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Abstract

The aim of this tutorial is to introduce the reader to Latent Dirichlet Allocation (LDA) 
for topic modeling. This tutorial is not all-inclusive and should be accompanied/cross-
referenced with Blei et al. (2003). The unique aspect of this tutorial is that I provide a full 
pseudo-code implementation of variational expectation-maximization LDA and an R code
implementation at https://github.com/cjrd/SimpleLDA-R. The R code is arguably the 
simplest variational expectation-maximization LDA implementation I’ve come across. 
Unfortunately, the simple implementation makes it very slow and unrealistic for actual 
application, but it’s designed to serve as an educational tool.
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1 Prerequisites

This tutorial is most useful if you have the following background:
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• basic background in probability, statistics, and inference, i.e. understand Bayes’ rule
and the concept of statistical inference

• understand the Dirichlet distribution

• have a basic understanding of probabilistic graphical models

• understand the expectation-maximization (EM) algorithm

• familiarity with the Kullback-Leibler (KL) divergence will be moderately helpful

If you do not have some or all of the above background, this tutorial can still be helpful.
In the text I mention specific resources the interested reader can use to acquire develop
background.

2 Introduction

In many different fields we are faced with a ton of information: think Wikipedia articles,
blogs, Flickr images, astronomical survey data, <insert some problem from your area
of research here>, and we need algorithmic tools to organize, search, and understand
this information. Topic modeling is a method for analyzing large quantities of unlabeled
data. For our purposes, a topic is a probability distribution over a collection of words
and a topic model is a formal statistical relationship between a group of observed and
latent (unknown) random variables that specifies a probabilistic procedure to generate
the topics—a generative model. The central goal of a topic is to provide a “thematic
summary” of a collection of documents. In other words, it answers the question: what
themes are these documents discussing? A collection of news articles could discuss e.g.
political, sports, and business related themes.

3 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is arguable the most popular topic model in application;
it is also the simplest. Let’s examine the generative model for LDA, then I’ll discuss
inference techniques and provide some [pseudo]code and simple examples that you can
try in the comfort of your home.

3.1 Higher-level Details

First and foremost, LDA provides a generative model that describes how the documents
in a dataset were created.1 In this context, a dataset is a collection of D documents. But
what is a document? It’s a collection of words. So our generative model describes how
each document obtains its words. Initially, let’s assume we know K topic distributions for
our dataset, meaning K multinomials containing V elements each, where V is the number

1Not literally, of course, this is a simplification of how the documents were actually created.
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of terms in our corpus. Let βi represent the multinomial for the i-th topic, where the size
of βi is V : |βi| = V . Given these distributions, the LDA generative process is as follows:

1. For each document:

(a) randomly choose a distribution over topics (a multinomial of length K)

(b) for each word in the document:

(i) Probabilistically draw one of the K topics from the distribution over topics
obtained in (a), say topic βj

(ii) Probabilistically draw one of the V words from βj

This generative model emphasizes that documents contain multiple topics. For in-
stance, a health article might have words drawn from the topic related to seasons such as
winter and words drawn from the topic related to illnesses, such as flu. Step (a) reflects
that each document contains topics in different proportion, e.g. one document may contain
a lot of words drawn from the topic on seasons and no words drawn from the topic about
illnesses, while a different document may have an equal number of words drawn from both
topics. Step (ii) reflects that each individual word in the document is drawn from one of
the K topics in proportion to the document’s distribution over topics as determined in
Step (i). The selection of each word depends on the the distribution over the V words in
our vocabulary as determined by the selected topic, βj. Note that the generative model
does not make any assumptions about the order of the words in the documents, this is
known as the bag-of-words assumption.

The central goal of topic modeling is to automatically discover the topics from a
collection of documents. Therefore our assumption that we know the K topic distributions
is not very helpful; we must learn these topic distributions. This is accomplished through
statistical inference, and I will discuss some of these techniques in the next section. Figure
1 visually displays the difference between a generative model (what I just described) and
statistical inference (the process of learning the topic distributions).

3.2 Formal details and LDA inference

To formalize LDA, let’s first restate the generative process in more detail (compare with
the previous description):

1. For each document:

(a) draw a topic distribution, θd ∼ Dir(α), where Dir(·) is a draw from a uniform
Dirichlet distribution with scaling parameter α

(b) for each word in the document:

(i) Draw a specific topic zd,n ∼ multi(θd) where multi(·) is a multinomial

(ii) Draw a word wd,n ∼ βzd,n
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Figure 1: Left: a visualization of the probabilistic generative process for three documents,
i.e. DOC1 draws from Topic 1 with probability 1, DOC2 draws from Topic 1 with prob-
ability 0.5 and from Topic 2 with probability 0.5, and DOC3 draws from Topic 2 with
probability 1. The topics are represented by β1:K (where K = 2 in this case) in Figure 2
and the topic distributions for the two topics ({1, 0}, {0.5, 0.5}, {0, 1}) are represented by
θd. Right: In the inferential problem we are interested in learning the topics and topic
distributions. Image taken from Steyvers and Griffiths (2007).

Figure 2 displays the graphical model describing this generative process. A draw from a
k dimensional Dirichlet distribution returns a k dimensional multinomial, θ in this case,
where the k values must sum to one. The normalization requirement for θ ensures that θ
lies on a (k − 1) dimensional simplex and has the probability density:

p(θ|α) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

k∏
i=1

θαi−1
i . (1)

If you are not familiar with the Dirichlet distribution and Dirichlet sampling techniques,
I encourage you to read Frigyik et al. (2010).

For reference purposes, let’s formalize some notation before moving on:

• w represents a word and wv represents the vth word in the vocabulary where wv = 1
and wu = 0 if the v 6= u—this superscript notation will be used with other variables
as well.

• w represents a document (a vector of words) where w = (w1, w2, . . . , wN)

• α is the parameter of the Dirichlet distribution, technically α = (α1, α2, . . . , αk), but
unless otherwise noted, all elements of α will be the same, and so in the included R
code α is simply a number.

• z represents a vector of topics, where if the ith element of z is 1 then w draws from
the ith topic
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• β is a k × V word-probability matrix for each topic (row) and each term (column),
where βij = p(wj = 1|zi = 1)

The central inferential problem for LDA is determining the posterior distribution of
the latent variables given the document:

p(θ, z|w, α, β) =
p(θ, z,w|α, β)

p(w|α, β)
.

This distribution is the crux of LDA, so let’s break this down step by step for each indi-
vidual document (the probability of the entire corpus is then acquired by multiplying the
individual document probabilities—this assumes independence in the document probabil-
ities). First, we can decompose the numerator into a hierarchy by examining the graphical
model:

p(θ, z,w|α, β) = p(w|z, β)p(z|θ)p(θ|α)

It should be clear that p(w|z, β) represents the probability of observing a document with
N words given the a topic vector of length N that assigns a topic to each word from the
k × V probability matrix β. So we can decompose this probability into each individual
word probability and multiply them together yielding:

p(w|z, β) =
N∏
n=1

βzn,wn

Next, p(z|θ) is trivial once we note that p(zn|θ) = θi such that zin = 1, since after all, θ is
just a multinomial. Finally, p(θ|α) is given by Eq. (1). Bringing this all together we have:

p(θ, z,w|α, β) =

(
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

k∏
i=1

θαi−1
i

)
N∏
n=1

βzn,wnθzn

where I am using θzn to represent the component of θ chosen for zn. Let’s rephrase this
probability using the superscript notation mentioned above, and for convenience we’ll use
the entire vocabulary of size V when calculating the probability and rely on an exponent
to ween out the words that are used for each document:

p(θ, z,w|α, β) =

(
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

k∏
i=1

θαi−1
i

)
N∏
n=1

k∏
i=1

V∏
j=1

(θiβi,j)
wj

nz
i
n (2)

We marginalize over θ and z in order to obtain the denominator (often referred to as
the evidence) of Eq. (3.2):

p(w|α, β) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

∫ ( k∏
i=1

θαi−1
i

)(
N∏
n=1

k∑
i=1

V∏
j=1

(θiβij)
wj

n

)
dθ

Notice this expression is the same as Eq. (2) except we integrate over θ and sum over z.
Unfortunately, computing this distribution is intractable as the coupling between θ and β
makes it so that when we compute the log of this function we are unable to separate the θ
and β. So while exact inference is not tractable, various approximate inference techniques
can be used. Here I examine variational inference in some detail.
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3.2.1 Variational Inference for LDA

The essential idea of variational inference is to use a simpler, convex distribution that
obtains an adjustable lower bound on the log likelihood of the actual distribution. Vari-
ational parameters describe the family of simpler distributions used to determine a lower
bound on the log likelihood and are optimized to create the tightest possible lower bound.

As discussed in Blei et al. (2003), an easy way to obtain a tractable family of lower
bounds is to modify the original graphical model by removing the troublesome edges and
nodes. In the LDA model in Figure 2 the coupling between θ and β makes the inference
intractable. By dropping the problematic edges and nodes we obtain the simplified graph-
ical model in Figure 3. This variational distribution has a posterior for each document in
the form:

q(θ, z|γ, φ) = q(θ|γ)
N∏
n=1

q(zn|φn). (3)

The next step is to formally specify an optimization problem to determine the values of
γ and φ. For the sake of brevity I must defer the reader to A.3 of Blei et al. (2003) for
derivation of the following results. In particular, finding an optimal lower bound on the
log likelihood results in the following optimization problem:

(γ∗, φ∗) = arg min
(γ,φ)

D (q(θ, z|γ, φ)||p(θ, z|w, α, β)) (4)

which is a minimization of the Kullback-Leibler (KL) divergence between the variational
distribution and the actual posterior distribution. The KL divergence between the varia-
tional and actual distribution is the name of the game for variational Bayesian inference,
and if you are not already familiar with KL divergence or the basics of variational infer-
ence, I encourage you to read sections 1.6 and 10.1 of Bishop (2006), respectively.

One method to minimize this function is to use an iterative fixed-point method, yield-
ing update equations of:

φni ∝ βiwnexp {Eq[log(θi)|γ]} (5)

γi = αi +
N∑
n=1

φni. (6)

where as shown in Blei et al. (2003) the expectation in the φ update is computed as

Eq[log(θi)|γ] = Ψ(γi)−Ψ(
k∑
j=1

γj)

where Ψ is the first derivative of the logΓ function, which is “simply” this crazy looking
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numerical approximation (computed via a Taylor approximation):

Ψ(x) ≈
((

(0.00416̄
1

(x+ 6)2
− 0.003968)

1

(x+ 6)2
+ 0.0083̄

)
1

(x+ 6)2
− 0.083̄

)
1

(x+ 6)2

+ log(x)− 1

2x
−

6∑
i=1

1

x− i

I’ve just bustled through quite a few equations, so let’s pause for moment and gain
some intuition on these results. The Dirichlet update in Eq. (6) is a posterior Dirichlet
given the expected observations taken under the variational distribution, E[zn|φn]. In other
words, we’re iteratively updating the variational Dirichlet topic parameter, γ, using the
multinomial that best describes the observed words. The multinomial update essentially
uses Bayes’ theorem, p(zn|wn) ∝ p(wn|zn)p(zn), where p(wn|zn) = βiwn and p(zn) is
approximated by the exponential of the expectation of its logarithm under the variational
distribution. Finally, be sure to note the the variational parameters are actually a function
of w although this was not explicitly expressed in the above equations. The optimization
of Eq. (4) relies on a specific w, see A.3 of Blei et al. (2003).

The fastidious reader may be wondering: “but how in the world do we find β or α?
The previous optimization assumed we knew these parameters. . . ” The answer is that we
estimate β and α assuming we know φ and γ. Hopefully this approach sounds familiar to
you: it’s the Expectation-Maximization (EM) algorithm on the variational distribution! If
you need a brief refresher on the EM algorithm please consult the appendix. If you need
to learn the EM algorithm, please see sections 9.2-9.4 of Bishop (2006).

In the E-step of the EM algorithm we determine the log likelihood of the complete
data—in other words, assuming we know the hidden parameters, β and α in this case. In
the M-step we maximize the lower bound on the log likelihood with respect to α and β.
More formally:

• E-Step: Find the optimal values of the variational parameters γ∗d and φ∗
d for ev-

ery document in the corpus. Knowing these parameters allows us to compute the
expectation of the log likelihood of the complete data

• M-Step: Maximize the lower bound on the log likelihood of

`(α, β) =
M∑
d=1

logp(wd|α, β)

with respect to α and β. This corresponds to finding maximum likelihood estimates
with expected sufficient statistics for each document.

Here I quote the results for the M-step update but encourage the curious reader to
peruse A.3 and A.4 of Blei et al. (2003) for derivations—it involves some neat tricks to
make the inference scalable.

βij ∝
M∑
d=1

Nd∑
n=1

φ∗
dniw

j
dn (7)
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α θd zd,n wd,n

β1:k

N
M

Figure 2: LDA graphical model

Note that the “proportional to” symbol (∝) in the description of βij simply means that
we normalize all βi to sum to one. The α update is a bit trickier and uses a linear-scaling
Newton-Rhapson algorithm to determine the optimal alpha, with updates carried out in
log-space (assuming a uniform α):

log(αt+1) = log(αt)−
dL
dα

d2L
dα2α + dL

dα

(8)

dL

dα
= M(kΨ

′
(kα)− kΨ

′
(α)) +

M∑
d=1

(
Ψ(γdi)−Ψ

(
k∑
j=1

γdj

))
(9)

d2L

dα2
= M(k2Ψ

′′
(kα)− kΨ

′′
(α)) (10)

This completes the nitty gritty of variational inference with LDA. Algorithm 1 provides 
the psuedocode for this variational inference and accompanying R code can be found at
https://github.com/cjrd/SimpleLDA-R.
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θd

γd

zd,n

φd,n

N
M

Figure 3: Variational distribution used to approximate the posterior distribution in LDA,
γ and φ are the variational parameters.
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Algorithm 1: Variational Expectation-Maximization LDA
Input: Number of topics K

Corpus with M documents and Nd words in document d
Output: Model parameters: β, θ, z

initialize φ0ni := 1/k for all i in k and n in Nd

initialize γi := αi +N/k for all i in k
initialize α := 50/k
initialize βij := 0 for all i in k and j in V

//E-Step (determine φ and γ and compute expected likelihood)
loglikelihood := 0
for d = 1 to M

repeat
for n = 1 to Nd

for i = 1 to K
φt+1
dni := βiwnexp

(
Ψ(γtdi)

)
endfor
normalize φt+1

dni to sum to 1
endfor
γt+1 := α+

∑N
n=1 φ

t+1
dn

until convergence of φd and γd
loglikelihood := loglikelihood + L(γ, φ;α, β) // See equation BLAH

endfor

//M-Step (maximize the log likelihood of the variational distribution)
for d = 1 to M
for i = 1 to K
for j = 1 to V
βij := φdniwdnj

endfor
normalize βi to sum to 1

endfor
endfor
estimate α via Eq. (8)

if loglikelihood converged then
return parameters

else
go back to E-step

endif
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4 But how does LDA work?

Figure 4 shows example topics obtained using LDA on the Touchstone Applied Science
Associates (TASA) corpus (a collection of nearly 40,000 short documents from educational
writings). Each topic includes the 16 words with the highest probability for the topic: the
largest β value for a given topic. A natural question to ask is, “how does LDA work?” or
“why does LDA produce groups of words with similar themes?” For instance, with the
four provided topics we note that the left-most topic is related to drugs and medicine, the
next topic is related to color, the third topic is related to memory, and the fourth topic is
related to medical care. How did LDA extract these topics from a collection of texts? The
simple and straightforward answer is co-occurance. LDA extracts clusters of co-occurring
words to form topics.

Figure 4: Taken from Steyvers and Griffiths (2007).

Let’s probe a bit deeper than simply saying LDA works because of co-occurance. Let’s
figure out why. To do this, we must reexamine the joint distribution—which is proportional
to the posterior—and break down what each member of the hierarchy implies:

p(θ, z|w, α, β) ∝ p(θ, z,w|α, β) = p(w|z, β)︸ ︷︷ ︸
1

p(z|θ)︸ ︷︷ ︸
2

p(θ|α)︸ ︷︷ ︸
3

(11)

1. implies that making β a sparse matrix will increase the probability of certain words–
remember that the β values for a given topic must sum to one so the more terms
we assign a non-zero β value the thinner we have to spread our probability for the
topic.

2. implies that making θ have concentrated components will increase the probability

3. implies that using a small α will increase the probability

The three factors form an interesting dynamic: (1) implies that having sparsely distributed
topics can result in a high probability for a document, where the ideal way to form the
sparse components is to make them non-overlapping clusters of co-occurring words in
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different documents (why is this?); (2) encourages a sparse θ matrix so that the probability
of choosing a given z value will be large, e.g. θ = (0.25, 0.25, 0.25, 0.25) would yield smaller
probabilities than θ = (0.5, 0.5, 0, 0) . In other words, (2) penalizes documents for having
too many possible topics. (3) again penalizes using a large number of possible topics for
a given document—small α values yield sparse θs. In summary: (1) wants to form sparse,
segregated word clusters, (2) and (3) want to give a small number of possible topics for
each document. But if we only have a few topics to choose from and each topic has
a small number of non-zero word probabilities, then we surely better form meaningful
clusters that could represent a diverse number of documents. How should we do this you
ask? Form clusters of co-occurring terms, which is largely what LDA accomplishes. But
while the joint distribution encourages a small number of topics with small meaningful
(co-occurring) topics, the data itself needs a larger number of topics in order to assign
small “topic clusters” to the data. So, as desired, we have a push and pull factor between
the joint distribution and the actual data in determining the assignment of topics.

Other notes to include in future revisions:

• φ approximates p(zn|w) so we can use it to assign topics to individual words (e.g.
if qn(zn = 1) > 0.9) (aka variational posterior multinomial parameters).

• γ(w) (the variational posterior Dirichlet parameters) can be used to model docu-
ments for classification. γi approximates αi except for the most significant topics
where γi − αi > 1. γ represents the document on the topic simplex.

• LDA combats overfitting, unlike mixture models (LDA is a mixed membership
model)

• LDA can really be considered a dimensionality reduction technique — discrete PCA

• Comparison/evaluation methods

5 Further Study

• Blei et al. (2003): The original LDA paper; much of this tutorial was extracted from
this paper. This paper also includes several excellent examples of LDA in application.

• Blei (2011): A recent overview and review of topic models, also includes directions
for future research

• Steyvers and Griffiths (2007) provides a well-constructed introduction to probabilis-
tic topic models and details on using topic models to compute similarity between
documents and similarity between words.

• Dave Blei’s video lecture on topic models: http://videolectures.net/mlss09uk_
blei_tm
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6 Appendix: EM Algorithm Refresher

The General EM Algorithm Summary:
Given a joint distribution p(X,Z|θ) over observed variable X and latent variables Z, with
parameters θ, the goal is to maximize the likelihood function p(X|θ) with respect to θ.

1. Initialize the parameters θold

2. E Step Construct Q(θ,θold)

Q(θ,θold) =
∑
Z

p(Z|X,θold) ln p(X,Z|θ)

which is the conditional expectation of the complete-data log-likelihood.

3. M Step Evaluate θnew via

θnew = arg max
θ

Q(θ,θold) (12)

4. Check log likelihood and parameter values for convergence, if not converged let
θold ← θnew and return to step 2.
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