme shown in Fig. 1,
with H, F, and . Note that
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Fig. 8. Measured frequency characteristic for a 415.95-kHz folded-beam
comb-driven�mechanical resonator fabricated in the run used for this paper.

Fig. 9. SEM and measured frequency spectrum for a 54.2-MHz
clamped–clamped beam�mechanical resonator.

Fig. 10. Measured frequency spectrum for a 50.35-MHz free–free beam
�mechanical resonator.

a transresistance amplifier is not needed for this measurement
since the small-gapped parallel-plate capacitive transducers of

these resonators are much stronger than the capacitive-comb
transducer of the previous resonator.

Fig. 9 presents the SEM and measured frequency character-
istic for a 54.2-MHz clamped–clamped beam resonator. The di-
rectly measured of this device, with 180 of interconnect se-
ries resistance included, is . The actual unloaded

of the device can be obtained via

(23)

where can be obtained from the measured frequency spec-
trum to be

(24)

where is the transmission gain in decibels at the peak of the
measured frequency characteristic. (Note that because it is de-
termined from an impedance-mismatched single resonator cir-
cuit, and not from a properly terminated filter structure [6],is
not the same as insertion loss.)

Taking dB, (24) yields k , which is
orders of magnitude lower than the 4.47 Mseen for the pre-
vious comb-driven resonator, clearly demonstrating the advan-
tages of thin-gap parallel-plate capacitive transducers. Equation
(23) gives —not much different from the measured
loaded value. This will, in general, be true for all other devices
of this paper, due to the conservative electrode-to-resonator gap
spacings used. (Several of the effective gaps achieved in this
paper are 1000 Å, which are conservative in comparison with,
e.g., Å.)

The frequency characteristic for a 50.3-MHz free–free beam
mechanical resonator was then obtained under the same

pressure, using an identical circuit (but with a different to
accommodate electrode-to-resonator gap spacing differences).
Fig. 10 presents the measured result, clearly showing a substan-
tially higher , with a directly measured value of ,
and an extracted value of when accounting for
400 of interconnect series resistance loading the resonator

k . Even greater discrepancies are observed
in Fig. 11(a) and (b), which compares measured spectra for
clamped–clamped and free–free beammechanical resonators
around 70 MHz, showing a difference as large as 28at this
frequency.

Given that the devices yielding Figs. 9–11(a) and (b) differ
in only their end conditions (i.e., their anchoring methods),
these data strongly suggest that anchor dissipation becomes
a dominant loss mechanism for clamped–clamped beam
resonators with high stiffness at VHF frequencies, and that the
use of free–free beam resonators with nonintrusive supports
can greatly alleviate this loss mechanism.

In addition, the data in Figs. 9 and 11(a) also show that
clamped–clamped beam resonators exhibit a lowering in
as frequencies increase from 50 to 70 MHz, whereas their
free–free beam counterparts maintain a fairly constantover
this range. These results further support an anchor-derived
loss model for clamped–clamped beam resonators, where the
smaller the value of for the beam (i.e., the higher the
frequency), the larger the axial stiffness, and the larger the
moments and forces exerted on the anchor supports per cycle
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Fig. 11. Measured frequency spectra for: (a) a 71.8-MHz clamped–clamped
beam�resonator and (b) a 71.49-MHz free–free beam�resonator.

Fig. 12. Measured spectra for: (a) a 31.5-MHz free–free beam�resonator and
(b) a 92.25-MHz free–free beam�resonator.

[10]. These then lead to larger deformations or displacements
at the anchor supports, which, in turn, degrade the overall

, since the of a clamped–clamped beam flexural-mode
mechanical resonator is generally inversely proportional to the
square of displacements at its anchors [23]. Under this model,
the free–free beam resonators of this paper, which (ideally)
have no anchors, should exhibits largely independent of
frequency, at least in this VHF range. In this respect, Figs. 10
and 11(b) are certainly consistent with an anchor-dominated
dissipation model, as are additional data at 31.51 and 92.25
MHz, shown in Fig. 12(a) and (b), respectively.

Table I compares the free–free beam resonator data in
Figs. 10–12 with theoretical predictions using the indicated
analytical expressions of Section III. Table II presents similar
data for the clamped–clamped beam resonators of Figs. 9
and 11(a). For the predicted values in each table, the data in
the “Designed/Fabricated/Given” portion was used, except
for the -influenced frequency and the
series motional resistance , for which an adjusted value of
electrode-to-resonator gap spacing(row 24) was utilized to
fit the calculated value to measured data. This adjusted
value of is also predicted when matching measured
versus curves with those generated by self-consistent
finite-element simulators [24], and can be construed as the
actual electrode-to-resonator gap spacing, which differs from
the target gap spacing due to several possible factors, including
the following:

1) -induced depletion in the doped-silicon structure
that substantially increases the effective gap spacing
over the actual physical value [6];

2) uncertainty in the measured value of the sacrificial
oxide spacer layer (which determines the initial gap
spacing for free–free beams and the gap spacing
for clamped–clamped beams);

3) uncertainty in the depth of the dimples after the dimple
etch (which determines the activated gap spacingfor
free–free beams).

When comparing the magnitudes of the adjusted values for
with those of the target physical values in rows 24 and 10, re-
spectively, of Table I, there is some question as to whether or
not some of the free–free beam resonators where actually down
on their dimples during measurement. Specifically, although the
adjusted ’s for the 30- and 50-MHz designs are close enough
to 1230 Å that it is conceivable with the explanations of items
1)–3) above that these beams were down on their dimples during
measurement, the measured versus adjusteddiscrepancies for
the 70- and 90-MHz designs seem a bit too large at first glance.
For the 70-MHz resonator, the discrepancy may be explainable
by recognizing that a very large dc-bias V, was used
in this measurement, perhaps inducing a larger depletion region
than for other resonators. Thus, it is plausible that the 70-MHz
resonator was actually down on its dimples during measure-
ment, but had a larger effective gap than its 30- and 50-MHz
counterparts due to excessive depletion.

Since a smaller was used for testing, the above deple-
tion argument may not be sufficient to explain the measured
versus adjusted discrepancy for the 90-MHz resonator. This
resonator beam may, in fact, not have been down on its dimples
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during measurement, especially since the V used is
less than the predicted pull-down voltage V. Note that
the dimple-down voltage in row 27 of Table I was determined
using the initial gap spacing of row 9, while the catastrophic
pull-in voltage in row 28 of Table I was calculated using the ad-
justed values of row 24. As will be seen later in this section,
the above uncertainties make it difficult at present to quantify
the effect of the dimples on resonator performance.

At this point, some explanation for the rather large values of
used in the measurements of Figs. 10–12 is in order. These

were required mainly because very conservative values for
dimple height and initial electrode-to-resonator gap spacing

were used in these prototype designs (cf. Table I). With
smaller values of or (e.g., 300 Å), much smaller ’s on
the order of 5 V can be used [2].

A. Timoshenko Versus Euler–Bernoulli Design Methods

In addition to measured values for resonance frequency, Ta-
bles I and II also include analytical values, computed using both
Timoshenko and Euler–Bernoulli methods. These data are sum-
marized in rows 19–22 of Table I for free–free beams, and rows
13–16 of Table II for clamped–clamped beam designs. In both
tables, the adjusted value ofwas used to determine the ef-
fect of electromechanical coupling on frequency. (Recall that
the adjusted was determined by matching measured and cal-
culated values.) As is evident from both tables, (9)–(11) pre-
dict that -induced electrical spring stiffnesses generate
only minor shifts in the resonance frequencies of VHF flex-
ural-mode mechanical resonators, on the order of only 0.3%
for the 70-MHz design. This is not surprising, given the large
mechanical stiffnesses of these VHF resonators and the rather
conservative electrode-to-resonator gap spacings used.

Upon comparison of measured resonance frequencies in row
15 with predicted frequencies in rows 19 and 21 of Table I,
the Timoshenko theory is clearly the more accurate of the two,
consistently predicting frequencies within 3% of the measured
value for free–free beam designs. In contrast, frequency predic-
tions based on the Euler–Bernoulli theory get worse as frequen-
cies increase, and are as much as 7.6% too high for the 90-MHz
design. Evidently, the Timoshenko design techniques are neces-
sary when designing 2-m-thick 6- m-wide flexural-mode res-
onators with frequencies in the upper VHF range.

As discussed earlier, the frequency modification factor
serves as a metric gauging the impact of surface topography
and anchor effects on resonance frequency [6], [10], [11]. In
general, when these effects are not important, and1
otherwise. For the clamped–clamped beams of Table II, to
maximize its role as a metric, was chosen to match exactly
the measured and Timoshenko-calculated values of rows 9
and 13. The degree to which for these resonators
verifies an expectation that surface topography and finite
anchor elasticity greatly influence the resonance frequencies
of clamped–clamped beams [10], [11]. In contrast, for the
free–free beams of Table I, was used with little impact
on the matching of measured and predicted frequencies. This
not only verifies an expectation that finite anchor elasticity is
not an issue for free–free beam resonators, but also suggests
that surface topography may not be either.

Fig. 13. Fractional frequency versus temperature plots for a clamped–clamped
beam and a free–free beam�mechanical resonator.

B. Temperature Dependence

Since they are virtually levitated above the silicon sub-
strate and, thus, should be nearly impervious to the struc-
ture-to substrate thermal expansion mismatches that plague
clamped–clamped beam resonators, one might expect the
described free–free beam resonators to exhibit slightly different
thermal dependencies than their clamped–clamped beam
counterparts. To test this assumption, modifications were made
to the custom-built vacuum chamber to allow insertion of
an MMR Technologies temperature-controllable cantilever,
enabling measurement of the temperature dependence of
resonator center frequencies under vacuum environments [25].

Fig. 13 presents measured plots of fractional frequency
change versus temperature for a 53.6-MHz free–free beam

mechanical resonator and a 4.2-MHz clamped–clamped
beam lateral mechanical resonator. From the linear regions
of the curves, the extracted temperature coefficients ’s
are 12.5 ppm/C and 16.7 ppm/C for the free–free
and clamped–clamped versions, respectively. Although the
free–free beam does show slightly better performance, the
degree of improvement is not large. This suggests that either the
difference in thermal expansion between the silicon substrate
and polysilicon resonator beam is not substantial or that the
stiffnesses of these high-frequency resonators is so large—on
the order of 60 000 N/m—and their lengths so small, that
stiffness changes due to thermal expansion stresses are now
insignificant in comparison and, thus, have less influence on
the thermal stability of . Whatever the reason, the smaller

for the free–free beam is an indication that the polysilicon
structural material in these resonators has a larger thermal
expansion coefficient than that of the single-crystal silicon
substrate.

Fig. 13 not only provides thermal stability information,
it also elucidates an important issue concerning microscale
devices: susceptibility to contamination. In particular, Fig. 13
shows peaked curves, where frequency initially rises with
temperature then drops past a certain threshold temperature.
This behavior can be explained by a mass-removal-based
model, where contaminants that adsorb onto the resonator
surfaces at low temperatures are burned or evaporated off the
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resonator surfaces as temperatures increase, removing excess
mass, and initially raising the frequency of the resonator. When
all contaminants are removed, the frequency increase ceases,
and the expected decrease in frequency with temperature (due
to a negative Young’s modulus temperature coefficient) is then
observed. Given that typical micromechanical resonator masses
are on the order of 10 kg, such a model is quite plausible,
and even expected, even under the high vacuum environment
used to obtain Fig. 13 [26], [27]. Admittedly, however, the
vacuum achieved in our custom chamber may have lacked
sufficient purity, especially given out-gassing from inserted
circuit boards. For this reason, vacuum encapsulation at the
wafer or package level is being investigated as a means to
alleviate the observed contamination phenomena.

C. Spurious Responses

Although very effective for maximizing the of
mechanical resonators, the described free–free beam de-

sign may exhibit one important drawback in that its more
complex design may lead to spurious modes. For example, a
trampo-line mode, where the support beams all flex in unison
and the entire resonator and support-beam structure vibrates
in a direction perpendicular to the substrate, is possible if the
dimples are not held strongly to the substrate by the applied.
Such modes, if not suppressed or moved to distant frequencies,
can interfere with the performance of filters or oscillators
utilizing this resonator design. Fig. 14 presents the frequency
characteristic for a 55-MHz free–free beammechanical
resonator measured over a wide frequency range, i.e., from
1 kHz to 100 MHz, in search of spurious modes. One spurious
peak is observed at 1.7 MHz, which is sufficiently far from the
desired frequency (55 MHz) to be rendered insignificant for
many applications. Note that there is no conclusive evidence
that this peak actually denotes a spurious mechanical mode; it
may, in fact, be merely a spurious electrically resonant artifact
in the measurement setup. If, however, it did represent a spu-
rious mode, and if it was not sufficiently far from the desired
resonance peak, modifications to the supports can be made to
move this peak even further away, or damping strategies based
on low- filtering or support material modifications can be
used to remove the peak entirely [15].

It should be mentioned that a rather excessive amount
of parasitic feedthrough is observed in the wide range
measurement of Fig. 14, and this feedthrough becomes
especially troublesome past 90 MHz. Shielding measures at
both the board and substrate levels are planned to alleviate
this feedthrough component for future measurement of even
higher frequency resonators.
D. Impact of Dimples on

Although the dimples in this design are centered at trans-
verse nodal locations along the length of the free–free beam,
their finite widths prevent them from acting as true nodal
supports. In particular, frictional losses are still possible if the
edges of finite-width dimples are allowed to rub the along
the substrate surface during resonance vibration. The amount
of loss and, thus, the of a given resonator, is expected to

Fig. 14. Frequency characteristic for a 55-MHz free–free beam�mechanical
resonator measured over a wide frequency range in search of spurious responses.

depend upon how strongly or loosely the dimples are held
down onto the substrate.

Unfortunately, as described earlier in this section, there is
some question as to whether or not the dimples were even down
during the measurements of Figs. 10–12. In addition,versus

data were inconclusive on this matter. In particular, for some
resonators, increases in led to decreases in , possibly in-
dicating that added pressure on the dimples leads to an increase
in radiated energy into the substrate via friction. However, an
equal number of resonators showedincreases with increasing

, indicating the exact opposite. With these conflicting ob-
servations, and with the knowledge that theof capacitively
transduced mechanical resonators seems to depend onre-
gardless of the presence of dimples [28], [29], there is insuffi-
cient data at present on which to evaluate the impact onof the
dimple-defined gap feature of this design. Further investigations
on this topic are in progress.

VI. CONCLUSIONS

Using a combination of quarter-wavelength torsional
supports attached at node points and an electrically activated
dimple-determined electrode-to-resonator gap, the free–free
beam mechanical resonator design demonstrated in this
paper adeptly removes the anchor dissipation and processing
problems that presently hinder its clamped–clamped beam
counterparts and, in doing so, successfully extends the
application range of high- microelectromechanical systems
(MEMS) to the mid-VHF range, with plenty of to spare
en route to even higher frequencies. The presentmechanical
resonator design achievess exceeding 8000 in a frequency
range that includes some of the most popular IFs used in
many cellular and cordless communication transceivers, and
does so while retaining the high stiffness needed to maintain
adequate dynamic range in both oscillator and filtering
applications.

The VHF frequencies demonstrated in this paper by no
means represent the ultimate range ofmechanical resonator
technology, especially given that the observedof this design
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seems to maintain its high value throughout the designed range
of frequencies, showing little or no rolloff with increasing
frequency. Needless to say, research toward UHF and beyond
continues.
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