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Abstract-The Chua circuit, a simple third-order nonlinear dynamical system that exhibits chaotic 
behaviour, has highlighted shortcomings in presently used analysis and design techniques. We discuss 
the way in which chaotic dynamical behaviour in systems has affected many current ideas about 
the randomness of noise, the use of simulation, reducing problems to subproblems, the value of 
experiments, the use of nonlinear controllers, aud the verification of system models. 

1. INTRODUCTION 

Having experimented and analysed Chua’s circuit [l-5], a textbook example of a chaotic system, 
a number of points have arisen that challenge some of the existing engineering modelling and 
analysis concepts. This paper attempts to illustrate certain basic concepts of scientific theory that 
are emphasised by chaotic dynamical behaviour. In particular, physical modelling and simulation 
concepts are discussed and the importance of obtaining an appreciation of the use and limitations 
of modelling techniques is emphasised. 

2. TRUTH IN SCIENCE 

It is important to understand certain preliminary scientific concepts in order to obtain a better 

understanding of the mode&g of physical systems and of chaotic dynamical systems in par- 
ticular. To interpret and to carry out any basic scientific research, a sound background of the 
theory of knowledge is essential. One of the principles of the theory of knowledge that is impor- 
tant for physical modelling concerns the relationship between scientific theories and reality (true 
knowledge about the physical world). Pachner [S] reasons as follows. 

Mathematical theorems and scientific theories are exact because they are logical constructions 
of the human mind. The choice of postulates or axioms, from which these theories are deduced, 
decides the region of validity of these theories and how well, if at all, they describe the physi- 
cal world of experience. These scientific theories then become physical, chemical, or biological 
theories and are often called the “laws of nature.” These theories cannot be extended beyond 
the boundaries of experience (regions of validity). The question as to whether or not the laws 
of nature exist or whether these scientijc theon’es describe absolute truth and knowledge of the 
physical world is meaningless. 

The word theory derives from the greek “theoria,” which has the same root as “theatre,” 
which means to view. Thus, theory is primarily a form of insight, of looking at the physical 
world, and not a form of true knowledge of how the world is in reality. Theories are valid within 
our boundaries of experience and become more and more unclear when extended beyond these 
boundaries of experience. Thus, our theories must be regarded primarily as ways of looking at 
the world as a whole, valid within our boundaries of experience, rather than as absolutely true 
knowledge of how the physical world is. 

It is important to understand these ideas since unfortunately many hold a philosophy, de- 
noted as “school philosophy,” that asserts that there exists absolute true knowledge of the phys- 
ical world, which science attempts to find. Since absolute true knowledge of the physical world 
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implies the region of validity of science is infinite, this implies that there exists no such thing as 
a meaningless question for science. However, scientific theory is only a question of ensuring that 
the theory agrees with the human physical experience. The concept of absolute true knowledge 
of the physical world is meaningless in science and the theory of knowledge as stated previously. 

This leads to the concept of truth as used in physical science. Physics seeks to understand the 
world on the basis of experimentation, measurement, and observation only. Anything outside the 
physical universe is thus not permitted to enter into any discussion. This implies that anything 
that cannot be measured or observed is considered as meaningless in physics. 

A scientific theory or model is valid to the extent that it corresponds to experimental observa- 
tion of physical phenomena. Physical phenomena are investigated in physics only in so far as it is 
possible to measure them and not with the impossible goal of describing their intimate essence. 
A physical quantity such as length, time, or mars is defined by prescribing the operations that 
are carried out in order to measure it. Length and time are meaningless quantities until we know 
how to measure them. 

Consider Heisenberg’s uncertainty principle in quantum mechanics, given by the relation 

ApAs >_ h (1) 

where h is Planck’s constant, Ap the uncertainty in a particle’s momentum, and As the uncer- 
tainty in its position. Thus, if position is measured exactly, that is As --+ 0, then Ap -+ 00, 
implying that it is impossible to measure or say anything precise about the particle’s momentum. 
When this is the case, we say that the particle’s precise momentum is a meaningless concept, 
since it cannot be measured and hence defined. We do not say that momentum exists and is a 
meaningful concept that we cannot measure with existing equipment, but rather the very con- 
cept is meaningless and hence cannot be spoken about scientifically. The consequence of using 
meaningless concepts is that it leads to absurd results. 

Physics does not measure quantities in order to reveal their intrinsic essence, but with the more 
modest aim of comparing the results of these measurements in order to discover the mathematical 
relations existing between them. A typical law of physics consists of a mathematical relation found 
to exist between the measurements of the various quantities that take part in the phenomenon. 
The specification of the limits of validity (boundary of experience) of the law and the precision E 
with which it has been verified represents an integral and essential part of the physical method. 
If the measurements are made with a better precision c’ where E > c’, the domain of validity has 
changed and there is no certainty that the physical law will still be valid. 

With these concepts in mind, we can now proceed to investigate some concepts arising from 
chaotic dynamical systems. 

3. WHAT IS CHAOS? 

There is still no universally accepted definition for chaos [7]. The definition given here is more 
in terms of the descriptive properties of chaotic nonlinear systems. 

First, it should be noted that chaos is a form of steady-state behaviour with some similarities 
to limit cycles. There are, however, distinct differences. Chaos is a form of osscillation, where 
the oscillation is bounded but aperiodic, as illustrated in Figure 1. It should be noted that 
apparent aperiodicity in a time waveform is not sufficient to define a system as chaotic. One 
could be dealing with a periodic oscillation with a long period. True aperiodicity is manifested in 
a continuous frequency spectrum. This is an essential condition for an oscillation to be chaotic. 

Extreme sensitivity to initial conditions is another major feature of chaotic systems. Starting 
off with two initial conditions arbitrarily close to each other in a chaotic system, the trajectories 
will diverge at a rate characteristic of the system, until for all practical purposes they become 
completely uncorrelated. This is clearly illustrated in Figure 2. In theory, the trajectory of 
the physical system exhibiting chaotic behaviour can only be quantitatively determined if the 
system’s initial conditions are known with infinite accuracy. However, in practice, the physical 
system’s initial conditions can only be measured or defined with finite accuracy. The result is 
that no matter to what finite precision the initial conditions of a physical system areknown, the 
long-term dynamical behaviour can never be quantitatively predicted. This explains why chaotic 
systems are sometimes referred to as deterministic systems exhibiting random behaviour. 
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(a) A chaotic phase plane observed experimentally. 

CHUR’S CIRCUIT simulation 
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(b) Time waveform of a chaotic state variable. 
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(c) Frequency spectrum of a chaotic state. 

Fig. 1. Experimental results of Chua’s circuit exhibiting chaotic behavior. 
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CHLFl’S CIRCUIT simulation 

XE-ez CHUA’S CIRCUIT simulation 

Fig. 2. Sensitivity dependence on initial conditions. The initial condition was 
changed by 0.01%. Initially, the waveforms are identical, becoming totally uncorre- 
lated after about 20 seconds. 

If a physical system fulfils both the criteria of extreme sensitivity to initial conditions as well 
as aperiodic oscillation, then the system can be regarded as chaotic. What gives rise to chaotic 
behaviour? This question still cannot be answered in general, but some guidelines can be given. 
Chaos always seems to arise out of complex interactions between different regions of dynamic 
nonlinear behaviour. In particular, it can occur in strongly nonlinear systems with feedback, as 
illustrated in Section 5. 

4. INTRODUCING THE CHUA CIRCUIT 

If Chaotic behaviour were a pathologically concocted oddity, its practical significance would 
be very limited. However, it is a form of steady-state behaviour possible in every nonlinear 
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continuous system, provided that its order is higher than two if it is a forced circuit or three if 
the circuit is autonomous and certain conditions are met. 
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Fig. 3. Chua’s circuit. 

A circuit which exhibits chaotic dynamical behaviour [l-3] is the Chua circuit, as shown in 
Figure 3. This circuit is a good textbook example of a chaotic system, due to its being the only 
known system whose chaotic behaviour has been verified by rigorous mathematics [2], simulation, 
and experiment [1,3-5,8,9]. Chua’s circuit was tested and its chaotic behaviour experimentally 
verified [l], as shown in Figure 1. As shown in Figure 3, Chua’s circuit is very simple. Element g 
represents a nonlinear resistor with the characteristic shown in Figure 4. Choosing the state 
variables of the system as the voltages across the capacitors and the current through the inductor, 
the state equations of the system may be written in the normalised form [l] 

dx 
-==(y-x-h(x)) 
dr 

dy 
;i;:=x-y+z 

dz 
-=--py 
dr 

where cr = C2/C1, /3 = C2/LG2, r = tG/C2, h(x) = ipiG, x - Vc,, y = Vc,, P = k/G. 
It should be noted that the chaotic behaviour of the system (equation 2) is a strong function of 

the nonlinear resistor characteristic (Figure 4) as discussed in Section 5. Analytically, it can be 
shown that the slopes of the nonlinear resistor characteristic can only vary within very specific 
limits for chaotic behaviour to occur. The criterion for chaotic behaviour to occur was seen to be 
that the line h(x) = -x intersects in sections B and D of the characteristic, as shown in Figure 4. 
Note that there are many other and even simpler systems in which chaotic behaviour has been 
reported [&lo], such as a circuit with a driven diode and inductance [8]. The fact that many 
other examples of chaotic systems can be found clearly illustrates that the Chua circuit is not a 
rare oddity. 

5. THE IMPACT OF CHAOS ON MODELLING PHILOSOPHIES 

This section outlines how the discovery of chaos has forced a revision of existing modelling 
concepts and discusses the impact it makes on the analysis and design approaches currently used 
by engineers. Based on the concept of truth in science as introduced in Section 2, it is quite easy 
to accept the results arising from chaotic systems. 

5.1. Quantitative Prediction using Simulation 

Even in very simple systems in regions of chaotic behaviour, knowledge of the system’s initial 
conditions does not allow the quantitative prediction of all future system behaviour from the 
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Fig. 4. The nonlinear resistor characteristic in Chua’s circuit where chaos can occur. 

Fig. 5. Block diagram of Chua’s circuit. 

deterministic system equations. Recall from Section 3 that this would require infinite accuracy 
in the initial conditions, which is unrealistic practically. Consider the example of predicting 
the weather, a far more complicated system than the Chua circuit. It is possible, knowing the 
present weather (initial conditions), to predict with some certainty the conditions for the next 
few hours, but impossible to make accurate long-term predictions. Even if we had an infinitely 
powerful computer and an accurate meteorological simulation model of the weather, it will never 
be possible to predict the weather without having infinitely accurate measurements of the initial 
conditions. 

This sobering example has a number of serious consequences for the use of simulation in 
engineering analysis and design. In many fields of engineering it has become common practice 
to use simulation as a tool for verifying designs. Simulation is also used to establish what the 
effect on the dynamical behaviour of the physical plant is when system parameters are varied. 
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This technique relies strongly on the fact that physical models have quantitative predictive value 
for all future time. In systems in which chaotic behaviour occurs, simulation is dangerous, since 
it cannot answer the “what happens if” question unless the system initial conditions are known 
with infinite accuracy, a physically meaningless concept. 

Gleick [ll] g ar ues that it was the inability of deterministic mathematical equations to do 
quantitative predictions that made Lorenz and other chaos pioneers resist what they were seeing. 
However, are these results all that surprising? Recall the definition of scientific truth as given in 
Section 2. Science can develop models based on experimental results. Its truth does not purport 
to be the absolute truth about the physical laws governing nature and therefore quantitative 
prediction is not guaranteed. Using the deterministic model equations in a chaotic system to 
quantitatively predict the system’s dynamical behaviour requires infinite accuracy of the system’s 
initial conditions, which is a meaningless concept in physics (Section 2). Hence, the concept of 
using a deterministic model to predict the quantitative dynamical behaviour of a physical system 
exhibiting chaotic behaviour is meaningless and leads to absurd results. 

Thus, having a precise system model does not necessarily mean that simulation can be used to 
establish the correct quantitative dynamical behaviour of a physical system. Numerically solving 
the model equation of a physical system in a chaotic region is not the best approach for analysing 
the system’s behaviour. In systems that are not in chaotic regions of operation, simulation can be 
used to predict a system’s quantitative dynamical behaviour, which is the reason why simulation 
has become so popular. Currently, there are no criteria for establishing when the nonlinearity 
becomes “strong” enough for simulation to become meaningless for quantitative prediction of the 
dynamical system behaviour of the physical process. 

5.2. Random Noise 

Chaos is manifested as something close to random noise. This is the result of the aperiodicity 
of the oscillation. As can be seen from Figure 1, it could be quite easy to wrongly identify chaos 
as bandlimited white noise and thus incorrectly analyse a system’s chaotic dynamical behaviour 
ss random noise. At present, many engineers are unaware of the possibility that what is called 
random noise in a system may in fact be a manifestation of the system’s dynamical behaviour. 

The fact that it is possible for a system to oscillate continuously in an aperiodic manner means 
the physical system has nonstationary statistical behaviour. This makes stationary statistical 

analysis of an apparently random process (bandlimited white noise) impossible. Recall that for 
an aperiodic waveform, no average can be determined. This means that no statistical distribution 
curve can be fitted to chaotic behaviour. Thus ergodicity, an assumption used in the analysis of 
most engineering systems with noise, does not hold. 

5.3. Reductional Philosophy and Linearisation in Modelling 

Chaos has also made a major impact on physical system modelling. The popular approach to 
analysis and design of most systems today is to use reductional principles. Here a problem is 
broken up into its constituent components or modules. The reductional philosophy assumes that 
understanding dynamical behaviour of the basic building block will enable an understanding of 
complex system dynamical behaviour, where the complex system is constructed of a combination 
of different basic building blocks. This manner of thinking has led physicists to reduce problems 
to subatomic constituent elements in order to understand the physical world on a macroscopic 
scale, the idea being that all physical elements are constructed of some basic indivisible element 
called the basic building block of the universe. Nonlinear systems exhibiting chaotic dynamical 
behaviour have shown that this approach to analysing systems is useless. In order to success- 
fully model and understand the behaviour of nonlinear dynamical systems exhibiting chaotic 
behaviour, a global approach to the analysis of the physical system is required. This may be 
illustrated as follows. Figures 6 and 7 contain plots of the nonlinear resistor characteristic and 
eigenvalues as a function of p of the different equilibrium points of the Chua circuit, respectively. 
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The equilibrium points of the Chua circuit are the values of the states (2, y, z) such that 

cY(y - x - h(x)) = 0 

x-y+.z=o 

-py=o (3) 

Equation 2 describes the dynamical evolution of the states (x, y, z) with time and equation 3 
the steady-state equilibrium values of the states of the Chua circuit (Figure 3). Chua’s circuit has 
either one or three equilibrium points, one of which is always at the centre while the other two, 
if they exist, are located in an odd symmetrical manner on the nonlinear resistor characteristic, 
as shown in Figure 6. Since Chua’s circuit, described by equation 2, is third-order, each equilib- 
rium point given by equation 3 has three eigenvalues, one real and a pair of complex conjugate 
eigenvalues. 

Figure 6a shows the Chua circuit with three equilibrium points, two outer ones in Begions A 
and E of the nonlinear resistor characteristic and one at the centre in region C. Two corresponding 
eigenvalue plots are each provided for the centre equilibrium point (0; 0; 0) and for one of the outer 
equilibrium points (6,53; 0; -6,53), as shown in Figure 7a. These eigenvalue plots show that the 
centre equilibrium point is unstable, while the outer equilibrium points have their real parts in 
the left-hand complex plane, implying that they are stable. The dynamical behaviour obtained 
from simulations under these conditions was as expected from analysing the constituent portions. 
The system exhibited stable exponentially oscillatory behaviour being attracted to either one of 
the outer equilibrium points (regions A or E) dependent on the initial conditions. 

In Figure 6b, the outer equilibrium points have moved to regions B and D of the nonlinear 
resistor characteristic. Two corresponding eigenvalue plots are each provided for the centre 
equilibrium point (0;O;O) and for one of the outer equilibrium points (2,69; 0; -2,69), as shown in 
Figure 7b. This is the case where double scrollings as well as chaotic dynamical behaviour were 
observed from simulation and experimental results, as shown in Figure 1. The eigenvalues of the 
centre equilibrium point again classify it as unstable. At the outer equilibrium points (regions B 
and D), a Hopf bifurcation, also called a limit cycle, is obtained. Analysing the system as a linear 
system implies that the system is unstable at each equilibrium point. Nonlinear analysis implies 
that a limit cycle exists around each of the outer equilibrium points (regions B and D). The 
interaction of the outer equilibrium points produce a double scroll trajectory in the phase plane 
(Figure la), which cannot be predicted unless the complete system is analysed. It is impossible 
to predict the full picture of the dynamical behaviour of a system by analysing its constituents 
individually and based on this try and surmise how the complete system will respond. 

Figure 6c represents the case where only a single equilibrium point exists at the centre in 
region C. The corresponding eigenvalue plots are provided for the centre equilibrium point (O;O;O), 
as shown in Figure 7c. The eigenvalues again reveal a limit cycle, which in this case is unstable. 
Here linear analysis gives the correct information since the system is unstable, but would not 
have if the limit cycle was stable. 

From the above discussion it becomes clear that analysing constituent elements in isolation 
is not sufficient to reveal the dynamical behaviour of a system. Further, using the common 
engineering approach of linearising the constituent elements results in an approach that is totally 
inadequate for the physical modelling of nonlinear systems if used blindly. The problem is to 
establish criteria for when linear analysis gives valid results (Figures 6a and c) and when it does 
not (Figure 6b). This question is perhaps one of the most important questions that future systems 
research needs to answer. 

5.4. Controller Design 

In the field of controller design, there is also a lesson to be learned from chaotic systems. In 
nature it is observed that feedback is frequently performed by nonlinear controllers. This fact, 
and the requirement for improved system performance, has led to the suggestion that nonlin- 
ear feedback controllers should be used in control design. Although this is indeed true, a word 
of warning is necessary. Consider the block diagram of the Chua circuit as shown in Figure 5. 
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Fig. 6(c) Nonlinear resistor characteristic corresponding to the one equilibrium point 
at (0;O;O). 
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Fig. 7a. Eigenvdue plots as a function of p for the equilibrium point at (6,53; 0; -6,53) 
for a h(z) as per Fig. 6a. 
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Fig. 7b. Eigenvalue plots as a function of p for the equilibrium point at (2,69; 0; -2,69) 
for a h(z) as per Fig. 6b. 
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Clearly, the Chua circuit has nonlinear feedback in the model. The nonlinear elements are respon- 
sible for all the complex dynamics seen in the circuit behaviour. When purposefully introducing 
nonlinearities to a system by nonlinear controller design, the designer should be aware of the 

potential complexities introduced. A far stronger motivation for nonlinear controller design is 
necessary than just a possible improvement in performance before the risks associated with this 
approach become warranted. 

An important aspect that chaotic systems have brought to light is the inadequacy of existing 

nonlinear analysis, in particular controller design techniques for nonlinear systems. It is presently 
difficult to predict whether chaotic dynamical behaviour can exist in a system. Having observed 
chaotic behaviour, there are a number of techniques for confirming that what we observed was 

indeed chaos, but even these are seldomly applicable to any general system and are computation- 
ally complex. The seemingly general occurrence of chaos may point to the fact that in a proper 
understanding of chaotic dynamical behaviour, the stepping stone toward a nonlinear systems 
theory as widely applicable as linear systems theory today may be found. 

5.5. Model Verification zuith the Physical Process 

A further area in which chaos has made an impact is the viewing of experimental data. In 
the past it was believed that once experimental data appeared erratic, it wss corrupted by noise. 
Chaos has shown that this need not be the case. Apart from this, experimentation can be 
dangerous because the data can be read to give the required results. For example, when a linear 
relationship is required, great effort is made to regress data points to fit a straight line. All 
points slightly differing from the expected relationship are attributed to experimental error or 
random effects such as noise. It is primarily due to these reasons that chaos was only recognised 
as recently as 15 years ago. 

Simplified models of a physical process which are valid in a certain region of operation are 
commonly used in engineering for analysis and design. This corresponds to deliberately limiting 
the “domain of experience” for which the model/theory is valid. The model must then be verified 
with the physical model to be a good approximation in the region of operation. This is in line 
with the scientific method as outlined in Section 2. In chaotic dynamical systems, however, 
quantitatively verifying the model is extremely difficult due to the system’s sensitivity to the 
initial conditions. 

The question then asked is how a system model is conclusively verified. A system model is 
verified only if mathematical proof, computer simulation, and experimental data simultaneously 
agree completely about the dynamical behaviour of the system. Due to experimental error pri- 
marily occurring due to ignored dynamic phenomena, this is virtually impossible to achieve for 
physical systems exhibiting chaotic dynamical behaviour . The difficulty of verifying a chaotic 

dynamical system model is outlined clearly by the fact that Chua’s circuit is the only known 
system whose chaotic dynamical behaviour has been proved by rigorous mathematics [2]. Even 
here it is not possible to get simulation and experiment to agree completely because the infinite 
accuracy with which the initial conditions need to be known cannot be attained [l]. Even in 
systems as simple as the Chua circuit we thus have difficulty in obtaining verification, let alone 
“proof,” that the model is correct. In most cases, a qualitative verification is all that can be 
obtained. The adjective qualitative is used to denote the inherent local features and properties 
of the behaviour of dynamical systems about an operating point. A local property is valid in a 
neighbourhood of a point, the size of which is not specified. A model would thus be regarded as 
realistic if the mathematics, simulation, and experiment gave qualitatively similar results. This 
is the manner in which Chua’s circuit was verified to be chaotic [2,3,9]. 

Why are the three criteria outlined above regarded as necessary for satisfactorily assuming that 
a system model is indeed correct ? Laboratory experiments can be strongly affected by external 
unmodelled phenomena. Accumulation of rounding errors, as well ss initial conditions, may 
strongly affect computer simulation. It is not possible to refute mathematical proof as such, but 
it is quite possible for the model to fail to represent the actual physical system. Hence, qualitative 
agreement is required to overcome the uncertainty in any one method. It is precisely the difficulty 
in obtaining a correct model that in most chaotic systems provides so much difficulty. 
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6. CONCLUSIONS 

We live in a world where higher performance is increasingly being demanded from all physical 
systems. This means that many physical systems are now operating in regions where linearity 
is not a good approximation for describing dynamical behaviour. All systems are essentially 
nonlinear, some of them having regions where linear behaviour is a good approximation. Chaotic 
dynamical behaviour in simple and complex systems has illustrated the importance of obtaining a 
good understanding of the dynamical behaviour of nonlinear systems for engineering applications. 

Chaotic systems have resulted in a revision of some physical modelling and analysis concepts. 
In particular, the idea of using simulation for quantitative prediction of the dynamical behaviour 
of systems exhibiting chaotic behaviour is a meaningless concept. 
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