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This paper focuses attention on strange nonchaotic attractor of Chua’s circuit with two-
frequency quasiperiodic excitation. Existence of the attractor is confirmed by calculating several
characterizing quantities such as Lyapunov exponents, Poincaré maps, double Poincaré maps
and so on. Two basic mechanisms are described for the development of the strange nonchaotic
attractor from two-frequency quasiperiodic state (torus solution). One of them is torus-doubling
bifurcation followed by a smooth transition from the torus attractor to the strange nonchaotic
attractor; and another is that the torus does not undergo period-doubling bifurcation at all;
instead, the torus attractor gradually becomes wrinkled, and eventually becomes strange but

nonchaotic.

1. Introduction

Strange nonchaotic attractors refer to attractors
which are geometrically strange (fractal) but non-
chaotic (no positive Lyapunov exponents). Since
the pioneering work of Grebogi et al. [1984], several
studies have been carried out to show the existence
and characterization of the attractors in quasiperi-
odically forced nonlinear dynamical systems. These
include the studies on forced damped pendula
[Bondeson et al, 1985; Romeiras & Ott, 1987],
quasiperiodically driven van der Pol oscillator
[Kapitaniak et al., 1990; Brindley & Kapitaniak,
1990], quasiperiodically excited Ueda’s circuit [Liu
& Zhu, 1996], quasiperiodically forced circle map
[Ding et al., 1989a], two-frequency parametrically
forced Duffing oscillator [Heagy & Ditto, 1991] and
other classes of quasiperiodically forced maps [Ding
et al., 1989b]. These studies have shown that the
strange nonchaotic attractors exist in a wide class
of the nonlinear dynamical systems and have

227

specific characteristics which make them different
from the other attractors.

Recently, it was shown that there are two
common scenarios leading to the strange nonchaotic
behaviors. One scenario is intimately tied to the
phenomenon of torus-doubling [Bondeson et al.,
1985; Ding et al., 1989a; Heagy & Ditto, 1991] and
another is connected to the torus breakdown due
to the loss of the smoothness [Kapitaniak et al.,
1990; Liu & Zhu, 1996]. The works in [Heagy &
Hammel, 1994; Zhu & Liu, 1997] revealed the ba-
sic mechanisms for the two scenarios by using the
quasiperiodically driven logistic maps.

In this paper, we give another example of the
quasiperiodically excited nonlinear dynamical sys-
tem which exhibits the strange nonchaotic attrac-
tors and show that the example can be well utilized
to illustrate the two mechanisms for the develop-
ment of the strange nonchaotic attractors. The sys-
tem is the two-frequency quasiperiodically excited
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(a)

Fig. 1.
istic of the nonlinear resistor.

Chua’s circuit, as shown in Fig. 1. It should be
noted that when both external excitations are zero,
the excited circuit becomes the standard Chua’s au-
tonomous circuit [Chua et al., 1986; Madan, 1993]
and when one of the external excitations is zero,
the excited circuit is the periodically excited Chua’s
circuit [Murali & Lakshmanan, 1991, 1992]. The
autonomous Chua’s circuit and the periodically
excited Chua’s circuit have received much research
interest and a lot of significant results are well
documented in literature [Chua, 1994]. Here we in-
vestigate the circuit dynamics when the excitation
term contains two incommensurate frequencies. We
noticed that the dynamics of two-frequency excited
Chua’s circuit has been reported [Murali & Laksh-
manan, 1993a, 1993b]. The work therein mainly
dealt with strange chaotic behavior and its control.
In this paper, we will focus our attention on the
strange nonchaotic phenomenon which occurs in the
quasiperiodically excited circuit.

We have numerically calculated Lyapunov ex-
ponents, Poincaré maps and double Poincaré maps
of characterizing the circuit behaviors. The results
show that the quasiperiodically excited circuit not
only possesses the well-known quasiperiodic and
strange chaotic solutions, but also has strange non-
chaotic solutions. Further simulation analyses re-
veal that the creation of the strange nonchaotic
attractors can be explained by the two developed
mechanisms.

This paper is organized as follows: Sec. 2 is
background material; Sec. 3 shows the existence of
the strange nonchaotic attractors; Sec. 4 describes
the development of the attractors and Sec. 5 is the
conclusion.
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Circuit realization of the two-frequency quasiperiodically excited Chua’s circuit. (a) The circuitry. (b) v-i character-

2. Background Material

In this section, we introduce the quasiperiodically
excited Chua’s circuit and several quantities char-
acterizing the various kinds of attractors as a basis
for the following study.

The quasiperiodically excited Chua’s circuit is
shown in Fig. 1. The differential equation describ-
ing the circuit is given by

d 1

G~ (Glve, —vey) — 9(vey))

dt Cy (1a)
dv 1 .

= G (Gloe —ve,) +ir) (1b)

d;—tL = %(——vc2 + Fj cos(wit) + Fjcos(wat)) (1Lc)
where vc,, v, and %7 are the voltage across Cj,
the voltage across Cy and the current through L,
respectively. Fj cos(wit) and Fjcos(wst) are two
external excitation sources and the frequencies wq,
wy are incommensurate. The term g(vc, ) represents
the piecewise linear characteristic of Chua’s resistor
whose functional representation is expressed as

iR = g(V01) - m0V01
+0.5(m1 — mo)(|Ve, + Bp| = |Ve, — Bpl)  (2)

where myg is the slope of the first and last segments
and m; is the slope of the middle segment of the
functional curve of the nonlinear resistor as shown
in Fig. 1(b). Bp is the break point voltage.
Depending on the different choices of circuit
parameters and excitation parameters (Fy, Fj, wy
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and wsq), the excited circuit exhibits rich dynamics.
Now we review several quantities of characterizing
the dynamical behaviors.

The first one concerns Lyapunov exponents
[Wolf et al. 1985]. The Lyapunov exponents provide
most direct evidence of divergence or non-divergence
of neighboring trajectories. Depending on the sign
characteristics of the Lyapunov exponents, we can
separate the chaotic attractors from the other at-
tractors. Equation (1) has five Lyapunov expo-
nents; among them there are two trivial exponents
which are identically zero by virtue of the two exci-
tation terms. Let the Lyapunov exponents A; (i =
1,2,...,5) be ordered by size, A\; > A2 > A3 >
A4 > As. Then the possible Liyapunov spectra for
the various types of behaviors of Eq. (1) are as
follows:

(1) two-frequency quasiperiodic attractors, A\; =
Ay =0 > Ag;

(2) three-frequency quasiperiodic attractors, A; =
Ay =A3=0> Ag;

(3) strange chaotic attractors, A1 > 0, and

(4) strange nonchaotic attractors, with Lyapunov
spectrum the same as that of two-frequency
quasiperiodic attractors.

We will use the ODE program in [Wolf et al.
1985] to perform the calculations of the Lyapunov
exponents.

The next quantity is Poincaré map [Gucken-
heimer & Homels, 1983]. The system (1) has five-
dimensional phase space (ve,, Vo, tL, 01 = wit,
B2 = wot) € R3 x S! x 81, where S = R/27 is the
circle of length 2. The Poincaré map is obtained by
defining a four-dimensional cross-section to the five-
dimensional phase space by fixing the phase of one
of the angular variables and allowing the remain-
ing four variables that start on the cross-section to
evolve in time under the effect of the flow generated
by (1) until they return to the cross-section. If we
fix the phase 81, and define the cross-section as

[}
Z ° = {(UCI’ UC27 iL) 91) 02)
€ R} x S x 8|6, = 00}, (3)

then the Poincaré map P%o: $f0 — 590 for the
flow of Eq. (1) is given by
Pho (v, (0), v6,(0), 3L(0), b20)

- (UCI (T)a UCz(T), iL(T)a 620 +w2T) (4)

where (vg, (t), ve,(t), iL(t), wit + 10, wat + O2) is
a solution of Eq. (1) and T' = 27 /w, is the period
with respect to the frequency wi. To describe the
surface of the Poincaré map, we often plot the pro-
jections of the Poincaré map on to planes (vg;, ve,),
(vey, in) and (ve,, i1), respectively. Alternative
surfaces can also be obtained by plotting v¢,, v,
and i against #ymod 27, respectively. Thus the
two-frequency quasiperiodic solution (1-torus solu-
tion) corresponds to a closed curve in the (v¢,, ve, ),
(vey, ir) and (v, i), and to a branch in other
planes. The strange solution is fractal in all sur-
faces. However, the three-frequency torus solution
is hard to detect by the Poincaré map because its
structure is also very complicated [Anishchenko
et al., 1994; Parker & Chua, 1989].

Finally we describe the double Poincaré map,
which is useful to uncover the fractal properties of
the attractor in the two-frequency quasiperiodically
forced systems. See [Moon, 1987] for the exposition
of the idea. With respect to Eq. (3), we define a
double Poincaré section as

2910’92°’A92° = {(vey, veys i, 01, 62)
€ R? x 81 x 8101 = 10, 6 € [620, 020 + Aby]}
(5)

where Afy is small. Then the double Poincaré map
$910.020,8920: (9 | we,, i) — (vey, Ve, i) is ob-
tained by sampling solutions of Eq. (1) when the
phase of the first excitation term equals 619 and
the phase of the second excitation term is involved
in the interval [fy, 20 + Afg]. Thus the dou-
ble Poincaré map is approximately considered as a
three-dimensional map when A6y is very small. An
invariant 1-torus of the Poincaré map corresponds
to an invariant small segment of the double Poincaré
map, the projection of which on to the (v¢y, ve,)-
plane looks like a single point. With the three-
frequency quasiperiodical solution present, one may
see a closed curve in the double Poincaré map. The
fractal-like structure of strange attractors is also re-
vealed for double Poincaré map.

By using the Poincaré map and the double
Poincaré map, we can differentiate the strange non-
chaotic attractors from the quasiperiodic attractors.

3. Existence of Strange Nonchaotic
Attractors

The dynamics associated with (1) depends on seven
circuit parameters and four excitation parameters.
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In this section, we will choose F5 as a variable pa-
rameter while fixing the other parameters as:!

1/C1=6,1/Ca=1,1/L=7,G=0.7
mp = —0.5, m; =—08, Bp=1
Fl=1,w =1, w = (V/5-1)/2

In the simulation studies, we choose 6y = 0,
B0 = 0 and Afyp = 27 x 0.01 for the calculation of
Poincaré maps and double Poincaré maps. For the
calculation of Lyapunov exponents, the number
of driver periods corresponding to w; was taken
between 2 x 10% and 1 x 10° depending on the
convergence.

The existence of the strange nonchaotic attrac-
tors can be best understood by observing the
Lyapunov exponents, Poincaré maps and double
Poincaré maps. Figure 2 shows the plot of the
largest Lyapunov exponent Amax (except two
trivial exponents) against F,. Depending on the
system behaviors (as discussed below), we have
divided the parameter into five regions. For the
Regions I and III, the largest Lyapunov exponent
is positive, and hence it is easy to detect that the
circuit is in strange chaotic state when the param-
eter F; falls in those regions. Figure 3 shows the
projections of the Poincaré map and the double
Poincaré map on to (vc,, vc,)-plane, with the pa-
rameter Fy (equals to 0.4) taken from the Regions I.
(In this section and the following discussions, with-
out ambiguity, the Poincaré maps and the double
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Fig. 2. The largest Lyapunov exponent Amax of (1)
against Fy.

!For convenience, let Fy = Fj/L in the following.

Poincaré maps refer to their projections on to the
appropriate planes.) For Regions II, IV and V, the
largest Lyapunov exponent is nonpositive. As we
noted in Sec. 2, these regions are possible regions
where the strange nonchaotic attractors exist. How-
ever, for parameter Fy in Region V, the Poincaré
map and double Poincaré map show simple struc-
tures. Figure 4 gives an example with Fy = 2. As
seen, the Poincaré map is a closed curve and the
double Poincaré map looks like a point. Hence, the
attractor is a two-frequency quasiperiodic attrac-
tor. We have tested other parameters in Region V
and the results are the same. This implies that the
circuit is quasiperiodic when we select parameter
F; in Region V. When the parameter Fj is in the
Regions IT and IV, the situations are quite differ-
ent. Figures 5 and 6 give the Poincaré maps and
the double Poincaré maps for parameter Fp = 1
and 1.2, respectively. It is noted that the Poincaré
maps and the double Poincaré maps are quite dif-
ferent from these in Fig. 4, They are fractal! In
other words, the circuit behaviors are strange. Be-
cause of nonpositive Lyapunov exponent, we can
say that the circuit works in the strange nonchaotic
state. For other parameters F5 in Regions IT and IV,
the circuit performs the same dynamical behavior.
Based on these observations, we may conclude that
the circuit has the strange nonchaotic behaviors and
the behaviors are typical in the sense that they ex-
ist in substantial parameter ranges. For the current
selection of the circuit and excitation parameters,
it seems that the strange nonchaotic attractors are
much more general than the strange chaotic attrac-
tors are. Finally, we point out that there exists
three-frequency quasiperiodic behavior at the tran-
sition of the strange nonchaotic and chaotic behav-
iors (corresponding to the largest Lyapunov expo-
nent of zero). However, it is difficult to observe the
behavior because it exists on a set of zero Lebsque
measure in the Fy parameter.

In this section we have studied the effect of
the external quasiperiodic excitation on Chua’s cir-
cuit dynamics. The results have shown that the
quasiperiodically excited circuit indeed has the
strange nonchaotic behaviors. For the easy presen-
tation, we have only studied the circuit dynamics
effected by one of two excitation signals. We also
find the existence of the strange nonchaotic attrac-
tors for some other parameter settings. We will
elaborate this in the next section along with the dis-
cussion of the mechanisms for the birth of strange
nonchaotic attractors.
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(2)
Fig. 3. Poincaré map (a) and double Poincaré map (b) of (1) for F> =0.4.
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(2)

Fig. 4. Poincaré map (a) and double Poincaré map (b) of (1) for F> = 2.

(a)
Fig. 5. Poincaré map (a) and double Poincaré map (b) of (1) for F> = 1.
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Fig. 6. Poincaré map (a) and double Poincaré map (b) of (1) for F» =1.2.

4. The Birth of Strange Nonchaotic
Attractors

In this section, we describe two scenarios for the
birth of the strange nonchaotic attractors from two-
frequency quasiperiodic behaviors and discuss the
corresponding mechanisms. One scenario is torus-
doubling bifurcation followed by a smooth transi-
tion from the two-frequency torus attractor to the
strange nonchaotic attractor. Another scenario is
that the torus does not undergo period-doubling
cascade as system parameters vary, instead, torus
curve becomes extremely wrinkled, loses its smooth-
ness and finally becomes fractal.

4.1. The first scenario:
torus-doubling phenomenon
[Heagy & Hammel, 1994]

Let the parameter Fy = 0.01, 1/C; vary between 6.5
and 7 and the other parameters be as prescribed in
the last section. Figure 7 shows the evolution of typ-
ical attractors as 1/C; varies. From this figure, we
can depict the creation of the strange nonchaotic be-
haviors by the torus-doubling phenomenon. When
1/Cy = 6.55, the excited Chua’s circuit has its ba-
sic solution: two-frequency torus. This is obvious
from the Poincaré map and the double Poincaré
map shown in Figs. 7(a) and (b). As 1/Cj in-
creases, for example 1/C; = 6.8, the Poincaré map
[Fig. 7(c)] becomes two smooth branches and the
double Poincaré map [Fig. 7(d)] becomes two points
or two segments. Thus the circuit behavior be-
comes 2 X torus attractor. As discussed in [Heagy
& Hammel, 1994], the 2 x torus is created by a
period-doubling (torus-doubling) bifurcation from
the period-1 repellor. As1/C} further increases, the

torus attractor does not undergo bifurcation fur-
ther but becomes wrinkled, as shown in Fig. 7(e) for
1/C; = 6.88. But the double Poincaré map shown
in Fig. 7(f) indicates that the circuit is still in the
quasiperiodic state.(The magnified view of Fig. 7(e)
shown in Fig. 7(g) reveals that the attractor is still
smooth. In fact, the branches of the 2 x torus are
close to the 1l-period repellor [Heagy & Hammel,
1994].) As 1/C; increases, the two branches be-
come extremely wrinkled and result in a strange
attractor. This is reflected in the Poincaré map
and the double Poincaré map shown in Figs. 7(h)
and 7(i) for 1/C; = 6.89. Figure 7(j) is a magnified
view of Fig. 7(h). Figure 7(j) indicates the apparent
discontinuity in the Poincaré map. However, dur-
ing this sequence, the largest Lyapunov exponent
Amax remains negative, which is shown in Fig. 8.
Therefore, we conclude that the circuit works in
the strange nonchaotic state for 1/C; = 6.89. As
1/C; further increase, there is an eventual transi-
tion to the strange chaotic attractor, the Poincaré
map and double Poincaré map for 1/C; = 7 are
shown in Fig. 7(k) and Fig. 7(1), respectively.

The results in this section show that the cir-
cuit behavior is bifurcated into 2 X torus from its
basic torus as 1/C; increases. After that, the cir-
cuit attractor becomes strange nonchaotic as 1/C}
further increases. The evolution of the strange non-
chaotic attractors was first suggested by Heagy and
Hammel [1994] in the quasiperiodically excited lo-
gistic map. Here we find a continuous system which
bears a resemblance to that. In the above anal-
ysis, we have chosen the circuit parameters which
make the circuit become strange nonchaotic after
the first-order torus bifurcation. In fact, the circuit
parameters can be selected to have high-order bifur-
cations and after that the circuit becomes strange
nonchaotic. We will discuss this in another paper.
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Fig. 7. The evolution of typical attractors from two-frequency quasiperiodic to strange chaotic as 1/C; increases when
Fy = 0.01. (a) The Poincaré map for 1/C; = 6.55; (b) the double Poincaré map for 1/C1 = 6.55; (c) the Poincaré map for
1/C; = 6.8; (d) the double Poincaré map for 1/C1 = 6.8; (e) the Poincaré map for 1/C; = 6.88; (f) the double Poincaré map
for 1/C1 = 6.88; (g) the local magnified view of (e); (h) the Poincaré map for 1/C; = 6.89; (i) the double Poincaré map for
1/C1 = 6.89; (j) the local magnified view of (k); (k) the Poincaré map for 1/Cy = 7; (1) the double Poincaré map for 1/C; = T.
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Fig. 8. The largest Lyapunov exponent Amax against 1/C
when F; = 0.01. (Region I corresponds to quasiperiodic
state; Region II to strange nonchaotic state; and Region III
to chaotic state.)

4.2. The second scenario: torus
breakdown due to the loss of

smoothness [Zhu & Liu, 1997]

In this scenario, we fix the parameter Iy = 0.05
and let 1/C; vary from 6.8 to 6.87. Attractors
for successively larger 1/C; are shown in Fig. 9.
For 1/C; = 6.8, the Poincaré map [Fig. 9(a)] of
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(Continued)

the attractor has one smooth branch and its dou-
ble Poincaré map [Fig. 9(b)] is a small segment.
This indicates that the circuit is in two-frequency
torus state. As 1/C; increases, the attractor does
not undergo torus-doubling bifurcation as in the
first scenario; instead, the branch in the Poincaré
map becomes irregular as shown in Fig. 9(c) for
1/C, = 6.85. But its double Poincaré map shown
in Fig. 9(d) is still a small segment, and the mag-
nified view of Fig. 9(c) shown in Fig. 9(e) indicates
that the attractor is continuous. In other words,
the circuit is still in torus state. As 1/C} increases
further, the attractor becomes extremely wrinkled,
and ultimately results in fractal phenomenon.
Figures 9(f) and 9(g) show the Poincaré map and
double Poincaré map for 1/Cy = 6.86, respectively.
Figure 9(h) is a magnified view of Fig. 9(f). It is
seen that the attractor is strange. Figure 10 shows
the largest Lyapunov exponent A\pmax (except two
trivial exponents) of circuit against 1/C;. Combin-
ing Fig. 10 and Figs. 9(f)-9(h), we can say that
the circuit is strange nonchaotic for 1/C; = 6.86.
As 1/C; increases further, the circuit eventually
transmits to chaotic state from nonchaotic state.
Figures 9(i) and 9(j) present the Poincaré map and
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Fig. 9. The evolution of typical attractors from two-frequency quasiperiodic to strange chaotic as 1/C} increases when Fp =
0.05. (a) The Poincaré map for 1/C1 = 6.8; (b) the double Poincaré map for 1/Cy = 6.8; (c) the Poincaré map for 1/C; = 6.85;
(d) the double Poincaré map for 1/C1 = 6.85; (e) the local magnified view of (c); (f) the Poincaré map for 1/C; = 6.86

(g) the double Poincaré map for 1/C; = 6.86; (h) the local magnified view of (f); (i) the Poincaré map for 1/C; = 6.87;
(j) the double Poincaré map for 1/C; = 6.87.
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Fig. 9.

double Poincaré map of chaotic attractor for
1/C; = 6.87.
The development of the strange nonchaotic at-

tractors is tied to torus breakdown phenomenon
[Anishchenko et al, 1993; Zhu & Liu, 1997}
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Fig. 10. The largest Lyapunov exponent Amax against 1/C
when F3 = 0.05. (Region I corresponds to quasiperiodic
state; Region II to strange nonchaotic state; and Region III
to chaotic state.)
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the torus first becomes wrinkled, then loses its
smoothness and finally becomes fractal. However
the largest Lyapunov exponent remains negative
during the process. The torus breakdown due to
the loss of smoothness formulates a soft transition
to strange nonchaotic attractor from quasiperiodic
attractor.

The mechanism of the torus breakdown due
to the loss of smoothness is also applicable to the
strange nonchaotic attractors in Sec. 3. Figure 11
shows the evolution of the attractors as Fy varies.
The evolution is the same as discussed in the above.
We will not elaborate it here.

5. Conclusion

Chua’s circuit is one of the simplest circuits which
exhibit the strange behaviors. Because of its sim-
plicity, it has become a fundamental block for
studying various nonlinear dynamical phenomena
[Murali & Lakshmanan, 1992; Chua, 1994]. In this
paper, we have briefly investigated the effect of the

(b)

The sequence of attractors as F» varies when 1/C: = 6. (a) The Poincaré map for Fy = 2; (b) the Poincaré map for

F> = 1.6; (c) the local magnified view of Poincaré map for F> = 1.6; (d) the Poincaré map for F» = 1; (e) the local magnified
view of Poincaré map for F» = 1; (f) the Poincaré map for F» = 0.4,
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Fig. 11.

quasiperiodic excitation on the dynamics of Chua’s
circuit. Our researches have shown that the excited
Chua’s circuit not only possesses the strange non-
chaotic behaviors but can also be used to study the
development of the attractors. Thus this study re-
veals that this circuit can be effectively utilized to
study the strange nonchaotic phenomena. Chua’s
circuit is a piecewise linear circuit. Analytical meth-
ods are available for the investigations of nonlinear
dynamics in the circuit. It is expected that the
analytical methods can also be developed for the
study of the strange nonchaotic behaviors in the
quasiperiodically excited Chua’s circuit.
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