An I.MI-based Stable Fuzzy Control of Nonlinear Systems
and its Application to Control of Chaos

Hua O. Wang
United Technologies Research Center
411 Silver Lane, MS 81
East Hartford, CT 06108 USA
wangh@utrc.utc.com

Abstract

We present a systematic framework for the stability and
design of nonlinear fuzzy control systems. First we represent
a nonlinear plant with a Takagi-Sugeno fuzzy model. Then a
model-based fuzzy controller design utilizing the concept of
so-called “parallel distriduted compensation” is employed.
The main idea of the ccntroller design is to derive each
control rule so as to compensate eachrule of a fuzzy system.
The design procedure is conceptually simple and natural.
Moreover, the stability analysis and control design problems
can be reduced to linear matrix inequality (LMI) problems.
Therefore they can be solved efficiently in practice by convex
programming techniques for LMIs. The design methodology
is illustrated by application to the problem of modeling and
control of a chaotic system - Chua’s circuit.

1. Introduction

We have witnessed raf idly growing interest in fuzzy con-
trol in recent years. There has been many successful appli-
cations. Despite the success it has been aware that many
basic issues remain to be further addressed. Stability anal-
ysis and systematic design are certainly among the most
important issues for fuzzy control systems. Recently, there
have been some great ef’orts on these issues [1]-[8]. This
paper attempts to presert a systematic framework for the
stability and design of ncnlinear fuzzy control systems.

We consider a nonlocal approach which is conceptually
simple and straightforward. First the nonlinear plant is rep-
resented by a Takagi-Sugeno type fuzzy model {9]. In this
type of fuzzy model, local dynamics in different state space
regions are represented by linear models. The overall model
of the system is achieved by fuzzy “blending” of these linear
models. This is a multiple model approach that can handle
uncertain and time-varyiag situations.
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Once the fuzzy model is obtained, the control design is
carried out based on the fuzzy model via the so-called par-
allel distributed compensation (PDC) scheme. The idea is
that for each local linear model, there is an associated linear
feedback control. The resulting overall controller, which is
nonlinear in general, is the fuzzy blending of each individual
linear controller. Hence the PDC approach employs multi-
ple controllers, w.r.t. the multiple models, with automatic
switching via fuzzy logic rules.

The design procedure aims at rendering (globally or semi-
globally) stable fuzzy controllers. The design procedure is
conceptually simple and natural. More significantly, in the
proposed framework, the stability analysis and control de-
sign problems are reduced to linear matrix inequality (LMI)
problems [10]. Numerically the LMI problems can be
solved very efficiently by means of some of the most power-
ful tools available to date in the mathematical programming
literature. Therefore recasting the stability analysis and
control design problems as LMI problems is equivalent to
finding solutions to the original problems. The recasting
of stability analysis and design of fuzzy control systems to
LMI problems was first made in [7].

For illustration the design methodology is applied to the
modeling and control of a representative chaotic system -
Chua’s circuit.

2. Stability Analysis Using LMIs

To begin with we review the Takagi-Sugeno fuzzy model
followed by its stability analysis.

2.1. Takagi-Sugeno Fuzzy Model

In the proposed design procedure, we represent a given
nonlinear system by the so-called Takagi-Sugeno fuzzy
model [9]. The system dynamics is captured by a set of
fuzzy implications which characterize local relations in the
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state space. The main feature ‘of a Takagi-Sugeno fuzzy
mode] is to express the local dynamics of each fuzzy impli-
cation (rule) by a linear system model. The overall fuzzy
model of the system is achieved by fuzzy “blending” of the
linear system models. This control oriented fuzzy modeling
method is simple and natural in that the validity (or accu-
racy) of the different linear models obviously depends upon
the region in the state space where the system trajectories
lie. The TS fuzzy modeling method is a multiple model ap-
proach that handles uncertain and time-varying situations.

Specifically, the Takagi-Sugeno fuzzy system is of the
following form:
Rule i: IF z;(t) is My - - - and 2, (8) is My

THEN x(t) = A;x(t) + B;u(¢),

where

xT(t) = [z1(t), 22(t), -, zn(t)],
uT(t) = [U’l (t)’ U’Z(t)) e ’um(t)]y

i =1,2,-+,r and r is the number of IF-THEN rules. M;;
are fuzzy sets, and x(¢) = A;x(¢) + B,;u(?) is the output
from the i-th JF-THEN rule. Given a pair of (x(t), u(t)),
the final output of the fuzzy system is inferred as follows

Y wi(t){Aix(t) + Byu(t)}

x(t) = =—7
> wi(t)
i=1

; 4y

where
n

w;(t) = H M;;(z;(t))-

J=l1

M;;(z;(t)) is the grade of membership of ;(t) in M;;.
The open-loop system of (1) is

i:wi (t)A.iX(t)
i=1

x(t) = = ©)
> wi(t)
=1

where it is assumed that

.
> wit) > 0,
i=1

wit) > 0 i=1,2,---,r

Each linear component A;x(¢) is called a subsystem.
2.2. Stability Analysis Using LMIs

A sufficient condition for ensuring stability of (2) is given
as follows.

Theorem 1 [1] The equilibrium of a fuzzy system (2) is
asymptotically stable in the large if there exists a common
positive definite matrix P such that

ATP +PA; <0, i=1,2--7, 3)

i.e., a common P has to exist for all A;’s.

This theorem reduces to the Lyapunov stability theorem for
linear systems when r = 1.

To check the stability of a fuzzy systemn, it has long been
considered difficult to find a common positive definite ma-
trix P. Most of the time a trial-and-error type of procedure
is used [1]. In [7], it was pointed out that the common P
problem can be solved numerically. To do this a very impor-
tant observation is that the stability condition of Theorem 1
is expressed in linear matrix inequalities (LMIs) [10]. To
check stability we need to find P satisfying the LMI

P >0, ATP + PA; <0, i=1,2,-,1,
or determine that no such P exists. This is a convex feasi-
bility problem. Numerically this feasibility problem can be
solved very efficiently in practice by means of the most pow-
erful tools available to date in the mathematical program-
ming literature, e.g., the recently developed interior-point

methods [11].

3. Fuzzy Control Design Using LMIs

We employ the concept of parallel distributed compen-
sation (PDC) [2, 7] to synthesize fuzzy control laws for
the stabilization of nonlinear systems represented by fuzzy
model (1).

3.1. Paralle] Distributed Compensation

The idea of PDC is to associate a compensator for each
rule of the fuzzy model. The resulting overall fuzzy con-
troller is a fuzzy blending of each individual linear con-
troller. The fuzzy controller shares the same fuzzy sets with
the fuzzy system (1).

Rule : IF z1(t) is My; - - - and @, () is Mp;
THEN u(t) = —Fix(t),

where s = 1,2, .-, r. Hence the fuzzy controller is
r
= _wit)Fex()
u(f) = —= ©)

Zwi(t)

Note that the controller (4) is nonlinear in general. It is
easy to see that the PDC method, as the counterpart of the
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multi-model TS fuzzy model, employs multiple controllelrs
with automatic switching via fuzzy rules.
Substituting (4) into (1) we obtain

ZZw t){A; - B;F;}x(¢)

x(t) = == ®)

Zsz Yw; (¢

i=1j=1

Rewrite system (5) as

x(t) = —[sz wi(t){A; — B;F;}x(t)
g=x1
+2 wi()w; () Gix(2)] (6)
i<j
where
G, = {A; - B3} + {A; - B;F;} i<

2

ror
W = :Ezwi(t)wj (t).
i=1j=1
Apply Theorem 1 we have the following sufficient con-
dition for stability.

Theorem 2 [2, 7] The equilibrium of a fuzzy control system
(5) is asymptotically stable in the large if there exists a
common positive definite matrix P such that the following
two conditions are satisjied:

{A; -B;F;}TP +P{A; —-BF;} <0, i=1,...,r (7)
GIP+PG;; <0, i<j<r ®)

The control design problem is to select F; (i =
1,2,-+-,r) such that conditions (7) and (8) are satisfied.
One way to utilize these conditions is through an iterative
design process. First for each rule a controller is designed
based on consideration of local performance only. Then an
LMI based stability analysis is carried out to check whether
the stability conditions are satisfied. In the case that the
stability conditions are not satisfied, the controller for each
rule will be redesigned. The iterative design procedure has
provento be very effective (see, e.g., [2, 7]). From the stand-
point of control design, however, it is more desirable to be
able to directly design a control that ensures the stability of
the closed-loop system. Due to the limited space, we only
give a representative result in the next subsection. Details
on LMI-based fuzzy control design with guaranteed stabil-
ity and performance will be presented in the full version of
this paper. Some prelininary results are also contained in

i81.

3.2. PDC Design Using LMIs

Conditions (7) and (8) are neither linear or not jointly
convex in F;’s and P. To cast these conditions into LMIs,
we define Q = P!, From (7) and (8) with P > 0 it is easy
to obtain the following equivalent stability conditions:

Q{A;-B;F})T+{A;~B;F;}Q <0, i=1,...,7 (9
QGL +G;yQ <0, i<j<r (10)

with Q > 0.
Further define W; = F;Q, i = 1,2,...,r so that for

Q > 0 we have F; = W,;Q~!. Substituting into (9) and
(10) yields the following LMI conditions.

Theorem 3 The fuzzy control system (5) is stabilizable in
the large via PDC if there exist a Q < 0 and W;, 1 =
1,2,...,r such that the following LMI conditions hold:

QAT +A;Q-BW,—-W/BT <0, i=1,...,r (11)
QAT +A;Q + QAT + A;Q - B;W,; — W) B}
-B;W; -W/B] <0, i<j<r. (12

Recasting the control design problem in terms of LMI
conditions (11) and (12) constitutes a (numerical) solution
to the original problem. Moreover, the proposed framework
also facilitates incorporation of performance consideration
as well as development of multi-objective control design.
Details will be presented elsewhere.

Next we apply the proposed fuzzy modeling and control
framework to the control of chaos.

4. Fuzzy Modeling and Control of Chaotic Sys-
tems

Chaotic behavior of a physical system can either be desir-
‘able or undesirable, depending on the application. It can be
beneficial in many circumstances, such as enhanced mixing
of chemical reactants. Chaos can, on the other hand, entail
large amplitude motions and nscillations.that might lead to
system failure. Clearly the ability to control chaos is of
much practical importance. Recently, significant attention
has been focused on developing techniques for the control
of chaotic dynamical systems (see the reviews [12, 13, 14]).
Many of the techniques discussed in the literature are ef-
fective to certain extent. At the same time one realizes
that the control of chaos can have different interpretations.
Some approach the problem by employing linear or non-
linear feedback to stabilize nominal equilibrium points or
periodic orbits embedded in chaotic attractors. Others ex-
ploit the intrinsic nature of chaos and its associated dynamics
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to control it. For instance, [15] employs a small amplitude
control law in a restricted region of the state space, thereby
stabilizing a pre-existing equilibrium-or periodic orbit. In
another example, [16] demonstrated the viability of control-
ling chaos by controlling associated bifurcations.

In this section we demonstrate that the proposed fuzzy
modeling and control framework can be effectively applied
to chaotic systems. A representative chaotic system - Chua'’s
circuit is used as a vehicle for illustration.

4.1. Fuzzy Modeling of Chua’s Circuit

The well known Chua’s circuit is a simple electronic
system, which consists of one inductor (L), two capacitors
(C1, Ca), one linear resistor (R) and one piecewise-linear or
nonlinear resistor (¢). It has been shown to possess very rich
nonlinear dynamics such as bifurcations and chaos {17].

The dynamical behavior of Chua’s circuit is described by

1 1
g, = a‘('ﬁ(vc’z"vcﬁ)—g(va)) (13)
1 1
vc, = E(E(vc’l_UCQ)'i‘iL) (14)
i = 1(~ve, — Roir) (1s)

where ve,, v¢,, and i, are the state variables. The charac-
teristic of the nonlinear resistor g(v¢, ) is taken as the well
known piecewise-linear characteristic (see Fig. 1)

g('UO;) =
1
Gb“C} + E(Ga - Gb)(l”CH + El - ]vcx - El) (16)
where G,,Gp < 0.

Our objective is to otain a fuzzy model in the form:(2)
for Chua’s circuit with characteristic (16). Assuming v, €

[-dd], d > E > 0, we obtain the following sector to bound -

g(ve,) (Fig. 1)

Gavom (amn

Gy + (Ge —dGb)E

9 (UC1) =

@(ve) = Jve, = Gug, (18)

where G 2 Gy + Lq“—:d——G”)E.
Rewrite (16) as

Grue, + (Go — Go)E vo, 2 E
g(vey) = ¢ Gavg ~E<vg, <E
Gyvg, — (Ga — Gb)E vo, £ —F

Only when G, # G} is of interest (otherwise Chua’s
circuit becomes a simple linear system). With G, # Gy,

- gl g(Vet)

@

Vel

4 E . E d

Figure 1. Resistor characteristic of Chua’s cir-
cuit

M1
M2
0 Ve
-d -E 0 E d

Figure 2. Membership functions for Chua’s
cirouit

we arrive at the following membership functions (Fig. 2):

— Lo +E

(1_%)001 Uy > E
Mi(ve,) = lﬁ —-E<uvg <E

— =2y, —F

e, o=

and
Ma(ve,) =1 = Mi(ve,).

Denote x = [vc,,vc,,ir]7- Chua’s circuit with charac-
teristic (16) can be represented exactly for vo, € [—d d] by
the following fuzzy model:

Rule 1: IF v¢, is M1 (v, ) (near 0)
THEN x(t) = A1x(%)

Rule 2: IF v¢, is Ma (v, ) (near £d)
THEN %(¢) = Agx(t)

where
1 Gg _1_ 0
Ci1R [} CiR
A = __1 _ 1 1
1 CLR C’iR C
0 I 1
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and

_1l _ga 1 9
CIR C] ClR
A, = -l -1 L
2= LR CiR C
0 1k
T L

For any region of interest, Chua’s circuit can be mod-
eled exactly by the fuz:y system with properly chosen d
(including d — 0).

4.2. Fuzzy Control of Chua’s Circuits

Consider Chua’s circuit with control inputs

_ 1.1,
ve, = 51—(-}% e, —vey) — g(ve)) +ur (19)
. 1,1, .
ve, = —C';(E e, — '1102) + zL) + (7% (20)
) 1
iL = -E(—/U(q - R()ZL) + u3 (21)

It can be represented Dy the following fuzzy model.
Rule 1: IF Vo, is M, (’Uc‘)
THEN %x(t) = A.1x(t) + Bu(t)
Rule 2: IF v¢, is MZ(’ch)
THEN x(t) = A2x(t) + Bu(?)
where M;(ve, )’s, A;’s are defined as in the last section and
Bis a3 x 3 identity marrix.
The control objective is to steer any chaotic and/or os-
cillatory trajectory to the origin. Applying the PDC design,
we arrive at the fuzzy coatroller as follows.

Rule 1: IF ve, is M1 ('vc,)
THEN u(t) = - Fix(¢),
Rule 2: IF ve, is Ma(ve,)
THEN u(t) = - Fx(t).
The overall PDC coniroller is hence

u= —w1F1x - 1U2F2x

which is nonlinear. The feedback gains F'; and F'; can be
obtained by solving the conditions (11)and (12) withQ > 0
of Theorem 3.

Choose R =10/7,R) =0,C; =0.1,C, =2, L =1/7,
Gy =-01,G, = -4, E = 1and d = 15. Using LMI
algorithms, we have obtained the following solutions for
Q>0and W;,i=1,2.

47.1825
0.0000
0.0000

47.1825 0.0000
0.0000 47.1825

0.0000  0.0000
Q= ;

and
1.5728e + 03
W,=| —1.1451e+ 03
—8.4744e + 01

—7.8638¢ — 01 9.3458e + 01

1.4919e + 03 8.4744e + 01
—4.0014e+ 02 1.5728e + 01

10
5
20
-5
-10
0 100 200 300
time (sec)

Figure 3. Response of Chua’s circuit

—1.4469¢ + 02 —1.0115¢+03 '1.7532¢+02
W= 1.3583e 403 —7.8638¢ —01 9.5649¢ + 02
—1.7532e+02 -1.2632e+ 03 1.5728e+ 01

The resultings feedback gains are

33.3333  31.6202 1.7961
Fi=wW;Q ! =| —242702 -0.0167 1.9808 |,

—1.7961 —8.4808 0.3333
and

-3.0667 —21.4379 3.7158
F,=W,Q ! =| 287879 —0.0167 20.2722 |.

—3.7158 -26.7722 0.3333

Figure 3 shows the response of Chua’s circuit before and
after the control is applied (initial condition (0, 1, 0), control
is activated at ¢ = 200).

Remark The proposed control laws guarantee the stability
of the fuzzy control system consisted of the fuzzy model
and the PDC controller. When the fuzzy model is an exact
representation of the nonlinear plant, the global stability is
achieved. In the application to Chua’s circuits, the semi-
global stability is achieved, i.e., the control law can achieve
any prescribed region of stability by employing proper sec-
tors. This is a very powerful and practical aspect of the
proposed framework.

5. Conclusions

A systematic framework for the stability and design of
nonlinear fuzzy control systems is presented. The frame-
work is based on Takagi-Sugeno fuzzy model and parallel
distributed compensation control design. The design pro-
cedure is conceptually simple and natural. Moreover, the
stability analysis and control design problems are reduced
to linear matrix inequality (LMI) problems. Therefore they
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can be solved very efficiently in practice by convex pro-
gramming techniques for LMIs. The design methodology
is illustrated by application to the control of a well known
chaotic system - Chua’s circuit.
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