

1

“Bowling Scores” Case Study
by Michael Clancy © 2005

Background

The game of bowling is a world-wide sport. More than 95 million people bowl, in 90
countries spanning six continents

*

. It is played by rolling a ball down a bowling
lane to knock down the pins at the end of the lane. The situation is diagrammed in
Figure 1.

A bowling game is divided into ten

frames

. The bowler is allowed up to two

balls

 in
each frame to knock down all ten pins. Knocking down all the pins with the first
ball ends the frame, and is called a

strike

. Knocking down all the pins with the first
two balls is called a

spare

. Knocking down fewer than ten pins with the first two balls
is called a

miss

.

A bowler earns one point for each pin knocked down, plus bonuses for each strike
and spare. A strike scores 10 points plus the total of the next two balls; a spare
scores 10 points plus the score of the next ball. A strike in the tenth frame earns the
bowler two extra balls; a spare in the tenth frame earns one extra ball. An example
of how a game is scored is shown in Table 1.

Bowlers use a score sheet that’s organized to clearly display the score for each
frame and each ball. By convention, they use an X to represent a strike and a /
(slash) to represent a spare. Here’s how the game in Table 1 would be scored:

In olden days, bowlers kept their own scores. Computers, however, have brought
automatic scorekeeping to bowling. After each ball, sensors count and tally the
number of pins knocked down.

*. Source: The International Bowling Museum web site,

www.bowlingmuseum.com

.

Figure 1
The bowling lane

pinsbowler

ball is rolled

9 0 6 2 7 8 9 0 8

3010 56 74 82 100 120 139 148 176

2

Problem

Design and implement a class that represents an

automatic bowling scorer

 object. It
will provide several methods:

• a constructor;

• an

int frameNumber

 method that returns the number of the frame containing
the ball about to be rolled;

• an

int scoreSoFar

 method that returns the score in the game so far;

• a

boolean gameIsOver

 method that returns true when the tenth frame has been
scored and false otherwise, and which causes the next roll to start a new game;

• an

int [] roll

 method that, given the number of pins knocked down by a roll of
the ball, returns an array whose length is the number of frames completely
scored and whose contents are the cumulative scores for those frames.

The arrays returned by

roll

 in the game just described appear in Table 2.

You may assume that the argument to

roll

 correctly represents the number of pins
knocked down by the roll. That is, no error checking is necessary.

Preparation

The reader should have experience with defining objects, using methods, loops,
and arrays, and testing programs with

JUnit

.

frame balls score for the frame cumulative score

1 9+1 (spare) 10+0=10 10

2 0+10 (spare) 10+10=20 30

3 10 (strike) 10+10+6=26 56

4 10 (strike) 10+6+2=18 74

5 6+2 8 82

6 7+3 (spare) 10+8=18 100

7 8+2 (spare) 10+10=20 120

8 10 (strike) 10+9+0=19 139

9 9+0 9 148

10 10 (strike)
+10+8 (bonuses)

10+10+8=28 176

Table 1: A sample bowling game

3

argument
to

roll

return value
argument

to

roll

return value

9

{ }

3

{10, 30, 56, 74, 82}

1

{ }

8

{10, 30, 56, 74, 82, 100}

0

{10}

2

{10, 30, 56, 74, 82, 100}

10

{10}

10

{10, 30, 56, 74, 82, 100, 120}

10

{10, 30}

9

{10, 30, 56, 74, 82, 100, 120}

10

{10, 30}

0

{10, 30, 56, 74, 82, 100, 120, 139, 148}

6

{10, 30, 56}

10

{10, 30, 56, 74, 82, 100, 120, 139, 148}

2

{10, 30, 56, 74, 82}

10

{10, 30, 56, 74, 82, 100, 120, 139, 148}

7

{10, 30, 56, 74, 82}

8

{10, 30, 56, 74, 82, 100, 120, 139, 148,
176}

Table 2: Results of calls to

roll

4

Exercises

Analysis

1. What is the

minimum

 number of balls a bowler can roll
during a game?

Analysis

2. If a bowler rolls the minimal number of balls in a game,
what is the smallest number of points he/she can score?

Analysis

3. What is the

maximum

 number of balls a bowler can roll
during a game?

Analysis

4. What is the maximum score a bowler can achieve during a
game?

Analysis

5. Can all scores up to the maximum be bowled in a game?

Analysis

6. What score results from the following sequence of balls?

9 1 10 10 10 10 0 10 0 10 5 4 1 9 10 5 4

Analysis

7. Explain why the length of the array returned by

roll

increased by 2 for the eighth roll.

Analysis

8. List all conditions under which this can happen (i.e. the
length of

roll

’s return increases by 2).

Analysis

9. Suppose

frameNumber

 is called immediately after each
call to

roll

. What are the values returned by

frameNumber

for the game in Table 1?

Reflection

10. What makes the scoring of a bowling game complicated?

Reflection

11. What scoring errors are inexperienced bowlers likely to
make?

5

Design of a bowling Scorer class

How might a programmer
approach this problem?

A good approach to designing a class is to

role-play

 the corre-
sponding object. That is, we put ourselves in its place, and act
out what we would do for each method call. Occasionally we
will find that we must remember information between method
calls; this remembered information will be stored in class
instance variables.

How does a human score a
bowling game?

Here’s how we might score the example game in the problem
statement.

Stop and predict

→

What instance variables will be needed to keep track of the bowling
score?

ball action

9 We take note of the 9.

1 The roll completes a spare; we take note of that, but
can’t supply a score for the frame yet.

0 We note the 0 as the first ball in the frame 2. More-
over, we can now score frame 1.

10 We take note of a spare for frame 2, but can’t score
the frame yet.

10 We score frame 2 and note the strike in frame 3.

10 We take note of the strike for frame 4, but we still
can’t score frame 3.

6 We note the 6 as the first ball in frame 5 and score
frame 3.

2 We score frames 4 and 5.

7 We note the 7 as the first ball in frame 6.

3 We note the spare in frame 6, but can’t score it yet.

8 We note the 8 as the first ball in frame 7, and score
frame 6.

2 We note the spare for frame 7.

10 We note the strike for frame 8, and score frame 7.

9 We note the 9 for frame 9, but can’t score frame 8.

0 We score frames 8 and 9.

10 We indicate strike for frame 10.

10 We note 10 for the first bonus ball.

8 We score frame 10. The game is over.

6

What information must the
bowling scorer keep track of?

A human bowling scorer might maintain various kinds of
information between balls:

• whether or not a strike has been rolled one or two balls
ago;

• whether or not a spare has been completed by the preced-
ing ball;

• whether the ball being rolled is the first or second ball o f
the frame;

• the number of pins knocked down by the first ball in the
frame;

• the number of the frame containing the ball being rolled;

• the number of the earliest frame not yet scored;

• the collection of cumulative scores for frames already
rolled;

• the score so far.

Stop and help

→

Identify an instance in the scoring of the game from the problem state-
ment that shows the need for each of the pieces of information just
described.

Stop and consider

→

Is any of the information in the list above redundant? That is, can it
be determined from the other information in the list? Explain why or
why not.

Stop and predict

→

Devise an English or pseudocode algorithm for handling a ball roll.

How should the scoring
algorithm be organized?

A human bowler, asked to explain how to tally a ball value, will
probably organize the explanation in terms of the “whether or
not” information:

if the previous two balls were both strikes, then han-
dle the ball one way;

otherwise, if the previous ball was a strike, then
handle the ball another way;

etc.

Programmers refer to these “whether or not” conditions as

state

, or situational, information, and often use a

state diagram

to represent all the possible situations and paths between
them. In a state diagram, the different states are represented
by boxes, and the ways to get from state to state are repre-
sented by labeled arrows. (Analogously, players of computer
adventure games create maps of the various “rooms” of the
adventure and the ways to get from room to room.) Code
designed from the state diagram will involve variables that rep-
resent the state information. It will include a section of code
for each state that will modify the variables to represent a

tran-
sition

 from one state to another.

7

What does the state diagram for
bowling scoring look like?

To draw the state diagram for bowling scoring, we start by
describing the situation at the start of the game:

rolling the first ball of the frame;
no spare on the most recent ball;
no strike on either the most recent ball or two balls ago.

There are two possibilities for the input value. Either it’s a 10,
representing a strike, or it’s a value from 0 to 9. That leads to
two different situations:

(input value is 10)
rolling the first ball of the frame;
no spare on the most recent ball;
strike on the most recent ball;
no strike from two balls ago.

(input value < 10)
rolling the second ball of the frame;
no spare on the most recent ball;
no strike on the most recent ball;
no strike from two balls ago.

This results in the diagram below.

Each of these situations leads to two additional situations. For
the strike, these are

(input = 10—two consecutive strikes)
rolling the first ball;
no spare on the most recent ball;
strike on the most recent ball;
strike two balls ago.

(input < 10)
rolling the second ball;
no spare on the most recent ball;
no strike on the most recent ball;
strike two balls ago.

These are new situations and require two new boxes in the dia-
gram. The other case, not a strike, leads to the following possi-
bilities:

first ball;
not spare last ball;
not strike last ball;
not strike two balls ago.

first ball;
not spare last ball;
strike last ball;
not strike two balls ago.

second ball;
not spare last ball;
not strike last ball;
not strike two balls ago.

ball value = 10 ball value < 10

8

(first ball + second ball = 10—a spare)
rolling the first ball;
spare on the most recent ball;
no strike on the most recent ball;
no strike two balls ago.

(first ball + second ball < 10)
rolling the first ball;
no spare on the most recent ball;
no strike on the most recent ball;
no strike two balls ago.

The first possibility is a new situation. The second, however, is
just the same as the start situation. In the diagram, an arrow is
drawn back to the start state.

As it turns out (making a long story short), the situations just
described are the only ones that will occur. The complete state
diagram, slightly reoriented to be less messy, appears below.

Stop and help

→

Trace through the sequence of states that results from the first few balls
of the example game in the problem statement.

A good way to check that the six states in the diagram are the
only ones possible is to make a table, with a row for each possi-
bility. In this case, the possibilities are first ball or second ball,
spare or no spare on the last ball, strike or no strike on the last
ball and strike or no strike two balls ago. Here’s the table:

first ball;
not spare last ball;
not strike last ball;
not strike two balls ago

= 10

< 10

= 10 – first ball

< 10 – first ball

< 10

= 10

= 10< 10< 10 – first ball

= 10 – first ball

= 10

< 10

first ball;
not spare last ball;
strike last ball;
not strike two balls ago

second ball;
not spare last ball;
not strike last ball;
not strike two balls ago

first ball;
spare last ball;
not strike last ball;
not strike two balls ago

first ball;
not spare last ball;
strike last ball;
strike two balls ago

second ball;
not spare last ball;
not strike last ball;
strike two balls ago

9

Stop and consider → Describe how the rows in the table are ordered. For example, explain
why the row containing (1, yes, no, yes, no) precedes the row con-
taining (1, yes, no, no, yes).

Stop and help → Show, with as few arguments as possible, that the missing entries in
the table are all “no”. For instance, if there were a spare on the last
ball, there can’t have been a strike on the most recent ball, so four of the
rows of the table have to be “no”.

What organization does the state
diagram suggest for the roll
method?

The state diagram suggests an algorithm for the roll method:

if the game is in state “first ball, no spare, no strike last
ball, no strike two balls ago”, then

update variables appropriately according to the ball
value;

otherwise, if the game is in state “first ball, no spare, strike
last ball, no strike two balls ago”, then

update variables appropriately according to the ball
value;

otherwise ...

which ball
in frame?

spare last
ball?

strike last
ball?

strike two
balls ago?

possible?

1 yes yes yes no

1 yes yes no no

1 yes no yes no

1 yes no no yes

1 no yes yes yes

1 no yes no yes

1 no no yes no

1 no no no yes

2 yes yes yes no

2 yes yes no no

2 yes no yes no

2 yes no no no

2 no yes yes no

2 no yes no no

2 no no yes yes

2 no no no yes

10

What instance variables are
appropriate for the Scorer class?

It’s time now to start designing in detail. Recall the list of
information that the scorer object needs to maintain between
calls:

• whether or not a strike has been rolled one or two balls
ago;

• whether or not a spare has been completed by the preced-
ing ball;

• whether the ball being rolled is the first or second ball o f
the frame;

• the number of pins knocked down by the first ball in the
frame;

• the number of the frame containing the ball being rolled;

• the number of the earliest frame not yet scored;

• the collection of cumulative scores for frames already
rolled;

• the score so far.

We choose names for these quantities that suggest their pur-
pose. The frame numbers can be int variables that take on val-
ues between 1 and 10; we’ll name them rollingFrame and
firstUnscoredFrame. Similarly, we’ll store the value of the first
roll in each frame in an int variable named firstBallInFrame,
and the score so far in an int variable named scoreSoFar. The
collection of cumulative scores should use an array; we’ll call it
frameScores, suggesting the assignment of one score per
frame.

How should the state of the
bowling game be represented?

The next step is to decide how to represent the state. This will
allow further decomposition of the “if game is in state …” tests
along with the “update variables appropriately” steps.

One representation of the state would use four variables: the
ball number, plus indications of whether the last ball was a
spare, the last ball was a strike, or two balls ago there was a
strike. The “if game is in state …” tests would then merely be
tests of these variables.

A better way is to represent the state as a single variable. In gen-
eral, programs that let a single variable represent more than
one different piece of information are confusing and difficult
to debug. In this solution, however, the state variable is repre-
senting the collection of related pieces of information about
strikes and spares, namely, the state of the bowling game.

What are the characteristics of
the state variable?

The variable that indicates the current state of the bowling
game must be able to hold (at least) six values. That rules out
using type boolean, and suggests type int or char*. Using this

* An enum would be a better choice in Java 1.5.

11

approach, the program represents the state with the following
characteristics by the value 0*:

rolling the first ball;
no spare on the most recent ball;
no strike on the most recent ball;
no strike from two balls ago.

The state with the following characteristics gets the value 1:

rolling the second ball;
no spare on the most recent ball;
no strike on the most recent ball;
no strike from two balls ago.

How is the state variable used in
the scoring process?

And so on. The code for state 0 would then include the follow-
ing statements:

if (ball < 10) {
state = 1;

...
} else ...

But this is unnecessarily obscure. Java allows named constants
to be defined as static final variables. Using this facility, we
choose the following names for state values:

private static final int ROLLING_FIRST_BALL = 0;
private static final int ROLLING_SECOND_BALL = 1;
private static final int STRIKE_LAST_BALL = 2;
private static final int TWO_CONSEC_STRIKES = 3;
private static final int STRIKE_2_BALLS_AGO = 4;
private static final int SPARE_LAST_BALL = 5;

(It is conventional in Java for constants to have names that are
all upper case.) This change makes the code easier to under-
stand:

if (ball < 10) {
state = ROLLING_SECOND_BALL;

...
} else {

state = STRIKE_LAST_BALL;
...

This choice of a single state variable also allows the use of a
switch statement whose cases represent the handling of each
state.

The roll method is coming together:†

public void roll (int ball) {
if (state == ROLLING_FIRST_BALL) {

...
} else if (state == ROLLING_SECOND_BALL) {

...
} else if (state == STRIKE_LAST_BALL) {

...

* Numbering in Java programs generally starts at 0 rather than 1.
† This could also be coded as a switch.

12

} else if (state == TWO_CONSEC_STRIKES) {
...

} else if (state == STRIKE_2_BALLS_AGO) {
...

} else if (state == SPARE_LAST_BALL) {
...

} else {
// signal an invalid state error

}
}

We now have designed the overall structure of the roll
method, and have chosen instance variables. The next task is
to code and test the Scorer methods; we will do this via an
approach referred to as “test-driven development”.

Exercises

Analysis 12. After starting the game with three calls to roll, the state is
STRIKE_2_BALLS_AGO. What were the arguments to roll?

Analysis 13. The number of different transitions from state to state is
interesting from the standpoint of testing a program
based on a state diagram. How many different state-to-
state transitions are there in the state diagram just
designed?

Analysis 14. How many of the different state-to-state transitions are
made in scoring the sample game in the problem state-
ment?

Analysis 15. What is the maximum number of different state-to-state
transitions that can be made in scoring a game that
includes no strikes?

Analysis 16. Explain why it is impossible to be rolling the first ball in a
frame, with a strike two balls ago and not a strike or spare
on the last ball.

Application 17. The game of table tennis (Ping-Pong) is played by two
players. One player serves the ball, then the players hit it
back and forth until one of the players misses. One way to
score table tennis is as follows:

• If the server misses, the serve goes to the other player.

• If the server’s opponent misses, the server scores 1.

• The winner is whoever reaches a score of at least 15
and is at least two points ahead of the opponent.

Organize this method of scoring table tennis as a state dia-
gram.

Reflection 18. Summarize the decisions made in the design so far.

13

Test-driven development of the Scorer class, part 1

What is test-driven development? Many students, and even some experienced programmers,
regard testing as something to be done after a program is
completely coded. Delayed testing, however, can lead to prob-
lems:

• bugs involving interaction of program components can be
extremely difficult to find;

• situations that are important to test are easily overlooked.

Test-driven development is a technique that addresses these prob-
lems. Coding and testing—development of the program—is
done in small pieces, with tests being written before the code.
The cycle of designing a test for a bit of functionality, then
writing and testing the code that implements that functional-
ity, is repeated until the program is complete. By writing only
enough code to pass each test, the programmer also limits
where bugs can occur and makes them easy to find.

What is JUnit, and how is it used? The JUnit tool simplifies test-driven development. It allows the
design of test methods composed of calls to assertion methods
that check return values and internal state for correctness.
The most commonly used assertion methods are the follow-
ing.

• void assertEquals (errmsg, expected, actual)
which compares the expected value of a variable or
expression (supplied as the “expected” argument) to its
actual value (the “actual” argument) and signals an error
(printing the given message) if they don’t match;

• void assertTrue (errmsg, expression)
evaluates the given expression and signals an error (print-
ing the given message) if it’s not true.

• void assertFalse (errmsg, expression)
evaluates the given expression and signals an error (print-
ing the given message) if it is true.

The names of the test methods all must start with the word
“test”, for example, “testGame”.

The development process then consists of adding one or more
JUnit test methods to the collection already invented, then
supplying the code with which the test will be satisfied. Since
each round of the development cycle invents a test, then sup-
plies the code to go with it, the collection of tests should be
exhaustive; that is, it should test all the code written so far.

What will be the first JUnit tests? We start with tests that merely exercise the Scorer constructor,
along with the access method. This may seem like a trivial
amount of code, but follows the principle of testing only a bit
of functionality at each step.

14

The constructor should initialize the frame number to 1 and
the total score to 0. A test of the constructor would thus use
the access functions that return these values, and make sure
that the game isn’t over yet. Following good programming
practice, we give the test method a name that suggests its pur-
pose. Here’s the code.

import junit.framework.TestCase;

public class ScorerTest extends TestCase {

public void testConstructor () {
Scorer s = new Scorer ();
assertEquals ("bad frame # for new Scorer",

1, s.frameNumber ());
assertEquals ("bad score for new Scorer",

0, s.scoreSoFar ());
assertFalse ("game is over for new Scorer",

s.gameIsOver ();
}

}

We now write the code to be tested:

public class Scorer {

// The number of the frame in which the next ball
// will be rolled; ranges from 1 to 11
private int rollingFrame;

// 0 if firstUnscoredFrame == 1,
// frameScores[firstUnscoredFrame] thereafter
private int totalScore;

public Scorer () {
rollingFrame = 1;
totalScore = 0;

}

public int frameNumber () {
return rollingFrame;

}

public int scoreSoFar () {
return totalScore;

}

public boolean gameIsOver () {
return false;

}
}

The Scorer constructor and the gameIsOver method will
clearly need to be expanded in the production version, but we
are patient and provide only code that we can test. Running
the test case with JUnit gives us an “all tests passed” signal. So
far, so good.

Stop and help → Change the Scorer code so that one of the tests is invalidated, for
instance by initializing rollingFrame to 3. Then run the tests to see
how JUnit signals the invalid value.

15

What should be tested after the
Scorer constructor?

A reasonable next step is to test a single roll that’s not a strike.
In addition to checking the results from frameNumber,
scoreSoFar, and gameIsOver, we check the result of roll,
which must be an empty array. Here is the code.

public void test1stRoll () {
Scorer s = new Scorer ();
int [] result = s.roll (1);
assertEquals ("result of 1st roll is wrong",

0, result.length);
assertEquals ("frame # after 1st ball is wrong",

1, s.frameNumber ());
assertEquals ("score after 1st ball is wrong",

0, s.scoreSoFar ());
assertFalse ("game is over after 1st ball",

s.gameIsOver ());
}

In the Scorer class, we add a new variable to store the scores,
and initialize it in the constructor:

private int [] frameScores;

public Scorer () {
...

frameScores = new int [0];
}

Finally, we supply the roll method:

public int [] roll (int ball) {
return frameScores;

}

We run the test cases; they both pass.

What should be tested after a
single nonstrike roll?

The next easiest thing to test is a second roll that leaves pins
standing (i.e. completes a miss). This should produce a score
for the first frame.

public void testFrame1miss () {
Scorer s = new Scorer ();
int [] result = s.roll (1);
result = s.roll (2);
assertEquals ("bad result after frame 1",

1, result.length);
assertEquals ("bad result[0] after frame 1",

3, result[0]);
assertEquals ("frame # after frame 1 is wrong",

2, s.frameNumber ());
assertEquals ("score after frame 1 is wrong",

3, s.scoreSoFar ());
assertFalse ("game is over after 1st frame",

s.gameIsOver ());
}

Stop and consider → Why are no assertions provided immediately after the first call to roll?

Stop and consider → Rolls of 1 followed by 2 are actually quite atypical in a bowling game.
Why aren’t more tests needed that provide more typical rolls?

16

What Scorer code must be added
to handle multiple rolls?

The Scorer class must now include some way to distinguish
the first ball in a frame from the second, since the score so far
should be increased after the second roll but not after the
first. Looking ahead to the six-state program, we code this as
follows:

private int state;
private static final int ROLLING_FIRST_BALL = 0;
private static final int ROLLING_SECOND_BALL = 1;

and add a statement in the constructor that initializes state.
Also required is the variable firstBallInFrame in which to save
the first ball value. It is not initialized in the constructor since
its value is undefined at the start of a frame.

private int firstBallInFrame;

Finally, we turn to roll, based on the pattern we designed ear-
lier:

public int [] roll (int ball) {
if (state == ROLLING_FIRST_BALL) {

// handle the first ball;
} else if (state == ROLLING_SECOND_BALL) {

// handle the second ball;
} else {

// signal an error;
}
return frameScores;

}

There are several things to worry about. Tested directly are the
frameScores array, which needs to include the result of the
first frame; the frameNumber, which needs to be incremented;
and the score so far. There also needs to be a way of switching
states.

What code handles the first ball
in a frame?

We start with the ROLLING_FIRST_BALL case. This just assigns
the ball value to firstBallInFrame and updates the state:

if (state == ROLLING_FIRST_BALL) {
firstBallInFrame = ball;
state = ROLLING_SECOND_BALL;

}

What code handles the second
ball in a frame?

In the case for the second ball, we instantiate a new array for
frameScores, update the frame number and the score, record
the score in frameScores[0], and switch states.

} else if (state == ROLLING_SECOND_BALL) {
frameScores = new int [1];
rollingFrame++;
totalScore = totalScore + firstBallInFrame + ball;
frameScores[0] = totalScore;
state = ROLLING_FIRST_BALL;

}

Can this code handle a second
frame?

Tests pass so far. Can we handle a third and fourth roll? Let’s
try:

17

public void test3rdBall () {
Scorer s = new Scorer ();
int [] result = s.roll(1);
result = s.roll(2);
result = s.roll(4);
assertEquals ("bad result after ball 3",

1, result.length);
assertEquals ("bad result[0] after ball 3",

3, result[0]);
assertEquals ("frame # after ball 3 is wrong",

2, s.frameNumber ());
assertEquals ("score after ball 3 is wrong",

3, s.scoreSoFar ());
assertFalse ("game is over after 1st frame",

 s.gameIsOver ());
}

public void testFrame2miss () {
Scorer s = new Scorer ();
int [] result = s.roll(1);
result = s.roll(2);
result = s.roll(4);
result = s.roll(1);
assertEquals ("bad result after frame 2",

2, result.length);
assertEquals ("bad result[0] after frame 2",

3, result[0]);
assertEquals ("bad result[1] after frame 2",

8, result[0]);
assertEquals ("frame # after frame 2 is wrong",

3, s.frameNumber ());
assertEquals ("score after frame 2 is wrong",

8, s.scoreSoFar ());
assertFalse ("game is over after frame 2",

s.gameIsOver ());
}

Stop and predict → The testFrame2miss method has a bug. Find it.

Interestingly, only one test fails: the length of the result array
after four rolls is 1 rather than 2. What changes are needed to
pass this test? The problem is that frameScores must grow as
the game progresses, and must also retain scores of earlier
frames.

What’s needed to accumulate
scores across calls to roll?

An array, once constructed, stays the same length. What’s
needed is a second array—we’ll call it temp—that’s one ele-
ment longer than frameScores. The scores from frameScores
are copied into temp, the score for the just-completed frame is
added, and the temp reference is assigned to frameScores.
The diagram below displays this process in the situation where

18

the fourth frame is being scored. (The x’s represent the cumu-
lative score values stored in frameScores.)

How are arrays expanded in
Java?

This operation, essentially an expansion of frameScores by
one element, is a common one. Here’s the code.

int [] temp = new int [frameScores.length+1];
for (int k=0; k<frameScores.length; k++) {

temp[k] = frameScores[k];
}
temp[frameScores.length] = totalScore;
frameScores = temp;

We plug in that code, and fail another test in testFrame2miss:
element #1 of the resulting array contains 3, not 8. Here the
problem was in the test code. It was caused by cutting and past-
ing, then neglecting to fix the pasted line. Both the statements
below test result[0]; the second statement should test
result[1].

assertEquals ("bad result[0] after frame 2",
3, result[0]);

assertEquals ("bad result[1] after frame 2",
8, result[0]);

After fixing this somewhat embarrassing error, the test cases
all run successfully. Appendix A contains the code designed so
far.

step diagram

1

2

3

4

frameScores

temp

x0 x1 x2

frameScores

temp

x0 x1 x2

x0 x1 x2

frameScores

temp

x0 x1 x2

x0 x1 x2 x3

frameScores

temp
x0 x1 x2 x3

x0 x1 x2

19

How can individual test methods
be combined into a single, more
general test method?

Right now we have separate test cases to check 0, 1, 2, 3, and 4
calls to roll, assuming none of them produces a strike or a
spare. This will shortly get out of control, and thus we turn to
reorganizing the tests.

The fact that the program is executing code for 1 roll, 2 rolls,
and so on suggests a loop:

for (int numRolls=1; the game isn’t over; numRolls++) {
test the case of numRolls calls to roll;

}

Each test with one or more calls to roll in addition does the
following.

• It checks that the result of the last call is an array of speci-
fied size and contents.

• It checks the frame number and total score so far.

• It makes sure the game isn’t over.

Thus the loop body will implement the following pseudocode.

result = roll (kth ball);
assertEquals ("result length check",

expected length of kth roll call, result.length);
for (int j=0; j<result.length; j++) {

assertEquals ("frame check",
expected frame contents, result[j]);

}
assertEquals ("frame number check",

expected frane number after kth roll,
frameNumber return value);

assertEquals ("total score check",
expected total score after kth roll,
scoreSoFar return value);

assertFalse ("game over check",
gameIsOver return value);

How are arrays used to
generalize the testing?

Anything that refers to “the kth …” can be set up to use an
array with k as an index. For example, in testFrame2miss, we
tested the roll sequence 1, 2, 4, 1; a general test method would
use an array named balls declared as

int [] balls = {1, 2, 4, 1};

Similarly, arrays can store the expected lengths of calls to roll
and expected values of calls to frameNumber. For the
testFrame2miss example, these would be declared as

int [] lengths = {0, 1, 1, 2};
int [] frames = {1, 2, 2, 3};

Finally, an array named finalResult will store the result
returned by the final call to roll. For the testFrame2miss
example, this would be

int [] finalResult = {3, 8};

The kth roll result should contain the first result.length ele-
ments of finalResult. After the values in result are verified

20

against those in finalResult, they can be used to test the
scoreSoFar method:

assertEquals ("checking score after ball " + k,
result[result.length-1], s.scoreSoFar ());

We assume for now that gameIsOver should always return
false.

This technique of reorganizing code to make it shorter, or
more elegant, or more easily understood is called refactoring.
Here’s a testGame method that represents the refactoring of
the four previously implemented methods test1stRoll,
testFrame1miss, test3rdBall, and testFrame2miss. .

All the tests of those four methods are made with the method

public void test4balls () {
int [] balls = {1, 2, 4, 1};
int [] lengths = {0, 1, 1, 2};
int [] frames = {1, 2, 2, 3};
int [] finalResult = {3, 8};
Scorer s = new Scorer ();
testGame (s, balls, lengths, frames, finalResult);

}

Moreover, testGame can handle tests of any number of rolls
up to but not including the last roll of a game with all misses.

Stop and predict → Can testGame handle games with strikes and spares?

private void testGame (Scorer s; int [] balls, int [] lengths,
 int [] frames, int [] finalResult) {

int [] result;
int [] balls = {1, 2, 4, 1};
int [] lengths = {0, 1, 1, 2};
int [] frames = {1, 2, 2, 3};
int [] finalResult = {3, 8};
for (int k=0; k<balls.length; k++) {

result = s.roll (balls[k]);
assertEquals ("checking length of result of ball " + k,

lengths[k], result.length);
for (int j=0; j<result.length; j++) {

assertEquals ("checking frame " + j + " in result of ball " + k,
finalResult[j], result[j]);

}
assertEquals ("checking frame number after ball " + k,

frames[k], s.frameNumber ());
if (lengths[k] == 0) {

assertEquals ("checking score after ball " + k,
0, s.scoreSoFar());

} else {
assertEquals ("checking score after ball " + k,

result[result.length-1], s.scoreSoFar ());
}
assertFalse ("checking if game is over after ball " + k,

s.gameIsOver ());
}

}

21

Stop and consider → Why can’t frames[k] be replaced by lengths[k]+1?

How is the end of a game
detected?

We focus next on detecting the end of a game. The problem
statement says that the game ends when the score for the
tenth frame is recorded. To simplify testing, however, we make
the number of the last frame a variable named lastFrameNum-
ber.

private int lastFrameNumber;

Then we invent another constructor that takes the number of
frames as an argument. The 0-argument constructor will be
used for the standard game of ten frames; to avoid duplication
of code, we write it as a call to the new constructor.

private int lastFrameNumber;

public Scorer () {
this (10);

}

public Scorer (int frameCount) {
lastFrameNumber = frameCount;
rollingFrame = 1;
totalScore = 0;
frameScores = new int [0];
state = ROLLING_FIRST_BALL;

}

Stop and help → Explain how making the number of the last frame a variable simplifies
testing.

For the moment, since we’re only worrying about games with-
out strikes and spares, we can code gameIsOver as

public boolean gameIsOver () {
return rollingFrame > lastFrameNumber;

}

(Recall that rollingFrame is the number of the frame in which
the next ball will be rolled.) In the tests, we may assume that
the array of balls constitute a complete game; thus it ought to
be the case that the game is over after the last ball is rolled:

assertEquals ("game-over check, ball " + k,
k == balls.length-1, s.gameIsOver ());

Here’s the new test4balls:

public void test4Balls () {
Scorer s = new Scorer (2);
int [] balls = {1, 2, 4, 1};
int [] lengths = {0, 1, 1, 2};
int [] frames = {1, 2, 2, 3};
int [] finalResult = {3, 8};
testGame (s, balls, lengths, frames, finalResult);

}

Appendix B contains the code produced so far. It handles any
game not containing a strike or a spare.

22

Exercises

Reflection 19. Why would a programmer believe that testing should be
delayed until after a program is completely coded?

Analysis 20. The testGame method is called with a balls array that
contains 8, 1, 7, 2. What are the values of the other argu-
ments?

Application 21. Using an array, rewrite the following program segment as
a loop.

assertEquals (5, f(1));
assertEquals (13, f(2));
assertEquals (19, f(3));
assertEquals (100, f(4));
assertEquals (38, f(5));
assertEquals (71, f(6));

Analysis 22. What is the effect of the following program segment?

int [] temp;
temp = new int [frameScores.length+1];
temp = frameScores;
frameScores = temp;

Analysis 23. The constructor initializes frameScores as follows:

frameScores = new int [0];

Is this the same as setting frameScores to null? Why or
why not?

Application 24. Write a program insertAtStart that inserts an integer k at
the beginning of an array values. The length of values
should be increased by 1 as a result.

Application 25. Combining a collection of similar program segments into
a single segment that uses a loop is one example of refac-
toring. Moving a program segment that’s used several
times into a method is another. Describe a third.

Analysis 26. What does the program in Appendix B do with a ball
sequence that contains a spare, such as 8, 2, 7, 3?

Reflection 27. Summarize the design and development so far.

23

Test-driven development of the Scorer class, part 2

What tests are needed for spare
handling?

We move on now to handling more complicated games,
namely those that include strikes and spares. Spares seem eas-
ier to deal with than strikes, so we start with them.

Handling a spare correctly involves two cases: a spare before
the end of the game and one at the end. We add the addi-
tional case of a spare in the first frame; while this should be
handled the same way as a spare in frame 2, the boundary case
may reveal a bug that the more general test doesn’t. We decide
also to test the occurrence of two spares in a row, and the roll
of a 0 (a “gutter ball”) immediately after a spare. A game of
three frames will be sufficient to allow all these situations.
Example ball sequences are the following:

6, 4, 3, 4, 5, 2 (spare first frame)
6, 3, 4, 6, 5, 2 (spare second frame)
6, 3, 3, 4, 8, 2, 4 (spare last frame)
6, 4, 3, 7, 5, 2 (spare first two frames)
6, 3, 3, 7, 8, 2, 4 (spare last two frames)
6, 4, 0, 10, 5, 2 (spare first two frames, with a 0)

Stop and help → Describe all the “boundaries” that are exercised with the above test
cases.

How can these tests make use of
testGame?

With luck, we can implement these tests with the testGame
method just devised. This method requires a Scorer object,
and several arrays:

• the ball sequence;

• the lengths of return values from roll;

• the frame numbers, that is, for each ball, the frame that
the next ball will be rolled in; and

• the final result.

All the arrays but the final result contain one value per ball
rolled.

Let’s see what arrays would accompany a ball sequence of 6, 3,
3, 7, 8, 2, 4.

ball roll return length of roll return frame for next ball

6 { } 0 1

3 {9} 1 2

3 {9} 1 2

7 {9} 1 3

8 {9, 27} 2 3

2 {9, 27} 2 3

4 {9, 27, 41} 3 4

24

The array arguments to testGame would then be

This looks promising. Trusting that the rest of our test cases
can be similarly implemented with calls to testGame, we turn
to Scorer to invent the code for handling spares.

How are spares handled? A new state SPARE_LAST_BALL is necessary, as we noted in
the first part of this case study. This state is entered from
ROLLING_SECOND_BALL when the argument and the first
ball in the frame total 10. Here is code:

} else if (state == ROLLING_SECOND_BALL) {
if (firstBallInFrame + ball == 10) {

rollingFrame++;
state = SPARE_LAST_BALL;

} else {
... // code already implemented for this state

}
} ...;

Handling the SPARE_LAST_BALL state involves incrementing
the score as in ROLLING_SECOND_BALL:

} else if (state == SPARE_LAST_BALL) {
totalScore = totalScore + 10 + ball;
// extend frameScores by one frame
int [] temp = ...

...
frameScores = temp;
firstBallInFrame = ball;
state = ROLLING_SECOND_BALL;

} ...

Noticing that the frameScores extension code now appears in
two places, we refactor it into a private method named
addFrame:

private void addFrame () {
int [] temp = new int [frameScores.length+1];
for (int k=0; k<frameScores.length; k++) {

temp[k] = frameScores[k];
}
temp[frameScores.length] = totalScore;
frameScores = temp;

}

balls {6, 3, 3, 7, 8, 2, 4}

lengths {0, 1, 1, 1, 2, 2, 3}

frame numbers {1, 2, 2, 3, 3, 3, 4}

final result {9, 27, 41}

25

How are the test cases
implemented?

We return to the six test cases, implementing them as calls to
testGame as described earlier. Here is the code.

public void testSpareMissMiss () {
Scorer s = new Scorer (3);
int [] balls = {6, 4, 3, 4, 5, 2};
int [] lengths = {0, 0, 1, 2, 2, 3};
int [] frames = {1, 2, 2, 3, 3, 4};
int [] finalResult = {13, 20, 27};
testGame (s, balls, lengths, frames, finalResult);

}

public void testMissSpareMiss () {
Scorer s = new Scorer (3);
int [] balls = {6, 3, 4, 6, 5, 2};
int [] lengths = {0, 1, 1, 1, 2, 3};
int [] frames = {1, 2, 2, 3, 3, 4};
int [] finalResult = {9, 24, 31};
testGame (s, balls, lengths, frames, finalResult);

}

public void testMissMissSpare () {
Scorer s = new Scorer (3);
int [] balls = {6, 3, 3, 4, 8, 2, 4};
int [] lengths = {0, 1, 1, 2, 2, 2, 3};
int [] frames = {1, 2, 2, 3, 3, 3, 4};
int [] finalResult = {9, 16, 30};
testGame (s, balls, lengths, frames, finalResult);

}

public void testSpareSpareMiss () {
Scorer s = new Scorer (3);
int [] balls = {6, 4, 3, 7, 5, 2};
int [] lengths = {0, 0, 1, 1, 2, 3};
int [] frames = {1, 2, 2, 3, 3, 4};
int [] finalResult = {13, 28, 35};
testGame (s, balls, lengths, frames, finalResult);

}

public void testMissSpareSpare () {
Scorer s = new Scorer (3);
int [] balls = {6, 3, 3, 7, 8, 2, 4};
int [] lengths = {0, 1, 1, 1, 2, 2, 3};
int [] frames = {1, 2, 2, 3, 3, 3, 4};
int [] finalResult = {9, 27, 41};
testGame (s, balls, lengths, frames, finalResult);

}

public void testSpare0SpareMiss () {
Scorer s = new Scorer (3);
int [] balls = {6, 4, 0, 10, 5, 2};
int [] lengths = {0, 0, 1, 1, 2, 3};
int [] frames = {1, 2, 2, 3, 3, 4};
int [] finalResult = {10, 25, 32};
testGame (s, balls, lengths, frames, finalResult);

}

26

What aspects of spare handling
remain to be implemented?

Four of the six tests succeed. The two that fail are those with a
spare in the last frame; the frame check failed for the next-to-
last ball, returning 4 instead of 3. Here’s what’s happening in
testMissMissSpare:

Some investigation reveals that handling the second ball of a
spare always increments rollingFrame. The incrementing
should only happen if the spare occurs before the last frame.

How should the last frame be
handled?

There are several ways to deal with this problem. One is to
wrap a test around the incrementing of rollingFrame in the
ROLLING_SECOND_BALL code. A problem then would be to
distinguish a spare in the last frame from a spare in the next-
to-last frame. Another approach would be to allow rolling-
Frame to take on the “wrong” value, but then to determine its
correct value in the frameNumber method. We do the latter.

Stop and consider → Explore the approach of delaying the incrementing of rollingFrame in
the ROLLING_SECOND_BALL code.

How should frameNumber’s
return value be adjusted?

As just noted, the value of rollingFrame will be too large when
a spare is rolled in the last frame. We add a test for this:

if (state == SPARE_LAST_BALL
 && rollingFrame > lastFrameNumber) {

return rollingFrame-1;
} else {

return rollingFrame;
}

This modification passes all the tests.

Does testGame work with
strikes?

We move now to testing and debugging code that handles
strikes. First, we check that testGame works for strikes, using a
variety of ball sequences with a three-frame game:

10, 10, 10, 10, 10 (all strikes)
10, 0, 10, 10, 0, 10 (mixture of strikes and spares)
3, 6, 10, 10, 7, 3 (mixture of strikes, spares, and misses)

ball explanation

6 still in frame 1 for next ball

3 entering frame 2

3 one ball left in frame 2

4 entering frame 3

8 next ball will still be in frame 3

2 if a game were longer than three frames, the next
ball would be in frame 4; however, in a three-frame
game, there is still one ball to roll in frame 3

27

Three test methods result:

public void testAllStrikes () {
Scorer s = new Scorer (3);
int [] balls = {10, 10, 10, 10, 10};
int [] lengths = {0, 0, 1, 2, 3};
int [] frames = {2, 3, 3, 3, 4};
int [] finalResult = {30, 60, 90};
testGame (s, balls, lengths, frames, finalResult);

}

public void testStrikeSpareStrikeSpare () {
Scorer s = new Scorer (3);
int [] balls = {10, 0, 10, 10, 0, 10};
int [] lengths = {0, 0, 1, 2, 2, 3};
int [] frames = {2, 2, 3, 3, 3, 4};
int [] finalResult = {20, 40, 60};
testGame (s, balls, lengths, frames, finalResult);

}

public void testMissStrikeStrikeSpare () {
Scorer s = new Scorer (3);
int [] balls = {3, 6, 10, 10, 7, 3};
int [] lengths = {0, 1, 1, 1, 2, 3};
int [] frames = {1, 2, 3, 3, 3, 4};
int [] finalResult = {9, 36, 56};
testGame (s, balls, lengths, frames, finalResult);

}

What other test cases are
needed?

Rather than handling all strikes right away, we limit ourselves
to dealing only with nonconsecutive strikes. (This means we
will only have to implement two more states in Scorer at this
stage rather than all three of the states that remain.) A variety
of test cases will be needed, enumerated below:

a. a spare followed by a strike

b. a strike followed by a spare

c. a miss followed by a strike

d. a strike followed by a miss

e. a strike in the first frame

ball roll return frame for
next ball

ball roll return frame for
next ball

ball roll return frame for
next ball

10 { } 2 10 { } 2 3 { } 1

10 { } 3 0 { } 2 6 {9} 2

10 {30} 3 10 {20} 3 10 {9} 3

10 {30, 60} 3 10 {20, 40} 3 10 {9} 3

10 {30, 60, 90} 4 0 {20, 40} 3 7 {9, 36} 3

10 {20, 40, 60} 4 3 {9, 36, 56} 4

28

We will also need to test all possibilities involving a strike in
the last frame. These cases are particularly important because
of earlier last-frame bugs. The possibilities for the last frame
are the following:

f. strike followed by a spare

g. strike followed by a miss

h. spare followed by a strike

We may also wish to test rolls of 0. Here is a collection of ball
sequences that cover all these cases.

We add the corresponding test… methods to our test suite.

Stop and help → Provide the test methods for the ball sequences just described.

Stop and consider → Provide a smaller set of ball sequences that covers all of the cases
described above.

Stop and consider → Is it appropriate to test two or more cases in a single ball sequence?
Explain why or why not.

What changes to the Scorer roll
method are necessary?

As in earlier versions, additions to roll include the code to han-
dle the new states, plus the code to enter those states from
existing states. The two new states are STRIKE_LAST_FRAME,
entered from itself and ROLLING_FIRST_BALL, and
STRIKE_2_BALLS_AGO, entered from STRIKE_LAST_FRAME.
ROLLING_FIRST_BALL splits into two cases:

if (state == ROLLING_FIRST_BALL) {
if (ball == 10) { // the new code

rollingFrame++;
state = STRIKE_LAST_BALL;

} else {
firstBallInFrame = ball;
state = ROLLING_SECOND_BALL;

}
} ...

Here’s the code for STRIKE_LAST_FRAME and
STRIKE_2_BALLS_AGO:

} else if (state == STRIKE_LAST_BALL) {
if (ball == 10) {

rollingFrame++;
state = TWO_CONSEC_STRIKES;

} else {
firstBallInFrame = ball;
state = STRIKE_2_BALLS_AGO;

}
} ...

6, 2, 10, 5, 4
7, 3, 10, 5, 4
10, 7, 3, 8, 2, 10
10, 7, 2, 10, 6, 4

10, 7, 2, 10, 6, 3
10, 0, 0, 4, 3
10, 6, 0, 4, 3
10, 0, 6, 4, 3

29

} else if (state == STRIKE_2_BALLS_AGO) {
totalScore = totalScore

+ 10 + firstBallInFrame + ball;
addFrame ();
if (firstBallInFrame + ball == 10) {

rollingFrame++;
state = SPARE_LAST_BALL;

} else {
totalScore = totalScore

+ firstBallInFrame + ball;
addFrame ();
rollingFrame++;
state = ROLLING_FIRST_BALL;

}
} ...

What problems arise? Two problems arise involving strikes in the tenth frame,
namely that values returned by frameNumber and scoreSoFar
are too high. (We encountered a similar problem handling
spares in the tenth frame.) Ball sequences ending with a strike
and a miss, such as 10, 7, 2, 10, 6, 3, reveal both problems; the
table below provides the details.

The frame number is incremented after the 2 (the end of an
actual frame) as well as after the 10 (not the end of a frame).
Handling the last roll calls addFrame twice, tallying the 6 and
the 3 both for the strike and for the (non-)frame following the
strike.

Stop and help → Find a different pattern of strikes, spares, and misses in the tenth
frame that displays the frame number bug. Do the same for the score
bug.

Our solution for an incorrect frame when handling spares was
to add a case in frameNumber that checks for the incorrect
case:

if (state == SPARE_LAST_BALL
 && rollingFrame > lastFrameNumber) {

return rollingFrame-1;
} ...

What fixes correct the problem? We choose, with some misgivings, to add cases to the fra-
meNumber code. (It took a few debugging runs to get these
right.)

after
roll

score
so far

correct
score

next
frame

correct
next frame

next state

2 28 28 3 3 ROLLING_FIRST_BALL

10 28 28 4 3 STRIKE_LAST_BALL

6 28 28 4 3 STRIKE_2_BALLS_AGO

3 56 47 5 4 ROLLING_FIRST_BALL

30

public int frameNumber () {
if (state == SPARE_LAST_BALL
 && rollingFrame > lastFrameNumber) {

return rollingFrame-1;
} else if (state == STRIKE_LAST_BALL
 && rollingFrame > lastFrameNumber) {

return rollingFrame-1;
} else if (state == STRIKE_2_BALLS_AGO
 && rollingFrame > lastFrameNumber) {

return rollingFrame-1;
} else if (state == ROLLING_FIRST_BALL
 && rollingFrame > lastFrameNumber+1) {

return rollingFrame-1;
} else {

return rollingFrame;
}

}

Stop and help → Suggest a reason why a programmer might view the above code as
flawed.

Stop and predict → Suggest a cleaner way to identify the correct frame number when pro-
cessing strikes and spares in the tenth frame.

The problem statement suggests a way to handle scoreSoFar.
The description of the gameIsOver method says that the game
is over “when the tenth frame has been scored”. In scoreSo-
Far, we can check for this explicitly:

public int scoreSoFar () {
if (frameScores.length == lastFrameNumber) {

return frameScores[lastFrameNumber-1];
} else {

return totalScore;
}

}

The resulting program passes all the tests.

How are consecutive strikes
tested?

There is one more thing to implement: handling consecutive
strikes. First come the tests:

all strikes;
two strikes, then a miss;
a miss, two strikes, and a spare;
a miss, two strikes, and a miss.

Stop and consider → Why do we not need to test the sequence strike, strike, spare? What
about spare, strike, strike, miss?

Stop and help → Write the code for a method named testMissStrikeStrikeSpare.

How are consecutive strikes
handled?

After providing test… methods for the ball sequences just
described, we turn to the Scorer class. Here, we addcode in
roll to handle TWO_CONSEC_STRIKES, and to make the tran-
sition from STRIKE_LAST_BALL to TWO_CONSEC_STRIKES,
and provide whatever new cases are necessary to produce the

31

correct frame number. Here is the modification to the
STRIKE_LAST_BALL code:

} else if (state == STRIKE_LAST_BALL) {
if (ball == 10) { // new code

rollingFrame++;
state = TWO_CONSEC_STRIKES;

} else {
firstBallInFrame = ball;
state = STRIKE_2_BALLS_AGO;

}
} ...

Two consecutive strikes are handled as follows:

} else if (state == TWO_CONSEC_STRIKES) {
totalScore = totalScore + 20 + ball;
addFrame ();
if (ball == 10) {

rollingFrame++;
} else {

firstBallInFrame = ball;
state = STRIKE_2_BALLS_AGO;

}
} ...

Then, after some experimentation, we come up with two more
cases for frameNumber:

public int frameNumber () {
if ... {
} else if (state == TWO_CONSEC_STRIKES
 && rollingFrame == lastFrameNumber+1) {

return rollingFrame-1;
} else if (state == TWO_CONSEC_STRIKES
 && rollingFrame > lastFrameNumber+1) {

return rollingFrame-2;
} else {

return rollingFrame;
}

}

The resulting program passes all the tests. It appears in
Appendix C.

What remains to be done? We now review the Scorer code, looking for ways to improve it.
The extensive tests designed throughout the process of com-
pleting the first draft of Scorer should simplify these improve-
ments.

We first notice that every call to addFrame is preceded by an
assignment to totalScores. This assignment can be folded
into addFrame:

private void addFrame (int toAdd) {
totalScore = totalScore + toAdd;
if (frameScores.length < lastFrameNumber) {

...
}

}

32

How should frameNumber be
rewritten?

Next, we examine frameNumber. The existing version was dif-
ficult to design. The cases are inconsistent, both in what they
test and what they return, and the code is thus quite difficult
to understand.

The scoreSoFar method, on the other hand, is much simpler.
Its structure is basically the following:

if the game is over,
return the score as of the last frame;

otherwise
return totalScore;

This is a good model for frameNumber:

if the game is over,
return lastFrameNumber+1;

otherwise ...

The next case to test is when the last frame is being rolled, but
rollingFrame indicates a higher frame number:

otherwise if (rollingFrame > lastFrameNumber),
return lastFrameNumber

otherwise
return rollingFrame

Translating to Java is straightforward:

public int frameNumber () {
if (frameScores.length == lastFrameNumber) {

return lastFrameNumber+1;
} else if (rollingFrame > lastFrameNumber) {

return lastFrameNumber;
} else {

return rollingFrame;
}

}

This passes all the tests, and is much more clear. Appendix D
contains the complete Scorer class.

33

Exercises

Application 28. Describe a development sequence that would result from
handling strikes before spares.

Debugging 29. You accidentally delete a statement in the program in
Appendix D. A run of JUnit tells you the following.

In testStrikeStrikeMiss, the length of the result of ball 3
is 2 instead of 3.
In testMissStrikeStrikeSpare, the score in frame 2 in the
result of ball 5 is 70 instead of 63.
In testMissStrikeStrikeMiss, the score in frame 2 in the
result of ball 5 is 67 instead of 60.

Which statement is missing?

Debugging 30. The program treats a spare as if it were a miss; that is, it
scores the frame 8, 2 as 10 rather than as 10 plus the next
ball. Describe two possible locations for the error.

Modification 31. Modify the program to allow up to three rolls per frame.
Strikes and spares—that is, knocking down all the pins
with one or two rolls—are scored as in the current pro-
gram. Knocking down all the pins with three rolls earns
no extra premium.

Application 32. How would the JUnit test suite in Appendix D change as a
result?

Modification 33. Modify the program so that, instead of a single one-argu-
ment roll method, there are two methods:

// Handle a strike.
int [] roll ();
// Handle a miss or a spare.
int [] roll (int first, int second);

Application 34. How would the JUnit test suite in Appendix D change as a
result?

Analysis 35. How would the modification of exercise 33 have simpli-
fied the design of the program?

Application 36. What additional tests would be necessary?

Analysis 37. Add a checkForConsistency method to the Scorer class
that would check that the values of the instance variables
are not self-contradictory.

Reflection 38. List some criteria that a programmer should use to decide
when to refactor a program.

Reflection 39. Summarize the last part of the case study.

34

Outline of design and development decisions

Design of a bowling scorer class
How might a programmer approach this problem?
How does a human score a bowling game?

What information must the bowling scorer keep track of?
How should the scoring algorithm be organized?

What does the state diagram for bowling scoring look like?
What organization does the state diagram suggest for the roll method?
What instance variables are appropriate for the Scorer class?

How should the state of the bowling game be represented?
What are the characteristics of the state variable?

How is the state variable used in the scoring process?

Test-driven development of the Scorer class, part 1
What is test-driven development?

What is JUnit, and how is it used?
What will be the first JUnit tests?
What should be tested after the Scorer constructor?
What should be tested after a single nonstrike roll?
What Scorer code must be added to handle multiple rolls?

What code handles the first ball in a frame?
What code handles the second ball in a frame?
Can this code handle a second frame?
What’s needed to accumulate scores across calls to roll?
How are arrays expanded in Java?

How can individual test methods be combined into a single, more general test method?
How are arrays used to generalize the testing?

How is the end of a game detected?

Test-driven development of the Scorer class, part 2
What tests are needed for spare handling?

How can these tests make use of testGame?
How are spares handled?

How are the test cases implemented?
What aspects of spare handling remain to be implemented?
How should the last frame be handled?
How should frameNumber’s return value be adjusted?

Does testGame work with strikes?
What other test cases are needed?
What changes to the Scorer roll method are necessary?

What problems arise?
What fixes correct the problem?

How are consecutive strikes tested?
How are consecutive strikes handled?
What remains to be done?

How should frameNumber be rewritten?

35

Exercises

Analysis 40. In exercise 13, the transitions between states in a state dia-
gram were discussed as a guide to testing a state-based
program. Specify a ball sequence with as few balls as possible
that exercises all transitions between states.

Analysis 41. Specify a ball sequence that spans as few frames as possible
that exercises all transitions between states.

Analysis 42. Suppose that the problem specifications did not include
the frameNumber method. How would that have simpli-
fied the design and development of the program?

Modification 43. A bowling game currently ends after the tenth frame. This
places an upper limit on the game score, namely 300.
Because of better ball technology and better designed
bowling lanes, however, it’s becoming easier to roll a 300
game. Modify the program in Appendix D so that a strike
in the tenth frame awards an extra frame, a strike in that
frame awards a frame 12, and so on. The game ends only
when a nonstrike is bowled. The last frame then consists
of the last strike and the two rolls that follow; it is scored
the way the tenth frame would be scored in the original
program.

Analysis 44. How much of the test suite in Appendix D could be used
with the modification of exercise 43?

Modification 45. Modify the program in Appendix D to keep score for the
game of Ninepins. Everything in this game is the same as
for regular bowling, except there are only nine pins to
knock down in each frame instead of ten.

Analysis 46. How much of the test suite in Appendix D could be used
with the modification of exercise 45?

Analysis 47. Describe, as completely as possible, the legal arguments to
the roll method.

Reflection 48. Consider the way that you would have designed and devel-
oped a program for keeping track of bowling scores. How
would you have designed the program differently? How
would you have coded and tested the program differently?

Reflection 49. There is roughly twice as much testing code in Appendix
D as there is code in the Scorer class. What do you think
of this?

Reflection 50. List three things that you learned from this case study.

36

Appendix A: Initial code to test and handle misses

ScorerTest.java

import junit.framework.TestCase;

public class ScorerTest extends TestCase {

public void testConstructor () {
Scorer s = new Scorer ();
assertEquals ("frame number for new Scorer is wrong", 1, s.frameNumber ());
assertEquals ("score for new Scorer is wrong", 0, s.scoreSoFar ());
assertFalse ("game is over for new Scorer", s.gameIsOver ());

}

public void test1stRoll () {
Scorer s = new Scorer ();
int [] result = s.roll (1);
assertEquals ("result of 1st roll is wrong", 0, result.length);
assertEquals ("frame number after 1st ball is wrong", 1, s.frameNumber ());
assertEquals ("score after 1st ball is wrong", 0, s.scoreSoFar());
assertFalse ("game is over after 1st ball", s.gameIsOver ());

}

public void testFrame1miss () {
Scorer s = new Scorer ();
int [] result = s.roll (1);
result = s.roll (2);
assertEquals ("bad result after frame 1", 1, result.length);
assertEquals ("bad result[0] after frame 1", 3, result[0]);
assertEquals ("frame # after frame 1 is wrong", 2, s.frameNumber ());
assertEquals ("score after frame 1 is wrong", 3, s.scoreSoFar ());
assertFalse ("game is over after 1st frame", s.gameIsOver ());

}

public void test3rdBall () {
Scorer s = new Scorer ();
int [] result = s.roll(1);
result = s.roll(2);
result = s.roll(4);
assertEquals ("bad result after ball 3", 1, result.length);
assertEquals ("bad result[0] after ball 3", 3, result[0]);
assertEquals ("frame # after ball 3 is wrong", 2, s.frameNumber ());
assertEquals ("score after ball 3 is wrong", 3, s.scoreSoFar ());
assertFalse ("game is over after 1st frame", s.gameIsOver ());

}

public void testFrame2miss () {
Scorer s = new Scorer ();
int [] result = s.roll(1);
result = s.roll(2);
result = s.roll(4);
result = s.roll(1);
assertEquals ("bad result after frame 2", 2, result.length);
assertEquals ("bad result[0] after frame 2", 3, result[0]);
assertEquals ("bad result[1] after frame 2", 8, result[1]);
assertEquals ("frame # after frame 2 is wrong", 3, s.frameNumber ());
assertEquals ("score after frame 2 is wrong", 8, s.scoreSoFar ());
assertFalse ("game is over after frame 2", s.gameIsOver ());

}
}

37

Scorer.java

public class Scorer {

// the number of the frame in which the next ball
// will be rolled; ranges from 1 to 11
private int rollingFrame;

// 0 if firstUnscoredFrame == 1, frameScores[firstUnscoredFrame] thereafter
private int totalScore;

// frameScores[k] == cumulative score up through frame k;
private int [] frameScores;

private int state;
private static final int ROLLING_FIRST_BALL = 0;
private static final int ROLLING_SECOND_BALL = 1;

// the number of pins knocked down by the first ball in frame number rollingFrame
private int firstBallInFrame;

public Scorer () {
rollingFrame = 1;
totalScore = 0;
frameScores = new int [0];
state = ROLLING_FIRST_BALL;

}

public int frameNumber () {
return rollingFrame;

}

public int scoreSoFar () {
return totalScore;

}

public boolean gameIsOver () {
return false;

}

public int [] roll (int ball) {
if (state == ROLLING_FIRST_BALL) {

firstBallInFrame = ball;
state = ROLLING_SECOND_BALL;

} else if (state == ROLLING_SECOND_BALL) {
totalScore = totalScore + firstBallInFrame + ball;
rollingFrame++;
int [] temp = new int [frameScores.length+1];
for (int k=0; k<frameScores.length; k++) {

temp[k] = frameScores[k];
}
temp[frameScores.length] = totalScore;
frameScores = temp;
state = ROLLING_FIRST_BALL;

} else {
System.out.println ("Invalid state: " + state);
System.exit (1);

}
return frameScores;

}
}

38

Appendix B: Refactored test code, plus Scorer code that handles any
game with no strikes or spares (differences from Appendix A appear
in boldface)

ScorerTest.java

import junit.framework.TestCase;

public class ScorerTest extends TestCase {

public void testConstructor () {
Scorer s = new Scorer ();
assertEquals ("frame number for new Scorer is wrong", 1, s.frameNumber ());
assertEquals ("score for new Scorer is wrong", 0, s.scoreSoFar ());
assertFalse ("game is over for new Scorer", s.gameIsOver ());

}

public void testFourBalls () {
Scorer s = new Scorer ();
int [] balls = {1, 2, 4, 1};
int [] lengths = {0, 1, 1, 2};
int [] frames = {1, 2, 2, 3};
int [] finalResult = {3, 8};
testGame (s, balls, lengths, frames, finalResult);

}

private void testGame (Scorer s, int [] balls, int [] lengths, int [] frames,
 int [] finalResult) {

int [] result;
for (int k=0; k<balls.length; k++) {

result = s.roll (balls[k]);
assertEquals ("checking length of result of ball " + k,

lengths[k], result.length);
for (int j=0; j<result.length; j++) {

assertEquals ("checking frame " + j + " in result of ball " + k,
finalResult[j], result[j]);

}
assertEquals ("checking frame number after ball " + k,

frames[k], s.frameNumber ());
if (lengths[k] == 0) {

assertEquals ("checking score after ball " + k, 0, s.scoreSoFar());
} else {

assertEquals ("checking score after ball " + k,
result[result.length-1], s.scoreSoFar ());

}
assertFalse ("checking if game is over after ball " + k, s.gameIsOver ());

}
}

}

39

Scorer.java

public class Scorer {

// the number of the frame in which the next ball will be rolled;
// ranges from 1 to 11
private int rollingFrame;

// 0 if firstUnscoredFrame == 1,
// frameScores[firstUnscoredFrame] thereafter
private int totalScore;

// frameScores[k] == cumulative score up through frame k;
private int [] frameScores;

private int state;
private static final int ROLLING_FIRST_BALL = 0;
private static final int ROLLING_SECOND_BALL = 1;

// the number of pins knocked down by the first ball
// in frame number rollingFrame
private int firstBallInFrame;

// indicates which frame is the last in the game
private int lastFrameNumber;

public Scorer () {
this (10);

}

public Scorer (int frameCount) {
lastFrameNumber = frameCount;
rollingFrame = 1;
totalScore = 0;
frameScores = new int [0];
state = ROLLING_FIRST_BALL;

}

public int frameNumber () {
return rollingFrame;

}

public int scoreSoFar () {
return totalScore;

}

public boolean gameIsOver () {
return rollingFrame > lastFrameNumber;

}

public int [] roll (int ball) {
if (state == ROLLING_FIRST_BALL) {

firstBallInFrame = ball;
state = ROLLING_SECOND_BALL;

} else if (state == ROLLING_SECOND_BALL) {
totalScore = totalScore + firstBallInFrame + ball;
rollingFrame++;
int [] temp = new int [frameScores.length+1];
for (int k=0; k<frameScores.length; k++) {

40

temp[k] = frameScores[k];
}
temp[frameScores.length] = totalScore;
frameScores = temp;
state = ROLLING_FIRST_BALL;

} else {
System.out.println ("Invalid state: " + state);
System.exit (1);

}
return frameScores;

}
}

Appendix C: Program that passes tests for handling spares and
strikes correctly

Scorer.java

public class Scorer {

// the number of the frame in which the next ball
// will be rolled; ranges from 1 to 11
private int rollingFrame;

// 0 if firstUnscoredFrame == 1,
// frameScores[firstUnscoredFrame] thereafter
private int totalScore;

// frameScores[k] == cumulative score up through frame k;
private int [] frameScores;

private int state;
private static final int ROLLING_FIRST_BALL = 0;
private static final int ROLLING_SECOND_BALL = 1;
private static final int STRIKE_LAST_BALL = 2;
private static final int TWO_CONSEC_STRIKES = 3;
private static final int STRIKE_2_BALLS_AGO = 4;
private static final int SPARE_LAST_BALL = 5;

// the number of pins knocked down by the first ball
// in frame number rollingFrame
private int firstBallInFrame;

// indicates which frame is the last in the game
private int lastFrameNumber;

public Scorer () {
this (10);

}

public Scorer (int frameCount) {
lastFrameNumber = frameCount;
rollingFrame = 1;
totalScore = 0;
frameScores = new int [0];
state = ROLLING_FIRST_BALL;

}

41

public int frameNumber () {
if (state == SPARE_LAST_BALL && rollingFrame > lastFrameNumber) {

return rollingFrame-1;
} else if (state == STRIKE_LAST_BALL && rollingFrame > lastFrameNumber) {

return rollingFrame-1;
} else if (state == STRIKE_2_BALLS_AGO && rollingFrame > lastFrameNumber) {

return rollingFrame-1;
} else if (state == ROLLING_FIRST_BALL && rollingFrame > lastFrameNumber+1) {

return rollingFrame-1;
} else if (state == TWO_CONSEC_STRIKES && rollingFrame == lastFrameNumber+1) {

return rollingFrame-1;
} else if (state == TWO_CONSEC_STRIKES && rollingFrame > lastFrameNumber+1) {

return rollingFrame-2;
} else {

return rollingFrame;
}

}

public int scoreSoFar () {
if (frameScores.length == lastFrameNumber) {

return frameScores[lastFrameNumber-1];
} else {

return totalScore;
}

}

public boolean gameIsOver () {
return frameNumber () > lastFrameNumber;

}

public int [] roll (int ball) {
if (state == ROLLING_FIRST_BALL) {

if (ball == 10) {
rollingFrame++;
state = STRIKE_LAST_BALL;

} else {
firstBallInFrame = ball;
state = ROLLING_SECOND_BALL;

}
} else if (state == ROLLING_SECOND_BALL) {

if (firstBallInFrame + ball == 10) {
rollingFrame++;
state = SPARE_LAST_BALL;

} else {
totalScore = totalScore + firstBallInFrame + ball;
rollingFrame++;
addFrame ();
state = ROLLING_FIRST_BALL;

}
} else if (state == SPARE_LAST_BALL) {

totalScore = totalScore + 10 + ball;
addFrame ();
if (ball == 10) {

rollingFrame++;
state = STRIKE_LAST_BALL;

} else {
firstBallInFrame = ball;
state = ROLLING_SECOND_BALL;

}

42

} else if (state == STRIKE_LAST_BALL) {
if (ball == 10) {

rollingFrame++;
state = TWO_CONSEC_STRIKES;

} else {
firstBallInFrame = ball;
state = STRIKE_2_BALLS_AGO;

}
} else if (state == TWO_CONSEC_STRIKES) {

totalScore = totalScore + 20 + ball;
addFrame ();
if (ball == 10) {

rollingFrame++;
} else {

firstBallInFrame = ball;
state = STRIKE_2_BALLS_AGO;

}
} else if (state == STRIKE_2_BALLS_AGO) {

totalScore = totalScore + 10 + firstBallInFrame + ball;
addFrame ();
if (firstBallInFrame + ball == 10) {

rollingFrame++;
state = SPARE_LAST_BALL;

} else {
totalScore = totalScore + firstBallInFrame + ball;
rollingFrame++;
addFrame ();
state = ROLLING_FIRST_BALL;

}
} else {

System.out.println ("Invalid state: " + state);
System.exit (1);

}
return frameScores;

}

private void addFrame () {
if (frameScores.length < lastFrameNumber) {

int [] temp = new int [frameScores.length+1];
for (int k=0; k<frameScores.length; k++) {

temp[k] = frameScores[k];
}
temp[frameScores.length] = totalScore;
frameScores = temp;

}
}

}

43

Appendix D: Final versions of the ScorerTest and Scorer classes

ScorerTest.java

import junit.framework.TestCase;

public class ScorerTest extends TestCase {

public void testConstructor () {
Scorer s = new Scorer ();
assertEquals ("frame number for new Scorer is wrong", 1, s.frameNumber ());
assertEquals ("score for new Scorer is wrong", 0, s.scoreSoFar ());
assertFalse ("game is over for new Scorer", s.gameIsOver ());

}

public void testFourBalls () {
Scorer s = new Scorer (2);
int [] balls = {1, 2, 4, 1};
int [] lengths = {0, 1, 1, 2};
int [] frames = {1, 2, 2, 3};
int [] finalResult = {3, 8};
testGame (s, balls, lengths, frames, finalResult);

}

public void testSpareMissMiss () {
Scorer s = new Scorer (3);
int [] balls = {6, 4, 3, 4, 5, 2};
int [] lengths = {0, 0, 1, 2, 2, 3};
int [] frames = {1, 2, 2, 3, 3, 4};
int [] finalResult = {13, 20, 27};
testGame (s, balls, lengths, frames, finalResult);

}

public void testMissSpareMiss () {
Scorer s = new Scorer (3);
int [] balls = {6, 3, 4, 6, 5, 2};
int [] lengths = {0, 1, 1, 1, 2, 3};
int [] frames = {1, 2, 2, 3, 3, 4};
int [] finalResult = {9, 24, 31};
testGame (s, balls, lengths, frames, finalResult);

}

public void testMissMissSpare () {
Scorer s = new Scorer (3);
int [] balls = {6, 3, 3, 4, 8, 2, 4};
int [] lengths = {0, 1, 1, 2, 2, 2, 3};
int [] frames = {1, 2, 2, 3, 3, 3, 4};
int [] finalResult = {9, 16, 30};
testGame (s, balls, lengths, frames, finalResult);

}

public void testSpareSpareMiss () {
Scorer s = new Scorer (3);
int [] balls = {6, 4, 3, 7, 5, 2};
int [] lengths = {0, 0, 1, 1, 2, 3};
int [] frames = {1, 2, 2, 3, 3, 4};
int [] finalResult = {13, 28, 35};
testGame (s, balls, lengths, frames, finalResult);

}

44

public void testMissSpareSpare () {
Scorer s = new Scorer (3);
int [] balls = {6, 3, 3, 7, 8, 2, 4};
int [] lengths = {0, 1, 1, 1, 2, 2, 3};
int [] frames = {1, 2, 2, 3, 3, 3, 4};
int [] finalResult = {9, 27, 41};
testGame (s, balls, lengths, frames, finalResult);

}

public void testSpare0SpareMiss () {
Scorer s = new Scorer (3);
int [] balls = {6, 4, 0, 10, 5, 2};
int [] lengths = {0, 0, 1, 1, 2, 3};
int [] frames = {1, 2, 2, 3, 3, 4};
int [] finalResult = {10, 25, 32};
testGame (s, balls, lengths, frames, finalResult);

}

public void testMissStrikeMiss () {
Scorer s = new Scorer (3);
int [] balls = {6, 2, 10, 5, 4};
int [] lengths = {0, 1, 1, 1, 3};
int [] frames = {1, 2, 3, 3, 4};
int [] finalResult = {8, 27, 36};
testGame (s, balls, lengths, frames, finalResult);

}

public void testSpareStrikeMiss () {
Scorer s = new Scorer (3);
int [] balls = {7, 3, 10, 5, 4};
int [] lengths = {0, 0, 1, 1, 3};
int [] frames = {1, 2, 3, 3, 4};
int [] finalResult = {20, 39, 48};
testGame (s, balls, lengths, frames, finalResult);

}

public void testStrikeSpareSpareStrike () {
Scorer s = new Scorer (3);
int [] balls = {10, 7, 3, 8, 2, 10};
int [] lengths = {0, 0, 1, 2, 2, 3};
int [] frames = {2, 2, 3, 3, 3, 4};
int [] finalResult = {20, 38, 58};
testGame (s, balls, lengths, frames, finalResult);

}

public void testStrikeMissStrikeSpare () {
Scorer s = new Scorer (3);
int [] balls = {10, 7, 2, 10, 6, 4};
int [] lengths = {0, 0, 2, 2, 2, 3};
int [] frames = {2, 2, 3, 3, 3, 4};
int [] finalResult = {19, 28, 48};
testGame (s, balls, lengths, frames, finalResult);

}

public void testStrikeMissStrikeMiss () {
Scorer s = new Scorer (3);
int [] balls = {10, 7, 2, 10, 6, 3};
int [] lengths = {0, 0, 2, 2, 2, 3};
int [] frames = {2, 2, 3, 3, 3, 4};
int [] finalResult = {19, 28, 47};
testGame (s, balls, lengths, frames, finalResult);

}

45

public void testStrike00Miss () {
Scorer s = new Scorer (3);
int [] balls = {10, 0, 0, 4, 3};
int [] lengths = {0, 0, 2, 2, 3};
int [] frames = {2, 2, 3, 3, 4};
int [] finalResult = {10, 10, 17};
testGame (s, balls, lengths, frames, finalResult);

}

public void testStrike60miss () {
Scorer s = new Scorer (3);
int [] balls = {10, 6, 0, 4, 3};
int [] lengths = {0, 0, 2, 2, 3};
int [] frames = {2, 2, 3, 3, 4};
int [] finalResult = {16, 22, 29};
testGame (s, balls, lengths, frames, finalResult);

}

public void testStrike06miss () {
Scorer s = new Scorer (3);
int [] balls = {10, 0, 6, 4, 3};
int [] lengths = {0, 0, 2, 2, 3};
int [] frames = {2, 2, 3, 3, 4};
int [] finalResult = {16, 22, 29};
testGame (s, balls, lengths, frames, finalResult);

}

public void testAll5Strikes () {
Scorer s = new Scorer (3);
int [] balls = {10, 10, 10, 10, 10};
int [] lengths = {0, 0, 1, 2, 3};
int [] frames = {2, 3, 3, 3, 4};
int [] finalResult = {30, 60, 90};
testGame (s, balls, lengths, frames, finalResult);

}

public void testStrikeStrikeMiss () {
Scorer s = new Scorer (3);
int [] balls = {10, 10, 3, 4};
int [] lengths = {0, 0, 1, 3};
int [] frames = {2, 3, 3, 4};
int [] finalResult = {23, 40, 47};
testGame (s, balls, lengths, frames, finalResult);

}

public void testMissStrikeStrikeSpare () {
Scorer s = new Scorer (3);
int [] balls = {6, 4, 10, 10, 3, 7};
int [] lengths = {0, 0, 1, 1, 2, 3};
int [] frames = {1, 2, 3, 3, 3, 4};
int [] finalResult = {20, 43, 63};
testGame (s, balls, lengths, frames, finalResult);

}

public void testMissStrikeStrikeMiss () {
Scorer s = new Scorer (3);
int [] balls = {6, 4, 10, 10, 3, 4};
int [] lengths = {0, 0, 1, 1, 2, 3};
int [] frames = {1, 2, 3, 3, 3, 4};
int [] finalResult = {20, 43, 60};
testGame (s, balls, lengths, frames, finalResult);

}

46

private void testGame (Scorer s, int [] balls, int [] lengths, int [] frames,
 int [] finalResult) {

int [] result;
for (int k=0; k<balls.length; k++) {

result = s.roll (balls[k]);
assertEquals ("checking length of result of ball " + k,

lengths[k], result.length);
for (int j=0; j<result.length; j++) {

assertEquals ("checking frame " + j + " in result of ball " + k,
finalResult[j], result[j]);

}
assertEquals ("checking frame number after ball " + k,

frames[k], s.frameNumber ());
if (lengths[k] == 0) {

assertEquals ("checking score after ball " + k, 0, s.scoreSoFar());
} else {

assertEquals ("checking score after ball " + k,
result[result.length-1], s.scoreSoFar ());

}
assertEquals ("checking if game is over after ball " + k,

k == balls.length-1, s.gameIsOver ());
}

}
}

Scorer.java
public class Scorer {

// the number of the frame in which the next ball
// will be rolled; ranges from 1 to 11
private int rollingFrame;

// 0 if firstUnscoredFrame == 1,
// frameScores[firstUnscoredFrame] thereafter
private int totalScore;

// frameScores[k] == cumulative score up through frame k;
private int [] frameScores;

private int state;
private static final int ROLLING_FIRST_BALL = 0;
private static final int ROLLING_SECOND_BALL = 1;
private static final int STRIKE_LAST_BALL = 2;
private static final int TWO_CONSEC_STRIKES = 3;
private static final int STRIKE_2_BALLS_AGO = 4;
private static final int SPARE_LAST_BALL = 5;

// the number of pins knocked down by the first ball
// in frame number rollingFrame
private int firstBallInFrame;

// indicates which frame is the last in the game
private int lastFrameNumber;

public Scorer () {
this (10);

}

47

public Scorer (int frameCount) {
lastFrameNumber = frameCount;
rollingFrame = 1;
totalScore = 0;
frameScores = new int [0];
state = ROLLING_FIRST_BALL;

}

public int frameNumber () {
if (frameScores.length == lastFrameNumber) {

return lastFrameNumber+1;// game is over
} else if (rollingFrame > lastFrameNumber) {

return lastFrameNumber;// we're in last frame
} else {

return rollingFrame;
}

}

public int scoreSoFar () {
if (frameScores.length == lastFrameNumber) {

return frameScores[lastFrameNumber-1];
} else {

return totalScore;
}

}

public boolean gameIsOver () {
return frameNumber () > lastFrameNumber;

}

public int [] roll (int ball) {
if (state == ROLLING_FIRST_BALL) {

if (ball == 10) {
rollingFrame++;
state = STRIKE_LAST_BALL;

} else {
firstBallInFrame = ball;
state = ROLLING_SECOND_BALL;

}
} else if (state == ROLLING_SECOND_BALL) {

if (firstBallInFrame + ball == 10) {
rollingFrame++;
state = SPARE_LAST_BALL;

} else {
rollingFrame++;
addFrame (firstBallInFrame + ball);
state = ROLLING_FIRST_BALL;

}
} else if (state == SPARE_LAST_BALL) {

addFrame (10 + ball);
if (ball == 10) {

rollingFrame++;
state = STRIKE_LAST_BALL;

} else {
firstBallInFrame = ball;
state = ROLLING_SECOND_BALL;

}

48

} else if (state == STRIKE_LAST_BALL) {
if (ball == 10) {

rollingFrame++;
state = TWO_CONSEC_STRIKES;

} else {
firstBallInFrame = ball;
state = STRIKE_2_BALLS_AGO;

}
} else if (state == TWO_CONSEC_STRIKES) {

addFrame (20 + ball);
if (ball == 10) {

rollingFrame++;
} else {

firstBallInFrame = ball;
state = STRIKE_2_BALLS_AGO;

}
} else if (state == STRIKE_2_BALLS_AGO) {

addFrame (10 + firstBallInFrame + ball);
if (firstBallInFrame + ball == 10) {

rollingFrame++;
state = SPARE_LAST_BALL;

} else {
rollingFrame++;
addFrame (firstBallInFrame + ball);
state = ROLLING_FIRST_BALL;

}
} else {

System.out.println ("Invalid state: " + state);
System.exit (1);

}
return frameScores;

}

private void addFrame (int toAdd) {
totalScore = totalScore + toAdd;
if (frameScores.length < lastFrameNumber) {

int [] temp = new int [frameScores.length+1];
for (int k=0; k<frameScores.length; k++) {

temp[k] = frameScores[k];
}
temp[frameScores.length] = totalScore;
frameScores = temp;

}
}

}

