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Mechanically Corner-Coupled Square Microresonator
Array for Reduced Series Motional Resistance
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Abstract—Substantial reductions in vibrating micromechanical
resonator series motional resistance have been attained by
mechanically coupling and exciting a parallel array of corner-cou-
pled polysilicon square plate resonators. Using this technique
with seven resonators, an effective of 480 
 has been attained
at 70 MHz, which is more than 5.9X smaller than the 2.82 k


exhibited by a stand-alone transverse-mode corner-supported
square resonator, and all this achieved while still maintaining an
effective 9000. This method for -reduction is superior
to methods based on brute force scaling of electrode-to-resonator
gaps or dc-bias increases, because it allows a reduction in
without sacrificing linearity, and thereby breaks the versus
dynamic range tradeoff often seen when scaling. This paper also
compares two types of anchoring schemes for transverse-mode
square micromechanical resonators and models the effect of
support beam parameters on resonance frequency. [1451]

Index Terms—Array, impedance, mechanical coupling, mi-
cromechanical resonator, motional resistance, quality factor,
resonator, radio frequency (RF) microelectromechanical systems
(MEMS), square plate.

I. INTRODUCTION

HAVING recently broken the GHz frequency “barrier”
with ’s greater than 10,000 in both vacuum and air

[1], vibrating micromechanical (“ mechanical”) resonators
are emerging as viable candidates for on-chip versions of the
high- resonators [e.g., quartz crystals, surface acoustic waves
(SAW) resonators] used in wireless communication systems
for frequency generation and filtering, with only a handful of
issues left to solve [2]–[6]. Among the more important of the
remaining issues that still hinder deployment of these devices
in RF front ends is their larger-than-conventional impedance. In
particular, it is their large impedance (i.e., motional resistance

) that presently prevents capacitively transduced vibrating
micromechanical resonator devices in the VHF and UHF ranges
from directly coupling to antennas in wireless communication
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applications, where matching impedances in the range of 50
and 377 are often required.

Among the most direct methods for lowering the motional
resistance of capacitively transduced micromechanical res-
onators are: 1) scaling down the electrode-to-resonator gap [7];
2) raising the dc-bias voltage; and 3) summing together the out-
puts of an array of identical resonators [8]. Unfortunately, each
of these methods comes with drawbacks. In particular, although
the first two are very effective in lowering , with fourth power
and square law dependencies, respectively, they do so at the
cost of linearity [10]. On the other hand, method (3) actually
improves linearity while lowering . Unfortunately, as will
be described, method (3) is difficult to implement, since it re-
quires resonators with precisely identical responses—a tough
bill when ’s are as large as exhibited by micromechanical res-
onators.

This paper presents a method for lowering motional resis-
tance based on method (3), with all of its linearity advantages,
but dispensing with the need to match the responses of high-
resonators by mechanically coupling them so that they automat-
ically generate a single resonance response (i.e., mode) where
all resonators vibrate at precisely the same frequency. Using this
technique with seven strategically-designed, corner-coupled
square resonators (demonstrated for the first time), an effective

of 480 has been attained at 70 MHz, which is more
than 5.9X smaller than the 2.82 exhibited by a stand-alone
transverse-mode corner-supported square resonator, and all
this achieved while still maintaining an effective .
This method for -reduction is superior to methods based
on scaling of electrode-to-resonator gaps or dc-bias increases,
because it allows a reduction in without sacrificing linearity
[10], and thereby breaks the versus dynamic range tradeoff
associated with “brute force” scaling.

II. SQUARE PLATE MICROMECHANICAL RESONATOR

Pursuant to realizing reductions in via mechanically cou-
pled parallel resonator arrays, a new transverse-mode square
plate resonator, shown in Fig. 1, was strategically designed to
allow for greater flexibility in the relative phasings between
input and output signals during operation—something that will
be needed to specify the array output frequency. The device con-
sists of a square plate suspended from 90–180 nm (specified by
fabrication process) above four triangular capacitive transducer
electrodes, with an anchor at its center. The electrodes are inde-
pendently accessible (for phase flexibility) and identical in size
for symmetry in electrostatic force distribution and topography.
They are centered at antinode locations for maximum efficacy,
and are separated by diagonal leads that pass through the anchor

1057-7157/$20.00 © IEEE
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Fig. 1. (a) Perspective-view schematic of a square plate �resonator in a two-port excitation configuration. (b) Top-view schematic identifying the axes and di-
mensions.

and provide an electrical connection to the plate. As the struc-
ture carries a dc-potential, the leads serve as a ground shield
between input and output electrodes.

The electrical operation of the structure is similar to that
of previous capacitively transduced microresonators [1], [5],
[7]. An ac voltage applied to the input electrode generates
an electrostatic actuation force which is amplified by the
dc-bias voltage applied to the resonator structure via the
diagonal leads. The induced vibration at resonance results in a
time-varying dc-biased capacitor between the output electrode
and the square plate, which in turn produces an output current

, where is the unit change
in electrode-to-resonator overlap capacitance per -directed
change in gap spacing.

As seen in the ANSYS-simulated symmetric trans-
verse-mode shape for this device in Fig. 2, the anchor at
the center of the device corresponds to an effective motionless
node point at which vertical energy losses to the substrate
are minimized due to momentum cancellation in the bulk of
the device, resulting in higher for this device, hence, better
stand-alone than a clamped-clamped beam. The vibration
is purely torsional (i.e., no vertical motion) along the two nodal
lines which are indicated in Fig. 1(b).

A. Resonance Characteristics

The nominal resonance frequency for a square plate vi-
brating in the mode of Fig. 2 is given by [11]

(1)

where is the structure thickness, is the side length of the
plate, and , , and are the Young’s modulus, density, and
Poisson ratio, respectively, of its structural material. Note that
(1) represents the mechanical resonance frequency of the plate

Fig. 2. Transverse vibration mode shape of a square plate simulated via
ANSYS.

when there are no applied voltages (i.e., no electromechan-
ical coupling). If the effect of electromechanical coupling is
included, then the frequency equation takes on the form [7]

(2)

where variable represents the resonance frequency including
the effect of the electromechanical coupling and is
a parameter representing the effective electrical-to-mechanical
stiffness ratio integrated over the electrodes, given by

(3)

where is the permittivity in the gap, is the electrode-to-
resonator gap spacing which varies as a function of location
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on the resonator plate due to -derived forces that stat-
ically deflect the plate [7], [12], is the total number of elec-
trodes at a different potential than the resonator structure,
is the region of overlap of the square plate with its electrode
as shown in Fig. 1(b), is the vertical stiffness without
electromechanical coupling (i.e., ) at a location
on the square plate, given by [7]

(4)

where is the equivalent mass as a function of location
, and the axes and all other geometric variables are as in-

dicated in Fig. 1. The expression for the equivalent mass of the
square plate resonator at a given point can be obtained from the
total kinetic energy of the square plate divided by one-half of
the squared velocity at that point as follows [13]:

- -
(5)

where is the velocity of the vibration in -direction at
location given in phasor form by

(6)

where is a scaling constant, and is the mode shape
of the device, which can be approximated by [14]

(7)

Using (6) and (7) in (5), the equivalent mass in the -direction
for a transverse-mode square plate becomes

- -
(8)

B. Phase Flexibility and Equivalent Circuit

The placement of the electrodes of the square plate resonator
is such that each electrode resides in a triangular region be-
tween the two nodal lines to provide the optimum configura-
tion to excite the vibration mode of Fig. 2. Because of the sym-
metry of the mode shape, the resonator is capable of generating
output currents having 0 and 180 phase difference with the
input voltage simultaneously via the excitation configuration of
Fig. 3(a). At resonance, due to the difference in the directions of

Fig. 3. (a) Top-view schematic of a square plate resonator in an excitation con-
figuration to achieve two out-of-phase output signals with equal magnitudes. (b)
Its equivalent circuit model.

vibration above the electrodes, the input and first output signal
of the device are in phase (i.e., the output current is equal to
the input current ), while the input and second output signal
are out-of-phase (i.e., is equal to ). Note that, although
the first and second output signals have a 180 phase differ-
ence, they are equal in magnitude as the displacement ampli-
tudes above each electrode are same. This phase flexibility can
simplify the design of circuits, especially in oscillator and filter
applications, where fully balanced excitation and detection can
often be employed to null out parasitic feedthrough currents.

Fig. 3(b) presents the physically consistent LCR equivalent
circuit for the device of Fig. 3(a), obtained via an impedance
analysis similar to that previously applied to clamped-clamped
beam resonators in [7]. This particular equivalent circuit is
deemed “physically consistent” because the values of its cir-
cuit elements and transformers are derived directly from the
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lumped mass, stiffness, damping, and voltage-to-force transfer
function, of the mechanical device, and can be expressed as

(9)

where , , and , are the effective stiffness, mass, and
damping, respectively, at the highest velocity point of the square
plate, obtained by evaluating

(10)

where is the effective system stiffness of the resonator,
which differs from in (4) in that it includes the influence of
electromechanical coupling (i.e., of applied electrical bias). As
with , is related to via frequency, but this
time via the bias-dependent radian resonance frequency as
follows:

(11)

In the physically consistent model of Fig. 3(b), the trans-
former turns ratio is simply given by the electromechanical cou-
pling factor

(12)

which is identical for all (identical) ports. The change in res-
onator-to-electrode capacitance per unit displacement
is given by

(13)

In practice, the complexity of the expression for dc-bias-induced
static plate bending of the square resonator often pre-
cludes convergence of (13) when evaluated via computer. For-
tunately, the use of the complete form of is often not
necessary, as substitution of with the static yields suf-
ficiently accurate results, as will be verified later in Section VI.

With all other ports grounded, the effective electrical
impedance seen looking into a given port can be obtained by
reflecting the lcr through the transformer at that port, to yield

(14)

Of the elements in (14), the series motional resistance is the
most influential in both oscillator and filter circuits. In oscilla-
tors [15], [16], generally governs the gain needed to insti-
gate and sustain oscillation; whereas in bandpass filters [7], it

Fig. 4. Simulated plots comparing R values obtained via (14) and (15). (a)
R versus electrode-to-resonator gap spacing d . (b) R versus electrode-to-
resonator overlap area A . (c) R versus dc-bias V .

dictates the ease by which a given filter design can match to low
impedance stages before and after the filter (e.g., the antenna).

III. VERSUS LINEARITY

Pursuant to obtaining better insight into what parameters
govern , a less accurate, but more intuitive, closed form
expression for can be obtained by neglecting the bending
and distributed stiffness modeled in (13) and just using static or
lumped terms for integrated parameters, which yields

(15)

where is the effective electrode-to-resonator overlap area of
the resonator, and is absorbed into , given by (9). From
(15), for a given , can be lowered by decreasing the elec-
trode-to-resonator gap spacing , increasing the dc-bias ,
increasing the permittivity , or increasing the overlap area .

Fig. 4 presents plots of versus various parameters in (15),
using both (14) and (15) showing that values on the order of
10 are in fact feasible if sufficiently small values of elec-
trode-to-resonator gap spacing and large values of dc-bias

are used. However, the use of such values comes at the price
of linearity, as manifested in an increase in third-order intermod-
ulation distorion .

Third-order intermodulation distortion for a fre-
quency filter occurs when system nonlinearities allow
out-of-band signal components (tones) spaced from an in-band
frequency by and , respectively, to generate an
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Fig. 5. (a) Schematic description of the different input and output signals of im-
portance during an IIP measurement. (b) P versus P plots during an IIP
measurement, showing how their intersection determines the intercept point.

in-band component back at [9]. This phenomenon can
be illustrated quantitatively by applying an input containing the
desired signal (i.e., the fundamental) plus the two out-of-band
(interfering) tones, given by

Fundamental Tone 1 Tone 2
(16)

to the general nonlinear transfer function

(17)

where are constants if the system is memoryless.
Inserting (16) into (17), then expanding, yields (among other
components) (18),

Fundamental -Order Intermod
(18)

where an component is seen to be generated via third-order
nonlinearity represented by .

For the common case where the interferers are located at
frequencies and from the fundamental [as shown in
Fig. 5(a)], the quantity will be equal to , and the

component will be at the same frequency as the funda-
mental, possibly masking it if either or the interfering tone
magnitudes are too large. In effect, as also illustrated in Fig. 5(a),
even though the interfering tones are outside the filter passband,
they still generate an in-band response—a highly undesirable
situation for a filtering device designed to reject out-of-band
signals. To suppress this effect, the third-order nonlinear term
in (17) must be constrained below a minimum acceptable value
in practical communication systems. Among the more useful
metrics to gauge the ability of a system to suppress distor-
tion is the third-order input intercept point , defined as the

input amplitude at which the extrapolated and funda-
mental output components are equal in magnitude, as shown in
Fig. 5(b). In general, a large is preferred for communica-
tion applications.

From [10], the voltage and power at the
third-order input intercept point for a capacitively driven
square-plate micromechanical resonator are given to first order
by

-

(19)

(20)

where and are the source and load resistances
surrounding the resonator during practical operation,

, and , where

(21)

Here, the variables , and model the degree to which the
resonator’s amplitude transfer function attenuates input tones at

and , respectively.
Inserting (19) into (20) and assuming that or

(which is the case, here), a compact expression for can
be written as the “parallel” combination of several power
terms

(22)

where and are terms emanating from nonlinear
voltage and displacement interactions, given by

(23)

(24)

and derives from purely nonlinear displacement interac-
tions, and is given by

(25)

Each of the previous terms competes to constrain the ,
and each will surface as the dominant constraint over different

parameter spaces. For example, for large values
of , the term is often the smallest of the three terms, so
dominates over the other terms to constrain the . In this
case, one might raise the , , or , to attain a sufficiently
large . However, as these variables are raised, the
term decreases and eventually becomes the dominant term, lim-
iting the degree to which increases in these terms can improve
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Fig. 6. Theoretical plots of IIP power versus (a) electrode-to-resonator gap
spacing (d ), (b) DC bias (V ), (c) relative permittivity (�), and (d) electrode
area (A ) for a square plate microresonator. Note that in (d), the effective res-
onator stiffness k is increased in proportion to the electrode area.

linearity. In fact, once the term becomes dominant, increases
in these parameters only serve to degrade the . Thus, as
illustrated in the plots of Fig. 6, there are ranges over which in-
creases in different terms raise or lower the .

As already mentioned, the series motional resistance can
be manipulated by making changes to each of the parameters of
Fig. 6. In particular, it can be lowered by decreasing , or raising
any of , , or . Of these options, only increasing the elec-
trode-to-resonator overlap area allows improvements over the
entire range in the plot of Fig. 6(d), and in all three power terms
(23)–(25), as it is increased. (Note that the in the denomi-
nator of (25) cancels with that in , leaving a net in the
numerator.) Thus, for a given capacitively transduced microme-
chanical resonator, often the best strategy for decreasing with
the least impact on linearity (and actually, with an improvement)
is to increase the electrode-to-resonator overlap area.

As will be seen, this is exactly the approach taken when ar-
raying the resonators of this work.

IV. CORNER-SUPPORTED SQUARE PLATE RESONATOR

In order to minimize anchor induced losses that can degrade
, the resonator of Fig. 1(a) is anchored at the center, which

is the intersection point of the nodal lines of its mode shape,
hence a node point. Quality factors of devices anchored in this
way are sensitive to misalignments between structure and the
anchor. Self-aligned processes such as that of [1] are good solu-
tions to prevent misalignment; however, they require extra steps,
which can increase manufacturing cost. For applications where
high quality factors are required, but a simple process flow is
desired, Fig. 7 presents a square plate resonator with an alter-
native support scheme. Here, instead of a center stem, torsional
mode beams attached at its nodal corners hold the resonator,
in a scheme that now resembles more the support structure of
free-free beam mechanical resonators [17]. The beams connect
to the corner of the plate at one end and anchor to the substrate
at the other. Each beam extends along one of the nodal lines

Fig. 7. (a) Perspective-view schematic of a corner-supported square plate� res-
onator in a two-port bias and excitation configuration. (b) Top-view schematic.

of Fig. 7(b), where the vibration is only in torsion, so matches
with the torsional motion of the support beam, allowing opera-
tion with minimal distortion to the resonator mode shape. As
the device has anchors at its corners, the diagonal leads be-
tween the electrodes used in the design of Fig. 1 are no longer
necessary for dc-bias access to the resonator plate. Removal of
the diagonal leads leaves more area for signal electrodes, but
has the drawback of increased input-to-output cross-talk. An-
other benefit of the corner-supported plate of Fig. 7 is that it is
stiffer, so has a higher catastrophic pull-in voltage [18] than the
center-stem device of Fig. 1, which allows a smaller series mo-
tional resistance in cases where large dc-bias voltages can
be accommodated.

Fig. 8 presents the ANSYS-simulated vibration mode shape
of this device, which clearly shows that the supports do not ap-
preciably distort the mode. However, they do cause an increase
in the total stiffness of the resonator resulting in a resonance fre-
quency greater than predicted by (1). To formulate the amount
of increase in the frequency, one must consider the mass and
stiffness addition introduced by the support beam. Since the vi-
bration of the resonator is purely torsional along its nodal lines
(i.e., diagonals of the plate), it is most convenient to work with
torsional variables in this analysis. The angular velocity
of the plate about the first nodal line [i.e., about the line,
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Fig. 8. Vibration mode shape of a square plate supported by torsional beams at corners as simulated via ANSYS.

as indicated in Fig. 7(a)] at location is equal to the time
derivative of the angle , which is related to the slope of
the displacement in the direction of the second nodal
line (i.e., along the line) as

(26)

where is the directional derivative of the vertical dis-
placement in the direction of the unit vector
and the approximation is valid since the displacement of the
plate is small compared to the plate dimensions. As the time
derivative of is equal to the vertical velocity ,
the angular velocity is given by

(27)

Thus, the equivalent resonator mass moment of inertia at lo-
cation along the first nodal line is [13]

(28)

and the rotational stiffness of the resonator along the nodal line
then follows as [11]:

(29)

The mass moment of inertia and torsional stiffness of the
support beam can be modeled by its equivalent acoustic net-
work model using the current analogy, where force is the across
variable and velocity is the through variable [13]. For the case
where the support beam length is smaller than half of an ef-
fective quarter-wavelength (or ) of the resonator operating
frequency—which is the case used for this work, since shorter
support beams allow higher catastrophic pull-in voltages, in turn
allowing higher dc-bias voltages and lower motional resis-
tances —the acoustic network takes the form shown in
Fig. 9, where shunt and series arm impedances are modeled by
reciprocal torsional stiffness and mass moment of inertia

, respectively. The anchoring at one side of the support beam
corresponds to an open circuit, leaving a series arm with circuit
parameters and , given by

(30)

where and are the shear modulus of elasticity and polar
moment of inertia, respectively, given by

(31)
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Fig. 9. Equivalent acoustic T -network model for a short support beam (L <
�=8) that is attached to the resonator at portA and to the anchor at portB. This
model also applies to coupling beams.

Fig. 10. (a) Array of resonators in parallel, each with motional resistance R ,
where n is the number of resonators in the array. (b) Equivalent LCR circuit.

and is the torsion constant [19], given for the case of rectan-
gular cross section with by

(32)

The resonance frequency of a square plate suspended by short
support beams, taking into account the mass moment of inertia
and stiffness additions from the supports, is then given by

(33)

It should be noted that this equation is only a first order ap-
proximation since it ignores the mass of the small portion at the
intersection point of the plate and the support beam. Still, the
equation gives good insight on the effect of support beam length
on resonance frequency.

In the presence of a dc-bias , the resonance frequency of
a square plate suspended by short support beams is influenced
by the effect of electromechanical coupling (i.e., by electrical
stiffness), so takes on the form

(34)

V. COUPLED MICRORESONATOR ARRAY

Again, the basic method for lowering motional resistance
in this work entails the summing of currents from several

Fig. 11. Simulated frequency spectra showing (a) the increase in output at-
tained by electrically coupling three identical square resonators, each with ex-
actly the same frequency; and (b) the effect of a 0.01% mismatch in resonator
frequencies.

resonators to produce a larger total current. Fig. 10 presents
schematics depicting an electrically connected version of such
an approach, where resonators with identical frequency
responses are connected in parallel and driven by a common
input source , with their motional currents summed by wired
connections. In the ideal case, where all resonators are held
to exactly the same resonance frequency, this method can
work well to increase the total current through the resonator
array by times for the same input voltage , hence lowering
the effective motional resistance by the same factor . In
equation form, assuming identical resonators, the equivalent
motional resistance of the array is given by

(35)

From a parameter perspective, when a number of these res-
onators are coupled into an array, the overall effective electrode
area increases by a factor of . From (22)–(25) in Section III,
since an increase in the electrode-to-resonator overlap area
always leads to an increase in power at the third-order input in-
tercept point , this arraying strategy reduces series mo-
tional resistance without degrading linearity. This is in con-
trast to other available approaches to lowering , such as re-
ducing the electrode-to-resonator gap spacing , raising the ef-
fective permittivity , or raising the dc-bias , all of which
eventually begin to degrade the .

Fig. 11(a) illustrates the increase in peak height (or improve-
ment in and power handling) attained when the outputs
of three resonators, each with ’s of 20,000, are combined in
this fashion. Unfortunately, this result is obtained only with the
utmost control to match resonance frequencies, and even a tiny
deviation in frequency from a matched case can dramatically
compromise the combined output, as illustrated in Fig. 11(b),
where resonator frequencies are mismatched by a mere 0.01%.
Evidently, successful implementation of summation-based

-lowering in this electrically-connected fashion ultimately
requires spacious and power hungry feedback control elec-
tronics to insure that the resonance frequencies of all resonators
remain identical. Needless to say, this is not practical in sce-
narios where large numbers of resonators are needed in portable
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Fig. 12. (a) Perspective view and (b) top-view schematic of mechanically coupled array of three square resonators in a bias and excitation configuration that
specifically selects the first filter mode. Note that the ground plane connects to all structures and is used for the output.

Fig. 13. Frequency spectrum showing the amplitude of each mode and phase
relationships between resonators in each mode for a mechanically coupled array
of three resonators.

applications, such as in RF channel-select receiver architectures
[6].

Fortunately, mechanical coupling offers a superior solution to
this resonator matching problem. In particular, by coupling the

resonators mechanically, as shown for square plate resonators
in Fig. 12, a mechanical filter structure is achieved, which now
exhibits modal frequencies, where each mode corresponds to a
specific frequency and mode shape, as illustrated in Fig. 13[20],
[21]. When the overall filter structure vibrates at a given modal
frequency, all coupled resonators (at least those that move in the
given mode shape) vibrate at this same frequency—a very conve-
nient phenomenon considering the problem at hand. Obtaining
the desired single resonator response then amounts to designing
the drive electrode configuration of the mechanically coupled
resonator array system such that one of its modes is emphasized,
while all others are suppressed.

Given this goal, it is advantageous to first separate the modes
as far apart as possible. Since the bandwidth of a mechanical
filter is proportional to the stiffness of its resonator-to-resonator
coupling springs [7], [20], the first step in selecting a single
mode, while suppressing others, is to couple the resonators with
very stiff springs. (This in sharp contrast to the requirement
for small percent bandwidth mechanical filters, which normally
require fairly compliant springs.) Stiff mechanical coupling is

Fig. 14. ANSYS simulated filter mode shapes for the coupled three-resonator
array of Fig. 12, with magnitude and directions for the electrostatic drive forces
F induced by the hookup in Fig. 12.

achieved in Fig. 12 by coupling the square resonators right at
their corners via short, stiff stubs.

Pursuant to accentuating one mode, while suppressing others,
Fig. 13 shows that each mode in a given filter is distinguished
from another by the relative phasings between its resonators.
Thus, unwanted filter modes can be suppressed by imposing
properly phased ac forces on constituent resonators that empha-
size phasings associated with a desired mode shape, while coun-
teracting all others. In this regard, the phase flexibility by which
the constituent resonators in a mechanically coupled resonator
array can be driven and sensed is key to selecting a single mode,
and the availability of four different electrodes underneath the
square resonators used for this work greatly facilitates the se-
lection of a single mode. The input voltage connections shown
in Fig. 12 are in fact chosen to accentuate the lowest frequency
mode.
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Fig. 15. Equivalent LCR circuit of a mechanically coupled three resonator array when operated (a) in the excitation configuration of Fig. 12 and (b) as a microme-
chanical filter. The given circuit element values are used in the simulations in Fig. 16.

To illustrate the manner by which properly phased forcing
signals can accentuate the lowest mode, while suppressing all
others, Fig. 14 places the force distribution generated by the
electrode hookup of Fig. 12 over ANSYS simulations of the
shapes of each of the three modes. Note how the force directions

imposed by the electrode connection of Fig. 12 all go in the
same direction as the mode shape displacements for the first
mode. Note also how this same force configuration opposes at
least one of the mode shape displacements for each of the other
modes, resulting in their suppression.

The resonance frequency of the first mode of the array in
Fig. 14 is given in terms of constituent resonator mass and stiff-
nesses by

(36)

where and are the effective stiffness and mass, respec-
tively, of the th resonator; is the effective mass of the th
coupling stub; and where the resonance frequency of the th con-
stituent resonator is given by

(37)

If there is a slight change in the resonance frequency of any
of the constituent resonators of the array (i.e., a slight change in

or ), this will cause a much smaller shift in the array res-
onance frequency, as it is averaged over resonators. However,
the resonators will still be vibrating in unison at the same fre-
quency, as they are mechanically coupled. The frequency shift
will also cause slight distortion in the mode shapes, which may
result in inadequate mode suppression and hence spurious re-
sponses. However, as will be verified in Section VI, the amount

of this amplitude mismatch seems to be small enough that the
spurious responses are not detectible—at least not by the mea-
surement methods used here.

Although the array method should work for any strength of
mechanical coupling, it is advantageous to use stiff coupling for
two main reasons.

1) To make sure that if the undesired modes cannot be suffi-
ciently suppressed, any spurious outputs they cause will
be as far as possible from the chosen mode.

2) To prevent any resonance localization effects that may
be possible for a sufficiently large number of weakly
coupled structures [22].

Fig. 15(a) presents the equivalent LCR circuit representing the
mechanically coupled array structure of Fig. 12 with the design
and electrical biases summarized in Table I. Here, each iden-
tical resonator is modeled by an (identical) equivalent circuit of
the form of Fig. 3, where the transformers modeling each port
(i.e., each electrode) can be clearly seen. These circuits, how-
ever, differ from Fig. 3 in that the transformers have all been nor-
malized to have 1:1 turns ratios, for ease of circuit analysis. To
affect this normalization, the lcr element values in Fig. 3 must
themselves be transformed through the electromechanical cou-
pling turns ratio to yield

(38)

which are more in line with the actual electrical impedance seen
looking into the device input and output terminals.

In Fig. 15, the corner couplers are modeled by LC equivalent
-networks, the values of which are determined by fitting the

frequencies of the three modes obtained by simulating the LCR
model to match the ANSYS simulated frequencies.
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TABLE I
MECHANICALLY COUPLED SQUARE MICRORESONATOR ARRAY DESIGN

SUMMARY

Fig. 16. SPICE simulated spectra for the structure of Fig. 12 when operated as
a mechanical filter [circuit of Fig. 15(b)] and a parallel resonator array [circuit of
Fig. 15(a)], all compared with the response of a single resonator (dashed line).
Note that the amplitude-axis of the zoomed plot corresponds to the amplitude-
axis of the main plot.

Fig. 16 presents SPICE simulated spectra for the equivalent
circuit of the coupled structure for three cases

1) the structure operated as a parallel resonator array,
using the hookup of Fig. 12, modeled by the circuit of
Fig. 15(a);

2) the structure operated as an unterminated mechanical
filter, with applied to one end resonator, and taken
at the other end, all modeled by the circuit of Fig. 15(b);

3) a single stand-alone constituent resonator.
In the simulated plot for the mechanical filter of case 2), three

distinct peaks are observed as expected, each of which corre-
spond to the modes of Fig. 14. Unlike previous filters designed
for small, specific bandwidths [7], [20], the peaks for case 2)
are a few MHz apart from each other, as governed by the use of
stiff mechanical couplers in this structure. The electrode-config-
uration of the parallel array in case 1), on the other hand, effec-
tively suppresses the second and third mode peaks, while raising
the output current at the single desired lowest mode frequency
(which is the first mode in Fig. 14), by more than 9 dB—all as
previously advertised.

As illustrated in Fig. 16, the first mode of the coupled struc-
ture does not exactly match the frequency of a stand-alone con-
stituent resonator, although its frequency is very close. Should a

Fig. 17. Final cross section of a surface micromachined square plate microres-
onator (cross section taken along AA in Fig. 1).

more exact match to the frequency of a stand-alone resonator be
required, note that the modes are quite predictable by the models
presented and, thus, can be set to any needed frequency by design.

VI. EXPERIMENTAL RESULTS

Stand-alone, center-stem, and corner-supported microme-
chanical square plate resonators and mechanically-coupled
arrays of them with resonance frequencies between 60 and 72
MHz were designed using the theory in Sections II, IV, and
V and fabricated in a four-mask polysilicon surface micro-
machining technology, similar to previously reported versions
[7]. Fig. 17 presents the final cross-section of the fabrication
process for a center-anchored square plate. The resonators
constituting the arrays were designed identical to stand-alone
resonators in all dimensions to allow an accurate comparison of
motional resistances. Also, all the coupling stubs in the arrays
of this paper are identical and have a length and width

of 1.4 .
Table II summarizes the 68-MHz center-stem, and 72-MHz

corner-supported square plate designs of this paper. Figs. 18
and 19 present SEMs of a fabricated 68-MHz single center-stem
square resonator and mechanically-coupled array of three of
them, respectively. Figs. 20 and 21 present the SEM’s of a fab-
ricated 72-MHz stand alone corner-supported square resonator
and a mechanically-coupled array of seven of them.

For measurement and characterization, each resonator
die was mounted on a printed circuit board and placed in a
custom-built vacuum chamber. DC and coaxial feedthroughs
through a grounded metal block, which served as one of the
vacuum chamber walls, provided electrical access to the circuit
board. A turbomolecular vacuum pump provided operating
pressures down to 200 , where viscous gas damping
[24] is greatly suppressed, allowing resonators under test to
exhibit their maximum ’s. Devices were measured using an
HP 8751A network analyzer and S-parameter test set.

A. Stand-Alone Square Plate Resonators

Fig. 22 presents the frequency spectrum for a center-stem
square plate resonator with 16 -sides measured under
vacuum using the one-port test setup [26] shown in the figure
inset and a dc-bias voltage of 25 V. As shown, this device
exhibits a of 15,000 at 68.5 MHz, which is on par with
free-free beam resonator ’s [25] at the same frequency. Its
series motional resistance extracted from the plot is 13.4

. It should be noted that although this device is perhaps best
operated as a two-port, it is being operated as a one-port here for
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TABLE II
SQUARE PLATE RESONATOR DESIGN AND PERFORMANCE SUMMARY

Fig. 18. SEM of a 68-MHz center-stem square plate �mechanical resonator.

the purpose of comparing with the one-port resonator arrays to
be described later. As will be explained in more detail later, the
arrays were hooked up in one-port configurations rather than
two-port for electrical routing convenience. Whether devices
are hooked up as one- or two-ports has little impact on the
overall enhancement factor afforded by arraying.

Fig. 19. SEM of a 68-MHz mechanically coupled array of three center-stem
square plate resonators.

Fig. 20. SEM of a 72-MHz corner-supported square plate �mechanical res-
onator.

Fig. 21. SEM of a 72-MHz mechanically coupled array of seven corner-sup-
ported square plate resonators.

Fig. 23 presents the measured frequency spectrum for the
corner-supported plate of Fig. 20, again under vacuum and using
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Fig. 22. Frequency response characteristic for a 68.5-MHz center-stem square
plate resonator.

a one-port test setup, but this time with a much higher dc-bias
of 40 V, which was not possible with the center-stem device
due to pull-in limitations, but which is now permissible by a
higher stiffness afforded by corner supports. The device has a

of 17,500, which is higher than the center-stem resonator
, showing that removal of a (potentially misaligned) center

stem support does indeed improve the quality factor. The reso-
nance frequency of the device is 71.7 MHz, which is greater than
the frequency of the center-stem design, verifying the theory
of Section IV, where added support stiffness is responsible for
frequency increase. The measured of the corner-supported
device is 2.82 , which is much smaller than the 13.4 ex-
hibited by the center-anchored device because a higher dc-bias
voltage is used (permitted by its higher pull-in voltage). Table II
presents a comparison of theoretical and measured resonance
frequency and motional resistance values for center-anchor and
corner-supported devices.

To assess the validity of (33), Fig. 24 presents a compar-
ison of frequency versus support length plots predicted by (34)
and measured for a corner-supported square plate resonator,
showing a clear increase in the resonance frequency with de-
creasing support beam length. The slight deviation of the theory
from measurement for short support beams comes about be-
cause (33) neglects the mass and stiffness of the small portion
of the coupling beam at the plate corner. (See the definition
of in Fig. 7.) At the frequency of these devices, the beam
length corresponding to half of a quarter wavelength is
around 8 and the prediction by (34) loses its accuracy for
beams longer than this value due to its short beam assumption

, which explains the slight deviation between theory
and measurement for longer beams.

Fig. 25 presents a plot of measured quality factor versus
support beam length for a 68.5-MHz corner-supported square
plate resonator. The decreases rapidly below 20,000 for
support beams shorter than 2.5 and it is almost constant

Fig. 23. Frequency response characteristic for a 71.7-MHz corner-support
square plate resonator.

Fig. 24. Comparison of frequency (f ) versus support length (L ) plots for
a corner-support square resonator obtained by (34) and by measurement.

around 30,000 for beams longer than 4.5 . Although there
was no measured data for the case of quarter-wavelength
beam length , the catastrophic pull-in voltage
for a square resonator with quarter wavelength supports is
calculated to be approximately 15 V, which is much lower
than the 40 V pull-in voltage of the resonator with 4.5
supports. Given that devices with 4.5 support beams can
sustain much higher dc-bias voltages without pulling in and
still retain fairly high ’s around 30,000, they can potentially
achieve much smaller . This encourages the use of 4.5
support beam lengths in future designs to maximize both
and pull-down voltage. This measurement also shows that
corner-supported square plates exhibit almost 2X larger ’s
compared to center-anchored square plates, as well as free-free
beam micromechanical resonators [17], at the same frequency.

B. Mechanically-Coupled Resonator Arrays

Fig. 26 presents frequency characteristics measured using
two-port configurations under vacuum for a stand-alone
center-stem device, and three-, five-, and eleven-resonator



1432 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 6, DECEMBER 2006

Fig. 25. Measured quality factor (Q) versus support length (L ) plot for a
68.5-MHz corner-supported square resonator.

Fig. 26. Frequency response spectra for a 68-MHz stand-alone center-stem res-
onator and coupled center-stem square resonator arrays with three, five, and
eleven resonators.

center-stem coupled array devices with peak heights clearly
increasing with the number of resonators coupled. To allow for
direct comparison of motional resistances, the same dc-bias
was applied to each device for measurement, and a low ac
drive level (less than 5 mV) was used to avoid nonlinearity.
Table III presents a comparison of values for each of these
devices, clearly showing decreases in with increases in the
number of resonators used. Note that the deviations in the
seen in Table III for the arrays versus the single-resonator are
partly responsible for reduction factors that are not exactly
equal to the number of resonators. For a fair comparison,
Table III also includes reduction factors in -normalized
values (normalized by multiplying of each resonator by
its ). The -normalized reduction factors of 3.2X, 5.3X,
and 10.7X, exhibited by three-, five- and eleven-resonator
mechanically-coupled resonator arrays, respectively, verify the
equivalence between reduction factor and number of resonators
predicted by (35). The of the array is dominated by the

TABLE III
68-MHZ CENTER-STEM SQUARE RESONATOR ARRAY PERFORMANCE

Fig. 27. Frequency response spectra for a 72-MHz stand-alone corner-sup-
ported resonator and coupled corner-supported square resonator arrays with
three, five and seven resonators.

TABLE IV
72-MHZ CORNER-SUPPORTED SQUARE RESONATOR ARRAY PERFORMANCE

lowest resonator (i.e., if one of the constituent resonators of
the array has low , this lowers the of the array).

Fig. 27 presents frequency characteristics measured using
a one-port configuration under vacuum for corner-supported
devices, including a stand-alone device (i.e., device of Fig. 20),
and three-, five- and seven-resonator coupled array devices.
Note that when forming the coupled arrays of corner-supported
square plates, the supports at the coupling points were removed
and replaced by coupling stubs. Table IV presents a comparison
of values for each of these devices, again showing decreases
in with increases in the number of resonators used. For
the three-resonator array, there is very little reduction in ,
mainly due to a dramatic decrease in . As the array size be-
comes larger, however, the rises, and the reduction factor
seems to approach the expected value equal to the number of
resonators in the array.
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Fig. 28. Vibration mode shape of a seven-resonator array of square plates sup-
ported by torsional beams at corners as simulated via ANSYS.

Part of the reason for the observed improvement in with
increasing array size is the reduction in the number of supports
per resonator, i.e., an increase in the number of resonators with
only two corner supports. In particular, the resonators at the
two ends of the array have three supports, and thus, more paths
through which energy can be lost to the substrate (i.e., more an-
chor dissipation) and higher stiffness compared to the inner res-
onators with only two supports. Since the three resonator array
has two three-support resonators and only one two-port one,
its performance is governed more by three-support resonators,
which contributes to its lower overall . Larger arrays, on the
other hand, are dominated by two-support resonators, giving rise
to an improvement in the quality factor. By eliminating third an-
chors at the two ends of the array, higher should be achievable
in future designs.

In addition to higher , larger arrays of the corner-supported
type also provide larger vibration amplitudes compared to
smaller arrays. In particular, since the mechanical stiffness
is smaller for the inner resonators, the vibration amplitude
becomes larger closer to the center of a large array, as seen
in Fig. 28, which presents the ANSYS simulated vibration
mode-shape of a corner-supported seven-resonator array. This
results in further increases in the resonator array output, which
explains why is still reduced 5.9X despite the degrada-
tion by a factor of 0.5 (relative to a single resonator) in the
seven-resonator array. The seven-resonator array of Fig. 21 has
a motional resistance of 480 , which is the lowest demon-
strated to date for any capacitively actuated micromechanical
resonator at this frequency.

As expected from Section V, and as seen in Figs. 26 and
27, in addition to lowering , mechanical coupling of res-
onators also shifts the center frequency of the peak from that
of a stand-alone resonator. For the arrays of Fig. 26, the fre-
quency shift is less than 0.02% and can be fixed by merely ad-
justing the applied dc-bias voltage to constituent resonators.
Note that the measured center frequency of the five-resonator
array is larger than that of the 3-resonator array, and this does

Fig. 29. Measured frequency spectrum verifying suppression of the higher fre-
quency filter modes by choice electrode excitation.

not agree with theory. In particular, theory predicts the oppo-
site for the fundamental mode (used here) of any given array.
In particular, theory expects the fundamental-mode frequency
to decrease as the number of resonators used in the array in-
creases, since the ratio of fundamental-mode array stiffness to
array mass decreases as the number of resonators increases. This
comes about because in the fundamental mode, the resonators
move in such a way that their couplers do not flex [20], as clearly
illustrated in the first mode depiction in Fig. 13 for the case of a
three-resonator array. When couplers do not flex, they add mass
to the system without adding stiffness, thereby decreasing the
array stiffness-to-mass ratio and in turn decreasing the overall
array frequency according to (33). The fact that the measured
center frequency of the five-resonator array of center-stem-sup-
ported resonators is larger than that of the three-resonator array
is likely caused by finite fabrication tolerances, which are sig-
nificant here, since the peaks for the center-stem-supported res-
onator arrays are so close together.

The corner-supported resonator arrays, on the other hand,
show measured performance more in line with theoretical
prediciton, with frequency decreasing as the number of res-
onators in the array increases. From Fig. 27, the frequency shifts
are seen to be significant enough that the mechanical design
of the array should be adjusted if the array mode frequency is
intended to match that of the original stand-alone resonator.

C. No Spurious Modes

To ascertain how effectively the unwanted modes in the
mechanically coupled array have been suppressed via strategic
electrode phasing, Fig. 29 presents the spectrum for a coupled
array of eleven center-stemmed square resonators measured
over a wide frequency range. The existence of only a single
peak verifies that only the first filter mode is excited, while the
higher modes expected up to eleventh mode at 73.8 MHz (as
determined by ANSYS), have been effectively suppressed.

D. Linearity

To assess the linearity of the array method, Fig. 30 presents
measured plots of output power vs. input power for the
single corner-supported square plate microresonator of Fig. 20
and array of five of them. In these plots, the curves were
obtained by driving the resonator or array in question by an
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Fig. 30. Measured plots of output power P versus input power P for (a) the
single corner-supported square plate microresonator of Fig. 20 and (b) an array
of five of them, showing extrapolated IIP ’s of+14:8 dBm and+20:9 dBm,
respectively.

input signal at its resonance frequency with a power level
indicated by the -axis. The curves, on the other hand,
were obtained using the so-called “two-tone test” [10], where
out-of-band input signals at and , with

, were applied to the resonator or array input with equal
powers governed by the -axis, and the output signal taken at .
(All consistent with the descriptions in Section III.) As shown,
the single resonator exhibits an of 14 and an extrapolated

of , which is quite close to the theoretical pre-
diction of using (20). The array of five mechani-
cally coupled resonators exhibits a lower of 5 and a 9.7
dB higher of , verifying significantly better
array linearity, and again matching the theoretical
prediciton of (20). Thus, the described mechanically coupled
resonator arraying technique does indeed reduce without de-
grading device linearity, and in fact improves linearity, as pre-
dicted by the theory of Section III.

E. Temperature Dependence

Fig. 31 presents a plot comparing frequency versus tempera-
ture measurements for a 63-MHz stand alone center-anchored
square resonator and a coupled array of five of them. The
extracted ’s (temperature coefficients of frequency) of the
stand-alone resonator and the coupled array are
and , respectively, where the thermal stability
of the resonator array is seen to be only slightly worse than
the stand-alone resonator. This is somewhat reasonable, since
the single square plate is smaller and anchored to the sub-
strate only at a single point, while the array is both larger and
anchored at several locations, making it more susceptible to
structure-to-substrate thermal expansion mismatches. Both

Fig. 31. Measured frequency versus temperature plots for a 63-MHz single
center-anchor square resonator and an array of five of them.

Fig. 32. Frequency characteristic for a 63-MHz five resonator coupled center-
stem square resonator array measured under atmospheric pressure.

thermal dependences are on par or better than that measured
for previous uncompensated free-free beam micromechanical
resonators [17], [25].

F. Operation Under Atmospheric Pressure

Up to this point, all of the measured curves shown in this
paper were done under 200 vacuum, with the intent of
eliminating viscous gas damping so as to better ascertain the
degree to which design-related loss mechanisms, such as an-
chor or material losses, govern the of the more complex array
structure. However, due their high stiffness, the square plate res-
onators of this work operate with internal energies per cycle
much higher than the energy losses per cycle caused by vis-
cous gas damping. As such, the resonators and arrays of this
work actually do not require vacuum to attain reasonably high

’s [27]. To illustrate, Fig. 32 presents the frequency character-
istic for a five resonator array of 63-MHz center-anchor square
plate micromechanical resonators measured under atmospheric
pressure, yet still showing a of 1,900, which is still sufficient
for use in many IF communication applications. This removal of
the requirement for vacuum for stiff micron-scale (as opposed to
nano-scale) micromechanical resonators has enormous implica-
tions, as it allows a substantial reduction in the manufacturing
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cost of such devices, as well as increases their reliability and
lifetime in commercial applications.

G. Conclusions

Mechanically coupled parallel resonator arrays with com-
bined output currents have been demonstrated with series
motional resistances smaller than that of a single resonator by
factors equal to the number of resonators used in the array. The
method demonstrated is also superior to mere combining of
responses from separate resonators, since by mechanically cou-
pling resonators, it automatically generates a single resonance
response (i.e., mode) from all resonators, without the need for
absolute matching of individual resonator responses. Although
this paper has focused mainly on lowering resonator imped-
ances, another direct benefit of this approach is a substantial
enhancement of the power handling capability of the combined
device which is important for micromechanical resonator
oscillators and front-end filters, alike. As such, this technique
solves many of the remaining issues that presently slow the
insertion of vibrating micromechanical resonator devices into
practical communication systems, and thus, helps clear a path
towards the fully integrated communication systems targeted
by vibrating RF MEMS technology.
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