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Abstract. In this paper, we study the control of chaotic systems with unknown parameters. A stable adaptive
control scheme is used to guarantee that the parameter estimator converges to stabilizing values such that the
controlled chaotic system asymptotically approaches a reference point. A Lyapunov function approach is used to
prove a global result which guarantees the stability of both controlled chaotic system and the adaptive parameter
estimator. The center manifold theorem is used to prove the stability of the adaptive parameter estimator.

To demonstrate the usefulness of this adaptive control of chaotic systems, computer simulation results are
provided. We use Chua’s circuit with cubic nonlinearity in our simulations. We provide the simulation results of
control of Chua’s circuit with 6 unknown parameters.

1. Introduction

So far, there exist two main offsprings of applications of chaotic systems: control and
synchronization. The control problem is motivated by some demands which need to regulate
the chaotic systems into some desirable motion from different areas [3]-[5], [7]. The control
problem is generally considered as that of stabilizing a chaotic system to an equilibrium
point or a periodic orbit. The synchronization problem can be viewed as a special kind of
control problem in which the goal is to track the desired chaotic trajectory [6], [8].

In real life applications, the parameters of a chaotic system are not always accessible. And
the parameters may be time-varying [2], [9]. When some parameters of a chaotic system
are unknown, we need to apply adaptive control techniques [1], [2], [11], [12], [13], [14] to
control the chaotic system. In [1], the authors proposed a pool of adaptive controllers for
purpose of compensating channel gain or mismatch of one parameter in a synchronization
scheme. On the other hand, the authors of [2] employed some adaptive model-reference
controllers to synchronize two chaotic systems with more than one unknown parameters.
In [11]. the author used adaptive method to compensate the modeling error from observed
chaotic time series data and achieved the control. In [12], the authors used an adaptive
model-reference controller to achieve control from observed time series. The autoregressive
self-tuning feedback method was used in [14].

In this paper, we study the control of chaotic system with more than one unknown pa-
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rameter to an equilibrium point. To stabilize the controlled system, an adaptive parameter
estimator is employed. Based on this adaptive estimator, a controller is used to stabilize the
chaotic system to desired points. A Lyapunov function method is used to prove the asymp-
totic stability of the controlled chaotic system from a global point of view. Furthermore,
the center manifold theory [19] is employed to get a detailed insight in the dynamics of the
parameter estimator.

To demonstrate the usefulness of our adaptive method, the simulation results of control
of Chua’s circuit with cubic nonlinearity and with 6 unknown parameters are presented.

The organization of this paper is as follows. In section Il, some theorems concerning
about adaptive control of continuous chaotic system with unknown parameters are given.
In section Ill, some simulation results using Chua’s circuit with cubic nonlinearity are
presented. In section IV, the conclusions are contained.

2. Control of Chaotic System with Unknown Parameters

The chaotic system we studied in this paper has the following form
X = AX+ ®(X)O (1)

wherex € R", ®(x) € C1(R", R™!) and® e R'. @ is the vector of unknown constant
parametersA is ann x n constant matrix. Th&(x) = (®;; (X)) are the matrix of smooth
nonlinear functions take argumentsi®i and®;; (0) = 0. Since®;; (0) = 0, this system
has an equilibrium point at the origin= 0, and the control objective is to globally stabilized
this equilibrium for any unknown value @. The controlled chaotic system is given by

%= AX+®(X)O +u @)

u € R"is the control vector. Since there exists an unknown parameter vectorthe
plant, we need to design a parameter estim&grnwhich asymptotically approaches the
actual parameter vect@. We have the following theorem.

THEOREM1 Assume that there exists a matrix B such {t#a# B) is negative definite and
the control law is given by

U= Bx—®X)O (3

where ® is the estimated parameter vector, which is given by the following parameter
update law

6 = 3" (0)x )

Then we can draw the following two conclusions
1. x(t) and the parameter estimating erré@ = © — © can be made arbitrary small for
all time t > 0, if we choose the initial erroe(0) and ®(0) to be sufficiently small.
2. X(t) —> Oast— oo. Furthermore, ifx is bounded for all time t O, then we have

® — 0ast— oo.
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Proof: We construct a Lyapunov functiovi(x) as

V) = =xTx+-0' O )

NI =
NI =

Let® = © — O, since® is a constant parameter vector, we have
6=-6 (6)
DifferentiatingV along the trajectories of the solutions of Eqgs. (2) and (4), we get

V) = xX'x+©0'6 (7)
— xT(AX+ Bx+ ®(x)©) — ©' &7 (x)x
= X"(A+BX+ X ®x)0 — 0" &7 (x)x
= x'(A+B)x<0

The equality is satisfied only when= 0. ]

Remarks. From Theorem 1 we can see that the solutions of the controlled system and the
update law converge to the following manifold

M= {(x, ®) € R™|x =0} (8)

SinceM is in fact the®-subspace irR™, the following theorem is used to state which
point the system converges to in thesubspace.

THEOREM2 Supposd®(x)| < L[X|, where L > 0, then there exists a constant vector
O € R such that

Jim Ot) = O (9)

Proof: Theorem 1 guarantees th@atandx are bounded and from Eq. (7) we have
V(x,t) =X (A+ B)X < Aarg|x/? (10)
wherei s, g denotes the biggest eigenvalug 8f+ B). Since(A + B) is negative definite
we haveia,g < 0. By BoIzano—Weierstra§s theorem, the~re exists a sequenasith
ti —> oo asi —»> oo such that the sequen@t;) has a limit®,, € R, i.e.,
Ot) — O, asi— oo (11)

Let

©=0-6,=60,-6 (12)
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and for anyt € [t;, t 1], consider

A1) = O) + t_t(i)(z)dz (13)
In view of |®(X)| < L|x(t)|, we have

601 <16®I+L [ IXoPde (14)

t

In view of V (t) < Aa,g|x|2andiass < 0, we have

t t
IX(7)]?dr < = 1 f V(r)dt (15)
t AarB Ju
1
= —=—— (V) - V(1)
AA+B
In view of V < 0, we haveV (1) < V(t), then we have
t 1
IX()[2dr < —=——(V(t) — V(ti+1) (16)
t AA+B
1 - -
= ——=——[(IX)? = Xti+D) D) + 1O |* — [O(ti+1)?)]
2iarB
1 - - - -
= - X)) + (O t) — Oti+1) T (Ot) + O(ti11))]
AA+B
1 _ _ _ _ -
< ——=—— Xt + O) — Oti+1) (O) + Oti+1) + 20,)]
2iatrB
1 _ _ _ _ -
< - X)) + (O] + [©ti+) DO + 1Ot 11)|+2/Ou )]

A+B
Then from Egs. (14) and (16), we have

- - L - - - _ -
IGUNEHQGN-ﬂ' [IX(t)12+ (O] + 1Ot )N (O®)] + [O(ti11)| + 2[Oc0])]
A+B

(17)

In view of Theorem 1, we know that lim_, ., X(t) = 0. And in view of Eq. (11), we know
that the right hand side of Eq. (17) tends to zert as> o, i.e.,

lim O@t) = lim (O, —©) =0 (18)
t—o0 t—o0
which means that lig_, o= (:)oo. [ |
Since any of the solutions of the adaptively controlled chaotic system converges to an

equilibrium point on the manifolt, we would like to study the stability of an equilibrium
point (x, ®) = (0, ®,), where®, # ©. We have the following theorem.
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THEOREM3 Consider the adaptively controlled chaotic system, concerning with the equi-
librium point (x, ®) = (0, ®,) we can draw two conclusions )

1) (0, @,) is globally stable if all the eigenvalues oA + B + 220
left hand plane.

2) (0, ©.) is unstable if at least one eigenvalug(éf+ B +
hand plane.

) is in the open

1 POO, i .
1208 is in the open right

Proof:  Since®(0) = 0, then there exists a smooth vector-valued func@arx, ©,) with
G1(0,0,) =0 and%;@e) — 0, such that

P(X)O, = Méi?()(:)ex + G1(x, ©p) (19)
let
©6=6,-6=06-6, (20)
Then we have
X = (A+BX+®(00 (21)
= (A+B)x+ tI>(x)®~+ P(X)O¢
= (A+B)x+ a(}é—?@ex + G1(X, Oc) + ®(X)O
- <A+ B+ —aq)(a?()ée> X+ G(x, ©)

whereG(x, ©) 2 Gy(x, Oc) + ®(x)©. And we have
O=-3"x2 Hx ©) (22)

G(X, (5) satisfies

G(0,©) = G1(0, O¢) + ®(0)® =0 (23)
® c i)
aG(x, ©) o 0G1(0, Op) n 0 (O)O= 0 (24)
X |x—0.®=0 0X X
X0 _3610.9) 50 ¢ (25)
30 |\o 90
we then have
G(0,®) =0, 060.0 _, 3600 _, (26)

X )
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And it is easy to see that

4H(0.6) _ 3H©0.0) _
x e

H(@, ®) =0, (27)

Assume that all eigenvalues 6A + B + 8'%7(2@3) is in the open left hand plane. Since

the equilibrium manifoldk = h(é) = Ois invariant andaa—h@ = 0, thenx = Ois a center
manifold [19]. The reduced system of Egs. (21) and (22)

©=H(®0,0)=0 (28)

is stable. By the center manifold theorem [19], the equilibrium p()'mé) = (0,0 is
stable. The stability is global in view of Theorem 1. Then the first conclusion is proved.

Next, we assume that at least one of the eigenvalugf\ef B + 3@7‘2@9) is in the
open right hand plane. Then we linearize the system in Egs. (21) and (22) in the vicinity of
(X, ®) =(0,0) as

S 1P 0O,
X || A+B+220%e o || ox (29)
S 0 0 S

In view of the linearization theorem, the second conclusion is proved. [ ]

Definition. A functionf: D — R" is uniformly increasingn some convex sdd C R" if
there existsx > 0 such that for alk, X' € D

X =xX)T(EX) — (X)) > a|x — X||2 (30)

The following theorem is useful in this paper.
THEOREM4 ([10]) A functionf € C[R", R"] is uniformly increasing in Rif and only if

for somex > 0 such that(Df(x) — «l) is positive definite for alk € R", wherel is the
n x n identity matrix. 0(x) denotes the Jacobian matrix fik).

Then we have the following theorem

THEOREM5 The equilibrium pointix, ©®) = (0, ©,) is globally stable if—®(x)O, is
uniformly increasing in Rsuch that

al + (A+ B) + D&(x) O, (31)

is negative definite for alt € R".
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Proof: Let
©=06,-6=06-6, (32)
Then we have

X = (A+B)x+®x6 (33)
(A+ B)Xx+ &(X)(© + Op)
= (A+B)X+ ®X)Oc + B(X)O

O = —®T(0x (34)
Then we construct the Lyapunov function
— 1 1—7—
V(x,©) = x"x+ E@T(a (35)

DifferentiatingV along the trajectories of solutions of Egs. (33) and (34), we get

V(x,0) = X' (A+ B)x+ X ®x)0e + X ®(x)0 — O & (x)x
= X" (A+ B)X+ X" (®(x) — #(0))O,
< —ax'x (36)
| ]

In some cases, we are also interested in controlling a chaotic system to a non-zero point,
then the following corollary is useful.

COROLLARY 1 Assume that = X — Xe, Wherexe is a non-zero equilibrium point, with the
control law

U= —AXe+ Bz— ®(x)O (37)
and the parameter updating law
6=a3" (X)z (38)

then the close-loop adaptive system has a globally stable equilibrium pqiﬁ)) =
(Xe, ©®). Furthermore]im;__, o, z(t) = 0.

Proof:

AZ+ Xe) + B(X)O + (—AXe + Bz — ®(x)O)
= (A+ B)z+ ®x)© (39)

2(t)

In view of Theorem 1, we finish the proof. [ |
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3. Examples of Control of Chua’s Circuit with Cubic Nonlinearity

The well-known chaotic circuit model of Chua’s circuit [15] has a piece-wise linear element
called Chua’s diode [16]. Recently it was found that not all features of a real circuit are
captured correctly by this piecewise-linear circuit [17]. In this paper, we control one kind
of Chua’s circuit with smooth nonlinearity called Chua’s circuit with cubic nonlinearity
which is given by [18]

X1 = PXe + 8o + a1X1 + axx? + agx®

Xo = X1 — X2 + X3 (40)

X3 = —QX%

Example 1.Control Chua’s circuit to the origin.
In this example, we choose the unknown parameter vector as [18]

p
o
_| @&
0= 2 (41)
ag
q
Then the Chua’s circuit in Eq. (40) can be decomposed as
p
: 2 3 Eh]
X1 0 0O X1 X2 1 X3 X Xy O a up
X |=11-11 2 |+l 000 0 0 O a1+u2 (42)
X3 0 00/ \xs 000 0 0—x 2 us
—— —_—  — ag —_——
X A X @(X) q u
then we choose
-20 0
B=|-10-1 (43)
0 0 -1
such that
-2 0 O
A+B=| 0 -1 0 (44)
0 0 -1

is negative definite. The control law is given by

-20 0 X1 X2 1 x x2x3 0
u = -10 -1 x> | -] 000 O O O
0 0-1 X3 000 0O 0 —x

o} (.%» ’8» 'g» 8)) o
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—Pxe — 80 — (2+ &1)X1 — &Xf — BaX
= —X1 — X3 (45)
4% — X3
The parameter update law is given by
p 20 0 X1 %2
é'O 10 0 X X1
a I R 0O O ! _ X%
& "o o ( % ) ol (46)
bs X0 0 3 X}
a 0 0 —x —XoX3

The control law provided in Theorem 1 can guarantee that the controlled Chua’s circuit
asymptotically approach the origin. The linear system

X = (A+ B)x (47)

is the dynamics in the&-subspace of the close loop system. Assume that the parameter
vector of the Chua’s circuit is given by

p 10
ag 0.1
g %)
©=1a || o1 (48)
as 20
q 190
The initial condition of the Chua’s circuit is given by
x1(0) 0.442006
X2(0) | = | —0.213984 (49)
x3(0) —0.909130
The initial condition of the parameter update law is given by
p(0) p
a(0) Qo
a1(0) a
~ =2 50
8(0) 2 0)
a3(0) ag
4.0 q

After controlling, the Chua’s circuit asymptotically approaches the origin as the solid lines
shown in Fig. 1(a). The dashed lines show the dynamics of the uncontrolled Chua’s circuit.
The dynamics o® is shown in Fig. 1(b)—(g), one can see tl&tapproaches a constant
vector but no®.
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Figure 1. Control a Chua’s circuit with 6 unknown parameters to the origin. (a) The uncontrolled state variables
(dashed lines) and controlled state variables (solid lines). (b) The update proqiesécdfThe update process

of &y. (d) The update process &f. (e) The update process &f. (f) The update process @g. (g) The update
process ofj.
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Figure 2. Control a Chua’s circuit with 6 unknown parameters to a pgint The uncontrolled state variables
(dashed lines) and controlled state variables (solid lines) are shown.

Example 2.Control Chua'’s circuit toxg # 0.
We then control Chua’s circuit to a poirt # 0. By using corollary 1, we choose the
control law as

— FA)XZ — &4y — 2+ é]_)X]_ — ézX% — é3Xf + 2X1e
u= —X1 — X3 + Xoe (51)
4% — X3 + Xze

The parameter update law is given by

p X1X2 — X1eX2

N X1 — Xie

é.]_ _ ij_ — X1eX1 (52)
&, X3 — XgeX?

a3 Xp — X1eX3

g —X2(X3 — X3ze)

The initial conditions for Chua’s circuit and the parameter update law are the same as those
in Example 1. And we choose as

X1e 2
Xe | =1 2 (53)
Xae 2

Fig. 2 shows the simulation result. We can see that the Chua’s circuit asymptotically
approachege.
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4. Conclusions

We present an adaptive controller for stabilizing chaotic systems with unknown parameters

to fixed points. We use a Lyapunov function based method to design the parameter estimator
such that the controlled chaotic system can be globally stabilized to the reference point. We

also give a detailed study of the dynamics of the parameter estimator. We use the center
manifold theory to study the stability of the parameter estimator.
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