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Abstract. In this paper, we study the control of chaotic systems with unknown parameters. A stable adaptive
control scheme is used to guarantee that the parameter estimator converges to stabilizing values such that the
controlled chaotic system asymptotically approaches a reference point. A Lyapunov function approach is used to
prove a global result which guarantees the stability of both controlled chaotic system and the adaptive parameter
estimator. The center manifold theorem is used to prove the stability of the adaptive parameter estimator.

To demonstrate the usefulness of this adaptive control of chaotic systems, computer simulation results are
provided. We use Chua’s circuit with cubic nonlinearity in our simulations. We provide the simulation results of
control of Chua’s circuit with 6 unknown parameters.

1. Introduction

So far, there exist two main offsprings of applications of chaotic systems: control and
synchronization. The control problem is motivated by some demands which need to regulate
the chaotic systems into some desirable motion from different areas [3]–[5], [7]. The control
problem is generally considered as that of stabilizing a chaotic system to an equilibrium
point or a periodic orbit. The synchronization problem can be viewed as a special kind of
control problem in which the goal is to track the desired chaotic trajectory [6], [8].

In real life applications, the parameters of a chaotic system are not always accessible. And
the parameters may be time-varying [2], [9]. When some parameters of a chaotic system
are unknown, we need to apply adaptive control techniques [1], [2], [11], [12], [13], [14] to
control the chaotic system. In [1], the authors proposed a pool of adaptive controllers for
purpose of compensating channel gain or mismatch of one parameter in a synchronization
scheme. On the other hand, the authors of [2] employed some adaptive model-reference
controllers to synchronize two chaotic systems with more than one unknown parameters.
In [11]. the author used adaptive method to compensate the modeling error from observed
chaotic time series data and achieved the control. In [12], the authors used an adaptive
model-reference controller to achieve control from observed time series. The autoregressive
self-tuning feedback method was used in [14].

In this paper, we study the control of chaotic system with more than one unknown pa-
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rameter to an equilibrium point. To stabilize the controlled system, an adaptive parameter
estimator is employed. Based on this adaptive estimator, a controller is used to stabilize the
chaotic system to desired points. A Lyapunov function method is used to prove the asymp-
totic stability of the controlled chaotic system from a global point of view. Furthermore,
the center manifold theory [19] is employed to get a detailed insight in the dynamics of the
parameter estimator.

To demonstrate the usefulness of our adaptive method, the simulation results of control
of Chua’s circuit with cubic nonlinearity and with 6 unknown parameters are presented.

The organization of this paper is as follows. In section II, some theorems concerning
about adaptive control of continuous chaotic system with unknown parameters are given.
In section III, some simulation results using Chua’s circuit with cubic nonlinearity are
presented. In section IV, the conclusions are contained.

2. Control of Chaotic System with Unknown Parameters

The chaotic system we studied in this paper has the following form

ẋ = Ax+Φ(x)Θ (1)

wherex ∈ Rn, Φ(x) ∈ C1(Rn, Rn×l ) andΘ ∈ Rl . Θ is the vector of unknown constant
parameters.A is ann× n constant matrix. TheΦ(x) = (Φi j (x)) are the matrix of smooth
nonlinear functions take arguments inRn andΦi j (0) = 0. SinceΦi j (0) = 0, this system
has an equilibrium point at the originx = 0, and the control objective is to globally stabilized
this equilibrium for any unknown value ofΘ. The controlled chaotic system is given by

ẋ = Ax+Φ(x)Θ+ u (2)

u ∈ Rn is the control vector. Since there exists an unknown parameter vectorΘ in the
plant, we need to design a parameter estimator,Θ̂, which asymptotically approaches the
actual parameter vectorΘ. We have the following theorem.

THEOREM1 Assume that there exists a matrix B such that(A+ B) is negative definite and
the control law is given by

u = Bx−Φ(x)Θ̂ (3)

whereΘ̂ is the estimated parameter vector, which is given by the following parameter
update law

˙̂
Θ = ΦT (x)x (4)

Then we can draw the following two conclusions
1. x(t) and the parameter estimating error̃Θ = Θ− Θ̂ can be made arbitrary small for

all time t ≥ 0, if we choose the initial errore(0) andΘ̃(0) to be sufficiently small.
2. x(t) −→ 0 as t−→∞. Furthermore, ifx is bounded for all time t≥ 0, then we have
˙̂
Θ −→ 0 as t−→∞.
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Proof: We construct a Lyapunov functionV(x) as

V(x) = 1

2
xTx+ 1

2
Θ̃

T
Θ̃ (5)

Let Θ̃ = Θ− Θ̂, sinceΘ is a constant parameter vector, we have

˙̃Θ = − ˙̂Θ (6)

DifferentiatingV along the trajectories of the solutions of Eqs. (2) and (4), we get

V̇(x) = xT ẋ+ Θ̃
T ˙̃Θ (7)

= xT (Ax+ Bx+Φ(x)Θ̃)− Θ̃
T
ΦT (x)x

= xT (A+ B)x+ xTΦ(x)Θ̃− Θ̃
T
ΦT (x)x

= xT (A+ B)x ≤ 0

The equality is satisfied only whenx = 0.

Remarks. From Theorem 1 we can see that the solutions of the controlled system and the
update law converge to the following manifold

M = {(x, Θ̂) ∈ Rn+l |x = 0} (8)

SinceM is in fact the2̂-subspace inRn+l , the following theorem is used to state which
point the system converges to in the2̂-subspace.

THEOREM2 Suppose|Φ(x)| ≤ L|x|, where L> 0, then there exists a constant vector
2̂∞ ∈ Rl such that

lim
t−→∞ 2̂(t) = 2̂∞ (9)

Proof: Theorem 1 guarantees that2̂ andx are bounded and from Eq. (7) we have

V̇(x, t) = xT (A+ B)x ≤ λA+B|x|2 (10)

whereλA+B denotes the biggest eigenvalue of(A+ B). Since(A+ B) is negative definite
we haveλA+B < 0. By Bolzano-Weierstrass theorem, there exists a sequence{ti } with
ti −→∞ asi −→∞ such that the sequencẽΘ(ti ) has a limitΘ̃∞ ∈ Rl , i.e.,

Θ̃(ti ) −→ Θ̃∞ as i −→∞ (11)

Let

Θ̄ = Θ̃− Θ̃∞ = Θ̂∞ − Θ̂ (12)
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and for anyt ∈ [ti , ti+1], consider

Θ̄(t) = Θ̄(ti )+
∫ t

ti

˙̄Θ(τ ) dτ (13)

In view of |Φ(x)| ≤ L|x(t)|, we have

|Θ̄(t)| ≤ |Θ̄(ti )| + L
∫ t

ti

|x(τ )|2 dτ (14)

In view of V̇(t) ≤ λ̄A+B|x|2 andλ̄A+B < 0, we have∫ t

ti

|x(τ )|2 dτ ≤ 1

λ̄A+B

∫ t

ti

V̇(τ ) dτ (15)

= − 1

λ̄A+B
(V(ti )− V(t))

In view of V̇ ≤ 0, we haveV(ti+1) ≤ V(t), then we have∫ t

ti

|x(τ )|2 dτ ≤ − 1

λ̄A+B
(V(ti )− V(ti+1)) (16)

= − 1

2λ̄A+B
[(|x(ti )|2− |x(ti+1)|2)+ (|Θ̃(ti )|2− |Θ̃(ti+1)|2)]

≤ − 1

2λ̄A+B
[|x(ti )|2+ (Θ̃(ti )− Θ̃(ti+1))

T (Θ̃(ti )+ Θ̃(ti+1))]

≤ − 1

2λ̄A+B
[|x(ti )|2+ (Θ̄(ti )− Θ̄(ti+1))

T (Θ̄(ti )+ Θ̄(ti+1)+ 2Θ̃∞)]

≤ − 1

2λ̄A+B
[|x(ti )|2+ (|Θ̄(ti )| + |Θ̄(ti+1)|)(|Θ̄(ti )| + |Θ̄(ti+1)|+2|Θ̃∞|)]

Then from Eqs. (14) and (16), we have

|Θ̄(t)|≤|Θ̄(ti )| − L

2λ̄A+B
[|x(ti )|2+ (|Θ̄(ti )| + |Θ̄(ti+1)|)(|Θ̄(ti )| + |Θ̄(ti+1)| + 2|Θ̃∞|)]

(17)

In view of Theorem 1, we know that limt−→∞ x(t) = 0. And in view of Eq. (11), we know
that the right hand side of Eq. (17) tends to zero ast −→∞, i.e.,

lim
t−→∞ Θ̄(t) = lim

t−→∞(Θ̂∞ − Θ̂) = 0 (18)

which means that limt−→∞ Θ̂ = Θ̂∞.

Since any of the solutions of the adaptively controlled chaotic system converges to an
equilibrium point on the manifoldM, we would like to study the stability of an equilibrium
point (x, Θ̂) = (0, Θ̂e), whereΘ̂e 6= Θ. We have the following theorem.
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THEOREM3 Consider the adaptively controlled chaotic system, concerning with the equi-
librium point (x, Θ̂) = (0, Θ̂e) we can draw two conclusions

1) (0, Θ̂e) is globally stable if all the eigenvalues of(A+ B + ∂Φ(0)Θ̃e

∂x ) is in the open
left hand plane.

2) (0, Θ̂e) is unstable if at least one eigenvalue of(A+ B+ ∂Φ(0)Θ̃e

∂x ) is in the open right
hand plane.

Proof: SinceΦ(0) = 0, then there exists a smooth vector-valued functionG1(x, Θ̂e)with

G1(0, Θ̂e) = 0 and ∂G1(0,Θ̂e)

∂x = 0, such that

Φ(x)Θ̃e = ∂Φ(0)Θ̃e

∂x
x+ G1(x, Θ̂e) (19)

let

Θ̄ = Θ̂e− Θ̂ = Θ̃− Θ̃e (20)

Then we have

ẋ = (A+ B)x+Φ(x)Θ̃ (21)

= (A+ B)x+Φ(x)Θ̄+Φ(x)Θ̃e

= (A+ B)x+ ∂Φ(0)Θ̃e

∂x
x+ G1(x, Θ̂e)+Φ(x)Θ̄

=
(

A+ B+ ∂Φ(0)Θ̃e

∂x

)
x+ G(x, Θ̄)

whereG(x, Θ̄) 1= G1(x, Θ̂e)+Φ(x)Θ̄. And we have

˙̄Θ = −ΦT(x)x 1= H(x, Θ̄) (22)

G(x, Θ̄) satisfies

G(0, Θ̄) = G1(0, Θ̂e)+Φ(0)Θ̄ = 0 (23)

∂G(x, Θ̄)
∂x

∣∣∣∣
x=0,Θ̄=0

= ∂G1(0, Θ̂e)

∂x
+ ∂Φ(0)

∂x
0= 0 (24)

∂G(x, Θ̄)

∂Θ̄

∣∣∣∣
x=0
= ∂G1(0, Θ̂e)

∂Θ̄
+Φ(0) = 0 (25)

we then have

G(0, Θ̄) = 0,
∂G(0, 0)
∂x

= 0,
∂G(0, Θ̄)

∂Θ̄
= 0 (26)
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And it is easy to see that

H(0, Θ̄) = 0,
∂H(0, Θ̄)

∂x
= 0,

∂H(0, Θ̄)

∂Θ̄
= 0 (27)

Assume that all eigenvalues of(A+ B+ ∂Φ(0)Θ̃e

∂x ) is in the open left hand plane. Since
the equilibrium manifoldx = h(Θ̄) = 0 is invariant and∂h(0)

∂Θ̄
= 0, thenx = 0 is a center

manifold [19]. The reduced system of Eqs. (21) and (22)

˙̄2 = H(0, Θ̄) = 0 (28)

is stable. By the center manifold theorem [19], the equilibrium point(x, Θ̄) = (0, 0) is
stable. The stability is global in view of Theorem 1. Then the first conclusion is proved.

Next, we assume that at least one of the eigenvalues of(A + B + ∂Φ(0)Θ̃e

∂x ) is in the
open right hand plane. Then we linearize the system in Eqs. (21) and (22) in the vicinity of
(x, Θ̄) = (0, 0) as

[
δẋ

δ ˙̄Θ
]
=
[

A+ B+ ∂Φ(0)Θ̃e

∂x 0
0 0

][
δx
δΘ̄

]
(29)

In view of the linearization theorem, the second conclusion is proved.

Definition. A function f: D 7→ Rn is uniformly increasingin some convex setD ⊂ Rn if
there existsα > 0 such that for allx, x′ ∈ D

(x− x′)T (f(x)− f(x′)) ≥ α||x− x′||2 (30)

The following theorem is useful in this paper.

THEOREM4 ([10]) A functionf ∈ C1[Rn, Rn] is uniformly increasing in Rn if and only if
for someα > 0 such that(Df(x) − αI) is positive definite for allx ∈ Rn, whereI is the
n× n identity matrix. Df(x) denotes the Jacobian matrix off(x).

Then we have the following theorem

THEOREM5 The equilibrium point(x, Θ̂) = (0, Θ̂e) is globally stable if−Φ(x)Θ̃e is
uniformly increasing in Rn such that

αI + (A+ B)+ DΦ(x)Θ̃e (31)

is negative definite for allx ∈ Rn.
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Proof: Let

Θ̄ = Θ̂e− Θ̂ = Θ̃− Θ̃e (32)

Then we have

ẋ = (A+ B)x+Φ(x)Θ̃ (33)

= (A+ B)x+Φ(x)(Θ̄+ Θ̃e)

= (A+ B)x+Φ(x)Θ̃e+Φ(x)Θ̄

˙̄2 = −ΦT(x)x (34)

Then we construct the Lyapunov function

V(x, Θ̄) = 1

2
xTx+ 1

2
Θ̄

T
Θ̄ (35)

DifferentiatingV along the trajectories of solutions of Eqs. (33) and (34), we get

V̇(x, Θ̄) = xT (A+ B)x+ xTΦ(x)Θ̃e+ xTΦ(x)Θ̄− Θ̄
T
ΦT (x)x

= xT (A+ B)x+ xT (Φ(x)−Φ(0))Θ̃e

≤ −αxTx (36)

In some cases, we are also interested in controlling a chaotic system to a non-zero point,
then the following corollary is useful.

COROLLARY 1 Assume thatz= x− xe, wherexe is a non-zero equilibrium point, with the
control law

u = −Axe+ Bz−Φ(x)Θ̂ (37)

and the parameter updating law

˙̂
Θ = ΦT (x)z (38)

then the close-loop adaptive system has a globally stable equilibrium point(x, Θ̂) =
(xe,Θ). Furthermore,limt−→∞ z(t) = 0.

Proof:

ż(t) = A(z+ xe)+Φ(x)Θ+ (−Axe+ Bz−Φ(x)Θ̂)

= (A+ B)z+Φ(x)Θ̃ (39)

In view of Theorem 1, we finish the proof.
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3. Examples of Control of Chua’s Circuit with Cubic Nonlinearity

The well-known chaotic circuit model of Chua’s circuit [15] has a piece-wise linear element
called Chua’s diode [16]. Recently it was found that not all features of a real circuit are
captured correctly by this piecewise-linear circuit [17]. In this paper, we control one kind
of Chua’s circuit with smooth nonlinearity called Chua’s circuit with cubic nonlinearity
which is given by [18] ẋ1 = px2+ a0+ a1x1+ a2x2

1 + a3x3
1

ẋ2 = x1− x2+ x3

ẋ3 = −qx2

(40)

Example 1.Control Chua’s circuit to the origin.
In this example, we choose the unknown parameter vector as [18]

Θ =


p
a0

a1

a2

a3

q

 (41)

Then the Chua’s circuit in Eq. (40) can be decomposed as

 ẋ1

ẋ2

ẋ3


︸ ︷︷ ︸

ẋ

=
 0 0 0

1 −1 1
0 0 0


︸ ︷︷ ︸

A

 x1

x2

x3


︸ ︷︷ ︸

x

+
 x2 1 x1 x2

1 x3
1 0

0 0 0 0 0 0
0 0 0 0 0 −x2


︸ ︷︷ ︸

Φ(x)


p
a0

a1

a2

a3

q

+
 u1

u2

u3


︸ ︷︷ ︸

u

(42)

then we choose

B =
 −2 0 0
−1 0 −1
0 0 −1

 (43)

such that

A+ B =
 −2 0 0

0 −1 0
0 0 −1

 (44)

is negative definite. The control law is given by

u =
 −2 0 0
−1 0 −1
0 0 −1

 x1

x2

x3

−
 x2 1 x1 x2

1 x3
1 0

0 0 0 0 0 0
0 0 0 0 0 −x2




p̂
â0

â1

â2

â3

q̂


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=
 − p̂x2− â0− (2+ â1)x1− â2x2

1 − â3x3
1

−x1− x3

q̂x2− x3

 (45)

The parameter update law is given by

˙̂p
˙̂a0
˙̂a1
˙̂a2
˙̂a3
˙̂q


=


x2 0 0
1 0 0
x1 0 0
x2

1 0 0
x3

1 0 0
0 0 −x2


 x1

x2

x3

 =


x1x2

x1

x2
1

x3
1

x4
1

−x2x3

 (46)

The control law provided in Theorem 1 can guarantee that the controlled Chua’s circuit
asymptotically approach the origin. The linear system

ẋ = (A+ B)x (47)

is the dynamics in thex-subspace of the close loop system. Assume that the parameter
vector of the Chua’s circuit is given by

Θ =


p
a0

a1

a2

a3

q

 =


10
0.1
10
7

0.1
− 20

7
100
7

 (48)

The initial condition of the Chua’s circuit is given by x1(0)
x2(0)
x3(0)

 =
 0.442006
−0.213984
−0.909130

 (49)

The initial condition of the parameter update law is given by
p̂(0)
â0(0)
â1(0)
â2(0)
â3(0)
q̂(0)

 = 2


p
a0

a1

a2

a3

q

 (50)

After controlling, the Chua’s circuit asymptotically approaches the origin as the solid lines
shown in Fig. 1(a). The dashed lines show the dynamics of the uncontrolled Chua’s circuit.
The dynamics ofΘ̂ is shown in Fig. 1(b)–(g), one can see thatΘ̂ approaches a constant
vector but notΘ.
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Figure 1. Control a Chua’s circuit with 6 unknown parameters to the origin. (a) The uncontrolled state variables
(dashed lines) and controlled state variables (solid lines). (b) The update process ofp̂. (c) The update process
of â0. (d) The update process ofâ1. (e) The update process ofâ2. (f) The update process ofâ3. (g) The update
process of̂q.
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Figure 2. Control a Chua’s circuit with 6 unknown parameters to a pointxe. The uncontrolled state variables
(dashed lines) and controlled state variables (solid lines) are shown.

Example 2.Control Chua’s circuit toxe 6= 0.
We then control Chua’s circuit to a pointxe 6= 0. By using corollary 1, we choose the

control law as

u =
 − p̂x2− â0− (2+ â1)x1− â2x2

1 − â3x3
1 + 2x1e

−x1− x3+ x2e

q̂x2− x3+ x3e

 (51)

The parameter update law is given by
p̂
â0

â1

â2

â3

q̂

 =


x1x2− x1ex2

x1− x1e

x2
1 − x1ex1

x3
1 − x1ex2

1
x4

1 − x1ex3
1

−x2(x3− x3e)

 (52)

The initial conditions for Chua’s circuit and the parameter update law are the same as those
in Example 1. And we choosexe as x1e

x2e

x3e

 =
 2

2
2

 (53)

Fig. 2 shows the simulation result. We can see that the Chua’s circuit asymptotically
approachesxe.
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4. Conclusions

We present an adaptive controller for stabilizing chaotic systems with unknown parameters
to fixed points. We use a Lyapunov function based method to design the parameter estimator
such that the controlled chaotic system can be globally stabilized to the reference point. We
also give a detailed study of the dynamics of the parameter estimator. We use the center
manifold theory to study the stability of the parameter estimator.
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