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Abstract—Recently developed high-throughput sequencing plat-
forms can generate very long reads, making the perfect assembly
of whole genomes information-theoretically possible [1]. One of the
challenges in achieving this goal in practice, however, is that tradi-
tional assembly algorithms based on the de Bruijn graph framework
cannot handle the high error rates of long-read technologies. On
the other hand, overlap-based approaches such as string graphs [2]
are very robust to errors, but cannot achieve the theoretical lower
bounds. In particular, these methods handle the variable-length
reads provided by long-read technologies in a suboptimal manner.
In this work, we introduce a new assembly algorithm with two
desirable features in the context of long-read sequencing: (1) it is an
overlap-based method, thus being more resilient to read errors than
de Bruijn graph approaches; and (2) it achieves the information-
theoretic bounds even in the variable-length read setting.

I. INTRODUCTION

Current DNA sequencing technologies are based on a two-
step process. First, tens or hundreds of millions of fragments
from random unknown locations on the target genome are read
via shotgun sequencing. Second, these fragments, called reads,
are merged to each other based on regions of overlap using an
assembly algorithm. As output, an assembly algorithm returns a
set of contigs, which are strings that, in principle, correspond to
substrings of the target genome. In other words, contigs describe
sections of the genome that are correctly assembled.

Algorithms for sequence assembly can be mainly classified
into two categories: approaches based on de Bruijn graphs [3]
and approaches based on overlap graphs [2, 4, 5]. Following
the short-read high-throughput trend of second-generation se-
quencers, assemblers based on de Bruijn graphs became popular.
Roughly speaking, these assemblers operate by constructing a
de Bruijn graph with vertex set given by the set of distinct
K-mers extracted from the reads, and connecting two vertices
via a directed edge whenever the corresponding K-mers appear
consecutively in the same read. By construction, if the reads
achieve sufficient coverage, the target genome corresponds to
a Chinese Postman route on the graph, which is a path that
traverses every edge at least once. The problem of finding the
‘correct’ Chinese postman route (thus determining the target
genome) is complicated by the fact that repeated regions in the
genome are condensed into single paths. Thus, to resolve repeats
and obtain long contigs, a finishing step must be taken where
the original reads are brought back and aligned onto the graph.

While the construction of the de Bruijn graph can be per-
formed efficiently both in time and space, this approach has two
main drawbacks. The first is that shredding the reads into K-
mers renders the task of resolving repeats and obtaining long
contigs more challenging. The second drawback is that the de
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Bruijn graph construction is not robust to read errors. Indeed,
even small error rates will generate many chimeric K-mers (i.e.,
K-mers that are not substrings of the target genome). As a result,
heuristics must be implemented in practice to clean up the graph.

On the other hand, overlap-based assembly algorithms typi-
cally operate by constructing an overlap graph with vertex set
corresponding to the set of observed reads, where two vertices
are connected if the suffix of one of the reads enjoys significant
similarity with the prefix of the other (i.e,. two reads overlap by
significant margin). This way, the target genome corresponds
to a (generalized) Hamiltonian path on the graph, assuming
sufficient coverage. By not breaking the reads into small K-mers,
overlap-based approaches promise to generate less fragmented
assemblies. Moreover, read errors have small impact if we restrict
our attention to overlaps of sufficient length, implying that
overlap-based assemblers can be more robust to read errors than
their de Bruijn counterparts. Therefore, in the context of long-
read third-generation sequencing (where error rates are high, and
will continue to be for the foreseeable future [6]), overlap-based
approaches are expected to play a central role.

In spite of their relevance in the context of long-read se-
quencing, our formal understanding of overlap-based algorithms
is fairly limited. Under most natural formulations, extracting
the correct sequence from the overlap graph becomes an NP-
hard problem [7, 8]. Moreover, as the graph in general contains
many spurious edges due to repeats in the target genome, formal
analysis of these algorithms is difficult and very few of them
have theoretical guarantees. One example is the work in [9],
where an overlap-based algorithm is shown to have theoretical
performance guarantees under the assumption of fixed-length
reads. In practice this is never the case (e.g., PacBio reads can
differ by tens of thousands of base pairs [5]), and processing the
reads so that they all have the same length is usually suboptimal.

In this paper, we introduce an efficient, overlap-based assem-
bly algorithm that handles variable-length reads and is guaran-
teed to reconstruct the target genome provided the reads satisfy
the information-theoretic sufficient conditions proposed in [1].

II. BACKGROUND AND DEFINITIONS

In the genome assembly problem, the goal is to reconstruct
a target sequence g = (g[0], ..., g[G − 1]) of length G with
symbols from the alphabet Σ = {A,C,G,T}. The sequencer
produces a set of N reads R = {r1, ..., rN} from G, each of
which is a substring of g. For ease of exposition, we assume a
circular genome model to avoid edge-effects, so that a substring
may wrap around to the beginning of g. Thus g [5 : 3] denotes
g [5 : G− 1] g [0 : 3]. The reads may be of arbitrary length. The
goal is to design an assembler, which takes the set of reads R
and attempts to reconstruct the sequence g.



A. Bridging conditions and Optimal assembly

In [1], the authors derive necessary and sufficient conditions
for assembly in terms of bridging conditions of repeats. These
conditions are used to characterize the information limit for
the feasibility of the assembly problem. In this section, we
recall the main ideas behind this characterization, which serve
as motivation to our approach.

A double repeat of length ` ≥ 0 in g is a substring x ∈ Σ`

appearing at distinct positions i1 and i2 in g; i.e., g[i1 : i1 + `−
1] = g[i2 : i2+`−1] = x. Similarly, a triple repeat of length ` is
a substring x that appears at three distinct locations in s (possibly
overlapping); i.e., g[i1 : i1 + `− 1] = g[i2 : i2 + `− 1] = g[i3 :
i3 + ` − 1] = x for distinct i1, i2 and i3 (modulo G, given the
circular assumption on g). If x is a double repeat but not a triple
repeat, we say that it is precisely a double repeat. A double
repeat x is maximal if it is not a substring of any strictly longer
double repeat. Finally, if x = g [i1 : i1 + l] = g [i2 : i2 + l] and
y = g [j1 : j1 + l′] = g [j2 : j2 + l′] for some i1, i2, l, j1j2, l

′

where x, y are maximal and i1 < j1 < i2 < j2, then x and y
form an interleaved repeat. Examples are shown in Fig. 1.

maximal double repeat double repeat

triple repeat (also a double repeat)

interleaved repeats

Fig. 1. Examples of various kinds of repeats.

A repeat consists of several copies, starting at distinct locations
i1, i2, and so forth. A read r = g [j1 : j2] is said to bridge a copy
g [i : i + l] if j1 < i and j2 > i + l, as illustrated in Fig. 2. A

r

Fig. 2. A read bridging one copy of a triple repeat.

repeat is bridged if at least one copy is bridged by some read,
and all-bridged if every copy is bridged by some read. A set
of reads R is said to cover g if every base in g is covered by
some read. In the context of two reads r1, r2 which both contain
some string of interest s, r1 and r2 are said to be inconsistent
if, when aligned with respect to s, they disagree at some base,
as illustrated in Fig. 3.

r1

Y
X r2

s

Fig. 3. Reads r1 and r2 are inconsistent with respect to the shared string s.

In [1], the authors proposed a de Bruijn graph-based assembly
algorithm called MULTIBRIDGING and proved it to have the
following theoretical guarantee, stated in terms of bridging
conditions:

Theorem 1. [1] MULTIBRIDGING correctly reconstructs the
target genome g if R covers g and

B1. Every triple repeat is all-bridged.
B2. Every interleaved repeat is bridged (i.e. of its four copies,

at least one is bridged).

The motivation for appealing to conditions B1 and B2 stems
from the observation that, under a uniform sampling model
where N reads of a fixed length L are sampled uniformly
at random from the genome, these conditions nearly match
necessary conditions for assembly [1]. Motivated by this near-
characterization of the information limits for perfect assembly
and the advantages of overlap-based assembly for long-read
technologies, we describe an overlap-based algorithm with the
same performance guarantees. That is, provided conditions B1
and B2 are satisfied, our assembly algorithm will correctly
reconstruct the target genome g. The analysis in [1] shows that,
when B1 and B2 are not met, the assembly problem is likely to be
infeasible, and there is inherent ambiguity in the target genome
given the set of observed reads. In this sense, our algorithm can
be considered to be a near-optimal overlap-based assembler.

III. ALGORITHM OVERVIEW

Let’s begin with a description of the overall structure of our
approach. The algorithm starts with a set R of variable-length
reads, as illustrated in Fig. 4(a). Notice that in general R may
contain many reads that are essentially useless - for example,
a read consisting only of a single letter. Hence we begin by
discarding some of these useless reads. A typical discarding
strategy (used, for example, in the string graph approach [2, 4]),
consists of simply discarding any read that is contained within
another read. However, such reads can potentially encode useful
information about the genome (see example in Figure 5). Thus,
we first process the reads using a more careful rule described in
Section IV to only throw away reads that are truly useless. This
yields a trimmed-down set of reads as shown in Fig. 4(b).

The next step, the read extension, is the most complex part of
the algorithm. For each read, we consider its potential successors
and predecessors and carefully decide whether it can be extended
to the right and to the left in an unambiguous way. Whenever
B1 is satisfied, our extension algorithm is guaranteed to extend
all reads correctly. Moreover, we can keep extending the reads
in both directions until we hit the end of a double repeat. At this
point we are not sure how to proceed and we stop, obtaining a
set of extended reads as shown in Fig. 4(c).

In the third step, we merge reads that contain certain unique
“signatures” and must belong together. Although the example
in Fig. 3 does not show it, in this step we may also merge
nonidentical reads. If a double repeat is bridged by some read,
this merging process will merge the bridging read with the
correct reads to the left and right, thus “resolving” the repeat.
The merging operation produces a new set of reads as illustrated
in Fig. 4(d). At this point the only remaining ambiguity comes
from unbridged double repeats.

Finally, we resolve the residual ambiguity by constructing a
graph. Notice that for each unbridged double repeat, we have two
reads going in, and two going out, but we do not know the correct
matching. We express this structure as a graph, where each long
read is a node and each unbridged double repeat is also a (single)
node, as illustrated in Fig. 4(e). Since each of the unbridged
double repeats has in- and out-degree two, the graph is Eulerian,
and contains at least one Eulerian cycle. Whenever condition B2
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Fig. 4. The steps of the assembly algorithm.

is also satisfied, this cycle is unique, and corresponds to the true
ordering of the long reads, yielding the true sequence.

In the next two sections, we will describe the algorithm in
detail. In Section IV, we describe the three read processing steps:
read filtering, extension and merging. Then in Section V, we
present the final step where we construct the Eulerian graph and
extract the genome sequence g from it. We refer to the appendix
for detailed proofs.

IV. PROCESSING VARIABLE-LENGTH READS

A basic question that arises when dealing with variable-length
reads is how to handle reads that are entirely contained in other
reads; i.e., a read r1 that is a substring of another read r2. An
intuitive idea would be to simply discard all such reads, as they
seemingly contain no additional information for assembly.

However, as shown in Fig. 5, discarding all contained reads
is in general suboptimal as it can create holes in the coverage,
making perfect assembly from the remaining reads infeasible.
Here, r1 is contained within r2, because r2 bridges a repeat
which in turn contains r1. However, deleting r1 causes the left
copy to no longer be covered by any read.

We start instead with a more careful treatment of contained
reads, described in Algorithm 1. As it turns out, this procedure
preserves valuable properties of the set of reads R, which will

r1 r2

Fig. 5. Removing read r1, which is contained in r2, creates a coverage gap.

Algorithm 1 Contained read filtering
1: Input: R
2: for r ∈ R do
3: if r is contained in two reads that are inconsistent with

each other then
4: Remove r from R
5: Output: Updated R

allow us to achieve perfect assembly. This is stated in the
following lemma, whose proof we defer to the appendix.

Lemma 1. Suppose R covers s and B1 and B2 hold. After the
filtering procedure in Algorithm 1, R still covers s, B1 and B2
still hold, and in addition,
B3. No read in R is a triple repeat in s.

After filtering out unnecessary reads, we move to the read
extension step. The main idea is to consider one read at a
time, and keep extending it in both directions according to other
overlapping reads. Due the existence of repeats in s, however, we
cannot always confidently determine the next base, so we stop
when this is no longer possible. We describe this in Algorithm 2.

Algorithm 2 Extension Algorithm
1: Input: R after filtering from Algorithm 1
2: for r ∈ R do
3: BifurcationFound← False
4: t← r
5: while BifurcationFound = False do
6: s← longest proper suffix of t that appears (anywhere)

in another read, but preceded by a distinct symbol
7: X ← symbol of t preceding s
8: U ← {segments XsK appearing in R for some K ∈ Σ}
9: if U = ∅ then

10: t← s
11: else if |U | = 1 then
12: r ← rA, where U = {XsA}
13: t← XsA
14: else if |U | = 2 then
15: BifurcationFound← True
16: Uright(r)← {XsA,XsB}
17: else
18: B1 must have been violated
19: Repeat for left extensions (obtaining Uleft(r) instead)
20: Output: Set of extended reads R.

Algorithm 2 works by finding reads that overlap with r, and
using them to determine what the possible next bases are. For
each read r, in line 6, we carefully choose a suffix s and then
look for occurrences of XsK for some K ∈ Σ in any other
reads to form the set U , as illustrated in Fig. 6. We will later
prove that the suffix s always exists. If U is empty, we return
to line 6 and consider a shorter suffix of r. If U has a single
element XsA, we extend r by A. If U has two elements XsA
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Fig. 6. After the suffix s of r is defined in line 6 of Algorithm 2, we look for
reads containing a string XsK for some K ∈ Σ. In this case, we would have
U = {XsA,XsB}.
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Fig. 7. In line 6 of Algorithm 2, we consider the longest suffix s of r (or the
longest suffix that is shorter than the previously considered s) that appears in
another read preceded by a distinct symbol.

and XsB, we conclude that we must be at the end of a repeat
and a “bifurcation” should happen. So we set BifurcationFound
to be true, and exit the loop.

A key aspect of this procedure is the selection of the suffix
s, which determines the size of the match we are looking for.
Intuitively, if a read overlaps with r by a large amount, we should
trust that it gives us the correct next base, whereas if a read
overlaps with r by a small amount, this is likely to be a spurious
match. To determine the amount of overlap that is “enough” to
be trustworthy, we look for a suffix s of r that appears on a
different read preceded by a different symbol, as shown in Fig. 7.
To understand the choice of s, consider the following definition.

Definition 1. A read r’s triple-suffix is the longest suffix of r
that is a triple repeat in the genome.

A read r’s triple suffix z tells us the minimum overlap that
we consider reliable. Although we cannot always determine this
quantity exactly, it turns out that the suffix s chosen in line 6 is
always an overestimate.

Theorem 2. Suffix s is always at least as long as r’s triple-suffix.

The reason why an s that is at least as long as r’s triple-
suffix is trustworthy is that, whenever conditions B1, B2 and B3
are satisfied, our extension operations are never in error. Hence
Algorithm 2 never produces a read that could not have come
from the genome, nor does it cause the set of reads to violate
any of our initial conditions.

Theorem 3. The Extension Algorithm produces a set of reads
that continue to obey constraints B1, B2, and B3.

After extending our reads in Algorithm 2, we have a set
of reads that end at precisely-double repeats, as illustrated in
Fig. 4(c). These repeats make the correct next base ambiguous.
However, although the next base itself is ambiguous, finding the
precisely-double repeats still allows us to resolve some additional
ambiguity. We do so by merging reads together in Algorithm 3.
Notice that in Algorithm 2, whenever we found a bifurcation
in line 15, we recorded “signatures” Uright(r) = {XsA,XsB}
that should identify the two possible extensions of r to the right
(and Uleft(r) for the possible left extensions). In Algorithm 3
we use these signatures to guide the merging operations.

As in the case of the extension algorithm, in the appendix we
show that Algorithm 3 does not make any mistakes:

Algorithm 3 Merging Algorithm
1: Input: R after extension from Algorithm 2
2: for r ∈ R do
3: Let {XsA,XsB} = Uright(r). Merge all reads

with XsA as r1 and all reads with XsB as r2
4: If r is inconsistent with r1, merge it with r2
5: If r is inconsistent with r2, merge it with r1
6: If r is contained in both r1 and r2, discard it.
7: Canonical successors: S(r)← {r1, r2}
8: Repeat for left extensions (and compute canonical

predecessors P (r) instead)
9: Output: New set of long reads R̃ and two canonical succes-

sors S(r) and predecessors P (r) for r ∈ R̃

Theorem 4. The Merging Algorithm produces a set of reads that
continue to obey constraints B1, B2, and B3.

Although we loop over r ∈ R in the algorithm, we point
out that strictly speaking this loop is not well-defined as we
are modifying the set R as we loop through it. We present
the algorithm in this way for simplicity. In reality, one would
process reads in a queue, and additionally reprocess certain reads
as necessary (whenever their successors are merged).

V. BUILDING AN EULERIAN GRAPH FROM EXTENDED READS

After the merging part of the algorithm, we obtain a set of
long reads R̃ that stretch between pairs of unbridged repeats, as
illustrated in Figure 4(c). In addition, Algorithm 3 outputs, for
every long read r, a pair of canonical successors, say r1 and
r2. From the canonical successor/predecessor relationships, we
will construct the final Eulerian graph G that will allow us to
figure out the correct ordering of the long reads. First, we present
several technical observations that guarantee that the construction
of G is well defined and will satisfy certain properties.

To begin, let’s consider the current state of the set of reads.
The following lemma about the canonical successors of a read
r (and the analogous statement for predecessors) follows by
construction from Algorithm 3.

Lemma 2. After Algorithm 3, each read r has two canonical
successors r1 and r2 such that:

(a) r has a suffix s that is precisely a double repeat, and such
that r1 and r2 contain sX, sY for some X 6= Y (see
Fig. 8(b)), and no other read contains sK for any K.

(b) r is not contained within both r1 and r2.
(c) r is consistent with both r1 and r2.

Our eventual goal is to show that the reads can be grouped
into (non-disjoint) groups of four that all overlap on a particular
substring, as shown in Fig. 8(b). First, we show that a read’s two
successors must have the same overlap.

Lemma 3. A read r has the same overlap z with its successors
r1 and r2, and is contained in neither.

Now we can demonstrate another type of symmetry: prede-
cessors and successors are opposites in the natural sense.

Corollary 1. If r1 is one of r’s canonical successors, then r is
one of r1’s canonical predecessors.
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Fig. 8. From the original set of reads (a), merging produces sets of reads that
overlap precisely at unbridged double repeats (b).

With these technical observations, we can prove the following
theorem, which shows that every read in the graph can be
grouped into a four-read structure as the one shown in Fig. 8(b).

Theorem 5. If r has successors r1 and r2, then r1 and r2 both
have predecessors r and r′ for some r′.

Proof. Suppose r has successors r1 and r2. By Corollary 1, r
is one of r1’s predecessors; let the other be r′. By Lemma 3, r
overlaps by z with both r1 and r2, and by the analogous version
of Lemma 3 for predecessors, r′ also overlaps by z wth r1.

All of these reads contain zK or Kz for some K ∈ Σ. Thus
if we define s as in Lemma 2(a) and s′ as in the predecessor
version of Lemma 2(a), all these reads contain sK or Ks′ for
some K ∈ Σ. Thus, r1 and r2 are the successors of r and r′,
and vice versa, as shown in Fig. 9(a).

Note that for any four-read configuration implied by Theo-
rem 5, the mutual overlap z must be an unbridged double repeat,
since no read other than these four contain zK or Kz for K ∈ Σ.

Now we have groups of reads matched in this manner: two
start and two end reads, where the end reads are the start reads’
successors, and vice versa. We will now construct a graph on
all reads. First, for each read we will create a node. Second, for
every group, we create a node corresponding to the unbridged
repeat, and edges as shown in Fig. 9(b).
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Fig. 9. (a) All read overlaps occur in a four-read configuration. (b) The four-read
configurations are used to construct a graph.

The correct genome corresponds to some Eulerian cycle
through this graph in the natural sense, because every read r must
be succeeded by either r1 or r2 and r′ will then be succeeded by
the other one, which determines an Eulerian cycle. Finally, we
have the following result regarding the uniqueness of Eulerian
cycles, which is proved in the appendix.

Lemma 4. Suppose a graph G is Eulerian and every node has
in-degree and out-degree at most 2. If there are multiple distinct
Eulerian cycles in G, then any Eulerian cycle must visit two
vertices u and v in an interleaved manner; i.e., u, v, u, v.

Since, in our construction, only the unbridged double repeat
nodes have degree more than one, Lemma 4 implies that our
constructed graph only has multiple Eulerian cycles if s has
unbridged interleaved repeats. We conclude that if B1 is satisfied
our constructed Eulerian graph has a unique Eulerian cycle,
which must correspond to the genome sequence g. Finally, we
confirm that the entire algorithm can be implemented efficiently.

Theorem 6. Suppose that we have N reads with read lengths
bounded by some fixed constant Lmax, and that the coverage
depth c ,

(∑N
i=1 Li

)
/G (the average number of reads covering

a symbol in g) is a constant. Then the algorithm can be
implemented in O

(
N3
)

time.

VI. CONCLUDING REMARKS

In this paper, we described an overlap-based assembly al-
gorithm with performance guarantees under the assumption of
error-free reads. However, the overlap-based nature of the algo-
rithm makes it amenable to be modified to handle read errors.
The algorithm relies on string operations such as testing whether
one string is contained within another and whether two strings
share a substring, which have natural approximate analogues.
For example, instead of testing whether two strings overlap, we
can test whether they approximately overlap (with few errors).
The bridging conditions then translate to approximate analogues
(e.g. instead of triple repeats being all-bridged, we must have
approximate triple repeats being all-bridged), and the sufficiency
proofs should naturally translate to this scenario.

We point out that real sequencing datasets are generally
large and require linear- or near-linear-time algorithms, making
the O(N3) complexity guaranteed by Theorem 6 impractical.
However, we expect that minor changes in the algorithm design
and analysis can yield an algorithm which is, in practice, at most
quadratic and possibly near-linear.

VII. APPENDIX

Here we present several proofs referred to throughout the text.

A. Proof of Lemma 1
Proof. Suppose that r is a triple repeat. In particular, r must
be contained in some maximal triple repeat s. If all copies of s
are preceded by the same base, say X, then Xs would also be
a triple repeat, meaning that s would not be maximal. Thus, s
must be preceded by at least two different bases, say X and Y.
If B1 holds, then s is all-bridged, so Xs and Y s must appear
in two reads, and these two reads contain r and are inconsistent
with each other, so that r is removed. Thus, all triple repeats are
removed (B3).

Now suppose r was removed. r appears in two inconsistent
reads, so it is at least a double repeat. If r is a triple repeat, it
must be all-bridged, so that r is subsumed in one of the bridging
reads and can be discarded. Otherwise, r is precisely a double
repeat. Suppose it is contained within both r1 and r2. Since the
two reads are inconsistent, they must correspond precisely to the
two distinct locations where r may be in the genome. r must be
subsumed within either r1 and r2, and can be discarded. Thus,
removing a read never violates B1 or B2.



B. Proof of Theorem 2

Proof. First we prove a useful lemma.

Lemma 5. If r’s triple suffix z is a proper suffix of t before line
6, then it will be a suffix of s after line 6.

Subproof of Lemma 5. Let r’s triple-suffix be a string z preceded
by X. Then Xz cannot also be a triple repeat (otherwise it would
be a triple-suffix longer than z, a contradiction). Thus, of the
three copies of z, they cannot all be preceded by X; all but one
or two must be preceded by a different base, say Y, as shown
below.

Fig. 10. Xs is at most a double repeat.

Since this copy must be bridged, there must be a read
containing the string “Yz”. Also, z is a proper suffix of t by
assumption. Thus, z satisfies the conditions described in line 6;
and since line 6 searches for the longest string satisfying those
conditions, s will be at least as long as r’s triple-suffix. That is
to say, z is a suffix of s.

With this lemma, we can proceed by induction.
First we consider the base case, when we set s on line 6 with

t = r. Firstly, r is guaranteed to have some triple-suffix z for
nontrivial genomes, since each base in A,G,C,T should appear
at least three times in the genome; this means that at least the
last base of r is a triple repeat. Now r’s triple-suffix z cannot be
r itself, by B3; thus z is a proper suffix of r = t. This satisfies
the conditions of Lemma 5.

Then we consider all three cases in the next code block.

(a) If we proceed to line 9, we assign t = s and loop. We set
t = s only if U = ∅, that is, s is unbridged. We prove by
contradiction that r’s triple suffix z is a proper suffix of
t. Suppose not; then t is a suffix of z. Since z is a triple
repeat, it must be bridged, and t, a substring of z, must also
be bridged, a contradiction. Again, this allows us to use
Lemma 5, and we are done.

(b) If we proceed to line 11, we set t = XsA. Since s is at least
as long as r’s triple-suffix, sA is at least as long as rA’s triple
suffix. If not, some XsA is a triple repeat, but then Xs is
also a triple repeat that is longer than s, a contradiction.
Now since sA is at least as long as rA’s triple suffix, and
sA is a proper suffix of t = XsA, rA’s triple suffix will also
be a proper suffix of XsA, so we can use Lemma 5.

(c) If we proceed to line 14, we exit the loop, so that the
invariant is irrelevant.

(d) If we proceed to line 17, we see at least three different
strings (say) XsA, XsB, and XsC. Thus Xs is a triple repeat,
and it is longer than s, a contradiction to the inductive
hypothesis. Thus this line can never be reached.

Note that this guarantees that line 6 never fails, because z is
always a suffix of t and therefore there is at least one valid
candidate for the value s.

C. Proof of Theorem 3

Proof. The only place where the set of reads is modified is line
12. Here, s is a double repeat, because both Xs and Y s are
substrings of some read. Suppose s is precisely a double repeat.
Then, since s appears both in Xs and in Y s, both Xs and Y s
appear only once in the genome (and s appears once in each,
i.e., twice in total), as shown in Fig. 11. Since Xs appears once

r
X Y

s s

A

X A

Fig. 11. Extension step when s is a double repeat.

in the genome and a read contains XsA, the next base of r must
be A.

Alternatively, suppose s is not precisely a double repeat, i.e.
it is a triple repeat. Then s must be all-bridged by assumption
B1. If r were succeeded by some base other than A (say, B),
then the string XsB would appear in the genome. Since s is all-
bridged, XsB would also appear in some read. But it does not,
so r again must be suceeded by A, as shown in Fig. 12. Thus, we

r
X Y

s

A

X A

X

s

A
X A

s

Fig. 12. Extension step when s is a triple repeat.

can extend r by A safely. Clearly, a correct extension operation
cannot violate any of the conditions B1, B2, and B3.

D. Proof of Theorem 4

Proof. We are given U(r) = {XsA,XsB} which were carried
over from the extension algorithm. We claim that both XsA
and XsB appear only once in the genome each. If either of
them appeared more than once, then Xs would be a triple repeat
that is longer than s, and thus longer than r’s triple repeat (by
Theorem 2), a contradiction.

So, since XsA and XsB appear only once each in the
genome, we can merge all reads with XsA into a single read,
and similarly with XsB. Also, since Xs appears only twice in
the genome, if r is inconsistent with r1, it must be aligned with
r2 and can be merged with r2; and vice versa. If r is contained
in both r1 and r2, it cannot contribute to B1, B2 and B3, and
can be discarded.

E. Proof of Lemma 3

Proof. Suppose towards a contradiction that r has two successors
r1 and r2, where r has strictly greater overlap with r1 than with
r2, with z being the shorter overlap, as shown in Fig. 13. Read

r
r1

r2Y

X
s' s

A

z

A

Fig. 13. Two successors with different overlaps produces a contradiction.

r2 may not contain r, otherwise both r1 and r2 would contain



r, contradicting Lemma 2(b). Now, if we let s be the suffix of r
as in Lemma 2(a), s must be a suffix of z. Since s is precisely
a double repeat (once followed by X and once followed by Y ),
zX only appears once in the genome. Now if we apply the
predecessor version of Lemma 2 to r2, r2 begins with some s′

and has predecessors containing As′ and Bs′ respectively. Since
s′ is precisely a double repeat, it cannot contain zX (which only
appears once) and must be a prefix of z. Since s′ can only be
preceded by A or B, we can assume wlog that r1 contains As′

as depicted. But then r and r1 both contain As′, contradicting
(the predecessor version of) Lemma 2(a), which states that only
one read may contain As′. Thus a read r must have the same
overlap with both successors, and cannot be contained in either,
or it would be contained in both, contradicting Lemma 2.

F. Proof of Corollary 1

Proof. By (the predecessor version of) Lemma 2, r1 begins with
a double repeat s′ and has predecessors containing As′ and Bs′

respectively, as shown in Fig. 14. If we let z be the overlap

r

r1X

s'

z

A

B

Fig. 14. Successors/predecessors are symmetric.

between r and r1 and X be the symbol following z in r1, as
we argued in the proof of Lemma 3, zX can only appear once
in the genome. Hence, since s′ is a double repeat, it must be a
prefix of z.

Moreover, r cannot be contained within r1 by Lemma 3. Since
by (the predecessor version of) Lemma 2, only the predecessors
of r1 may contain Ks′ for some K ∈ Σ, r must be one of the
predecessors of r1.

G. Proof of Lemma 4

Proof. Since G contains an Eulerian cycle, din(v) = dout(v) for
every v (the in- and out-degrees are equal). Moreover, any node v
with din(v) = dout(v) = 1 can only be traversed by an Eulerian
cycle in a unique way, so it can be ”condensed”, and the Eulerian
cycles in the resulting graph G′ are in one-to-one correspondence
with the Eulerian cycles in G. Similarly, if a node v has a self-
loop, v can be condensed, since there is a unique way in which
any Eulerian cycle can traverse it. Therefore, we may prove the
lemma assuming the special case where din(v) = dout(v) = 2
for every v, and there are no self-loops.

To prove the forward direction, suppose an Eulerian cycle
C visits u and v in an interleaved manner. Then C can be
partitioned into four paths, two from u to v and two from v
to u. By considering the two possible orderings of these four
paths into a cycle, we obtain two distinct Eulerian cycles.

For the backwards direction, suppose no such nodes u and
v exist. If after the condensation steps described above, n =
1, the Eulerian cycle must be unique. So suppose n ≥ 2, and
consider the order in which C visits the nodes in v1, ..., vn, each
one twice, starting from v1. Suppose va is the first node to be
visited twice. Since there is no self-loop, there must be a node
vb that was visited between the first and second visits to va.

Therefore, va and vb are visited in an interleaved manner, which
is a contradiction.

H. Proof of Theorem 6

Proof. In many portions of the algorithm, we will need to find
bridging reads. To make this more efficient, we can preprocess
each read by hashing all of its substrings, which takes O (N)
time. Using this hash table, we can implement Algorithm 1 in
constant time per read, or O (N) time.

In Algorithm 2, we can loop only O (G) = O (N) times for
each read, because either t becomes shorter or the read becomes
longer every time we loop; and if we loop G times we have
already assembled the entire genome and can terminate. Each
loop takes constant time using our hash table to find bridging
reads. Thus the total time is O

(
N2
)
.

After Algorithm 2, we will recompute the hash table. This
step takes O

(
N3
)

time because the reads may have grown
in size up to O (G). Then, in Algorithm 3, we perform some
additional constant-time bridging checks, and merge some reads.
Each merge takes O (N) time and reduces the number of reads
by one, thus this phase is O

(
N2
)

time.
Finally, we construct a graph and traverse an Eulerian cycle

in it, which takes linear time. This completes the algorithm.
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