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ABSTRACT

In this paper we explore the interaction between fuzzy con-
trol systems and chaos. First we show that fuzzy modeling
techniques can be used to model chaotic dynamical systems.
Then we apply some of the newly developed fuzzy control
design techniques to the control of chaotic systems. The de-
sign procedure is conceptually simple, natural and compu-
tationally efficient. Therefore the proposed fuzzy method-
ology represents a systematic and effective framework for
modeling and control of chaotic systems. The method is
illustrated by application to Chua’s circuits.

1. INTRODUCTION

Recently, significant attention has been focused on develop-
ing techniques for the control of chaotic dynamical systems
(see the reviews [1, 2, 3, 4]). Many of the techniques dis-
cussed in the literature are effective to certain extent. At
the same time one realizes that the control of chaos can
have different interpretations. Some approach the prob-
lem by employing linear or nonlinear feedback to stabilize
nominal equilibrium points or periodic orbits embedded in
chaotic attractors. Others exploit the intrinsic nature of
chaos and its associated dynamics to control it. For exam-
ple, [5] demonstrated the viability of controlling chaos by
controlling associated bifurcations.

While chaos has become one of the most focusing re-
search topics in the literature, we have witnessed rapidly
growing interest in making the control systems more intel-
ligent. Among intelligent control approaches, fuzzy control
has enjoyed remarkable success in various applications [6].
Moreover, recent advances in fuzzy control have laid the
foundation for intelligent control of various nonlinear pro-
cesses, including chaotic systems.

In this paper we explore the interaction between fuzzy
control systems and chaos. First, we show that fuzzy model-
ing techniques can be used to model chaotic dynamical sys-
tems, which also implies that fuzzy system can be chaotic.
This is not surprising given the fact that fuzzy systems are
essentially nonlinear. The particular fuzzy modeling frame-
work employed here is the so-called Takagi-Sugeno model
[7]. In this type of fuzzy model, local dynamics in different
state space regions are represented by linear models. The
overall model of the system is achieved by fuzzy “blending”
of these linear models.

Once the fuzzy model representation of a chaotic sys-
tem is obtained, we can apply some of the newly devel-
oped fuzzy control design techniques to the control of the
chaotic system. The control design is carried out based on
the fuzzy model via a so-called parallel distributed compen-
sation scheme. The idea is that for each local linear model,
a linear feedback control is designed. The resulting overall
controller, which is nonlinear in general, is a fuzzy blending
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of each individual linear controller.

The design procedure aims at rendering (globally or semi-
globally) stable fuzzy controllers. The design procedure
is conceptually simple and natural. Moreover, the analy-
sis and design of fuzzy control systems have been assisted
by extremely efficient convex programming techniques in-
volving linear matrix inequalities (LMIs). Therefore, the
proposed fuzzy methodology represents a systematic frame-
work for modeling and control of chaotic systems.

Throughout the paper, two versions of Chua’s Circuit are
used for lustration.

FUZZY MODELING OF CHAOTIC
SYSTEMS

In this section we present fuzzy modeling of chaotic systems.
To begin with we review the so-called Takagi-Sugeno fuzzy
model. Then we demonstrate how the TS fuzzy model can
be used to represent chaotic systems by application to two
versions of Chua’s Circuit.

2.

2.1, Takagi-Sugeno Fuzzy Model

We represent a given nonlinear, possibly chaotic, system by
the so-called Takagi-Sugeno fuzzy model [7]. This control
oriented fuzzy modeling method is simple and natural. The
system dynamics is captured by a set of fuzzy implications
which characterize local relations in the state space. The
main feature of a Takagi-Sugeno fuzzy model is to express
the local dynamics of each fuzzy implication (rule) by a
linear system model. The overall fuzzy model of the system
is achieved by fuzzy “blending” of the linear system models.

Specifically, the Takagi-Sugeno fuzzy system is of the fol-
lowing form:
Rule 2: IF 1(t) is My -+ and z,(2) is Min

THEN x(t) = Aix(t) + Biu(t),

where

]

0
u” (1)

[z1(t), 1"2(1)’ Yy z"(t)]’
(w1 (2}, w2(t),- -+, um(t)],

t=1,2,---,7 and 7 is the number of IF-THEN rules. M;;
are fuzzy sets, and x(¢) = A;x(t) + B;u(t) is the output
from the i-th IF-THEN rule. Given a pair of (x(t), u(t)),
the final output of the fuzzy system is inferred as follows

D wi(t){Ax(t) + Biu(t)}
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Fig. 1. Resistor characteristic in Chua’s circuit (Case 1)

where "
wi(t) = H Mij(=5(t))-

M;;(z;(t)) is the grade of membership of z,(t) in M;;.
The open-loop system of (1) is

D wit)Aix(t)

x(t) = =

Zw,‘(t)

where it is assumed that

Zr:‘w,'(t) > 0,

=1
wi(t) > 0 1=1,2,--- 1

Next we show the application of the fuzzy model (2) to

Chua’s circuits.

2.2. Fuzzy Modeling of Chua’s Circuits

The well known Chua’s circuit is a simple electronic system,
which consists of one inductor (L), two capacitors (C1, Cz),
one linear resistor (R) and one piecewise-linear or nonlinear
resistor (g). It has been shown to possess very rich nonlinear
dynamics such as bifurcations and chaos {8].

The dynamical behavior of Chua’s circuit is described by

io, = glgle—ve)=gve))  ©)
e, = (oo, = ve)) +is) ®)
in = l(—vcz—RoiL) (5)

L

where ve,, ve,, and i1 are the state variables.

Let us consider two types of characteristic of the nonlin-
ear resistor g(vc, ). One is the well known piecewise-linear
characteristic and the other a cubic one.

Case 1. g(vc, ) is piecewise linear:

o(ve,) = Grve, + 3(Ga = G)(lve, + Bl v, — BI) (6)

where G,, Gy < 0.

Our objective is to otain a fuzzy model in the form (2)
for Chua’s circuit with characteristic (6). Assuming ve, €
[~d d%, d > E > 0, we obtain the following sector to bound

g(ve,) (Fig. 1):
91(001) = Gavc’u (7)
ple) = G+ 188 G, ()

d
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Fig. 2. Membership functions (Case 1)

where G 2 Gy + gG“—_dGﬁLE—.
Rewrite (6) as

Gyve, + (Ga — Gy)E v, > E
g(ve,) =4 Gave, -E<ve, <E
Gvvc, — (Ga — Gv)E vo, < —E.

Only when Ga # Gy is of interest (otherwise Chua’s cir-
cuit becomes a simple linear system). With G, # Gs, we
arrive at the following membership functions (Fig. 2):

£y +EB

(11%0)1101 vey 2 E
Mi(ve,) =4 1 —E <vg, <E

=3 <-F

B, s

and
MZ(vcl) =1- Ml(vcl)‘

Denote x = ['ucl,vcg,iL]T. Chua’s circuit with charac-
teristic (6) can be represented exactly for vg, € [—d d] by
the following fuzzy model:

Rule 1: IF we, is Mi(vc,) (near 0)
THEN x(t) = A1x(t)

Rule 2: IF wc, is Ma(vc,) (near +d)
THEN %(t) = Azx(1)

where
r_ 1 _ Gg 1 0 ]
iR C; CiR
A, = 1 " 2
1= CoR C2R C. ’
0 1 '
L T FA.
and
[ 1__ G L 0
C;R T, C1 R
A, = . S S
2= CaR R cﬁ
0 -4 —fo
L T L

For any region of interest, Chua’s circuit can be modeled
exactly by the fuzzy system with properly chosen d.

Case 2. g(vc, ) is cubic:

g(ve,) = ave, + c'u?;l,

(9)

where a < 0,¢ > 0.
Similarly as in Case 1, assuming ve, € [—d d], d > 0, we
obtain the following sector to bound g(vc; ):

(10)
(11)

9 (vcl )
92(001)

avCy,

(a + cal2)'uc1 = G.ve,

where G. £ a + cd?.
The membership functions are derived as:

Ml(vcl) = 1_(W_CL 27
Ma(ve,) = l_Ml('UCl):(v_iL)?‘



The fuzzy model for Chua’s circuit with characteristic (9)
is hence obtained as the following.

Rule 1: IF ve, is Mi(ve,) (near 0)
THEN x(t) = A;x(t)
Rule 2: IF ve, is Ma(ve,) (near +d)
THEN x(¢) = Azx(1)
where
[ ‘ciRl_ =y ci{% 0 ]
A.1 = - CL.R - C.R 'C‘E )
0 1 o
L 2 L
and
1 _G _1_ g T
GRECi TR .
Az = ey TR T
0 _1 _fo
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3. FUZZY CONTROL OF CHAOTIC SYSTEMS

We employ the concept of parallel distributed compensation
(PDC) [11, 12] to synthesize fuzzy control laws for the sta-
bilization of nonlinear systems (including chaotic systems)
represented by fuzzy model (1). To begin with, we need the
following results on stability analysis.

3.1. Stability Analysis

A sufficient condition for ensuring stability of (2) is given
as follows.

Theorem 1 [10] The equilibrium of a fuzzy system (2) is
asymptotically stable in the large if there exists a common
positive definite matriz P such that

ATP +PA; <0, i=1,2,.-,7,

(12)
i.e., a common P has to exist for all A;’s.

This theorem reduces to the Lyapunov stability theorem for
linear systems when r = 1.

To check the stability of a fuzzy system, it has long been
considered difficult to find a common positive definite ma-
trix P. Most of the time a trial-and-error type of proce-
dure is used [10]. In [12, 13], it was pointed out that the
common P problem can be solved numerically. To do this a
very important observation is that the stability condition of
Theorem 1 is expressed in linear matrix inequalities (LMIs)
[14]. To check stability we need to find P satisfying the
LMI

P>o, ATP +PA; <0, i=1,2,---,7
or determine that no such P exists. This is a convez feasi-
bility problem. Numerically this feasibility problem can be
solved very efficiently in practice by means of the most pow-
erful tools available to date in the mathematical program-
ming literature, e.g., the recently developed interior-point
methods [15].

3.2. Parallel Distributed Compensation

The idea of PDC is to design a compensator for each rule
of the fuzzy model. For each rule, we can use linear control
design techniques. The resulting overall fuzzy controller is
a fuzzy blending of ecach individual linear controller. The
fuzzy controller shares the same fuzzy sets with the fuzzy
system (1).

Rule 7: IF «1(t) is My; --- and z,(t) is M

THEN u(t) = —Fix(t),
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where ¢ = 1,2,-.., 7. Hence the fuzzy controller is
T
—Zwi(t)F.'x(t)
u(t) = =1 = (13)
>t
i=1
Note that the controller (13) is nonlinearin general.
Substituting (13) into (1) we obtain
DD wit)wi(t){A: — BJF,}x(t)
X(i) = =1 j=1 (14)

DN wiltywi(t)
i=1j=1

Apply Theorem 1 we have the following sufficient condi-
tion for stability

Theorem 2 [11, 12] The equilibrium of a fuzzy control sys-
tem (14) is asymptotically stable in the large if there ezists
a common positive definite matriz P such that

{A; - B:F,;}"P + P{A: - Bi/F;} <0, (15)
fOf'Mi'Mj;éO, i,j:l,z,---,r,
Note that system (14) can be also written as
. 1
x(t) = -W[Zwe(t)wi(t){A,- — BiF)x(t)
1=1
+23 wi(t)w; (H)Giyx(t)] (16)
i<y
where
Gi; = {A; -~ B;F;} -; {A; - B,;F;} i<
W= ZZwi(i)wj(t).
i=1 j=1

Therefore we have the following sufficient condition.

Theorem 3 [11, 12] The equilibrium of a fuzzy control sys-
tem (14) is asymptotically stable in the large if there exists
a common positive definite matriz P such that the following
two conditions are satisfied:

{A;-B,F;}P+P{A;-B;F;} <0, i=1,2,...,7 (17)

GP + PGy, <0, i<j<r (18)
Remark The conditions of Theorem 3 are more relaxed than
those of Theorem 2.

The control design problem is to select F; (i =1,2,---,7)
such that conditions (17) and (18) are satisfied. This is
an iterative process. For each rule a controller is designed
based on consideration of local performance only. Then an
LMI based stability analysis is carried out to check whether
the stability conditions are satisfied. In the case that the
stability conditions are not satisfied, the controller for each
rule will be redesigned. The iterative design procedure has
been very effective in our experience. From the standpoint
of control design, however, it is more desirable to be able
to directly design a control that ensures the stability of the
closed-loop system. Details on directly solving the control
design problem using LMIs can be found in [13].

Next we apply the PDC fuzzy design to Chua’s circuits.
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Fig. 3. Response of Chua’s circuit (Case 1)

3.3. Fuzzy Control of Chua’s Circuits
Consider Chua’s circuit with control inputs

_ 11
ver = Grlgle, —ve) ~g(ve)) +u (19)
. 1,1 :
by = —C—;(E(Ucl —ve,) +1in) + uz (20)
. 1 .
ip = f(”"’)cz —_ RozL) + u3 (21)

It can be represented by the following fuzzy model.

Rule 1: TF we, is Mi(ve,) THEN x(t) = Aix(2) + Bu(t)
Rule 2: IF we, is M2(vc,) THEN x(t) = A2x(¢) + Bu()
where M;(vc,)’s, A;’s are defined as in the last section and
B is a 3 x 3 identity matrix.

The control objective is to steer any chaotic and/or oscil-
latory trajectory to the origin. Applying the PDC design,
we arrive at the fuzzy controller as follows.

Rule 1: IF w¢, is Ma(ve,) THEN u(t) = —Fix(t),
Rule 2: IF ve, is Ma(vc,) THEN u(t) = —Fax(t).

The overall PDC controller u = —w1Fi1x — wpFox is
nonlinear. The feedback gains F; and F3 can be obtained
by a number of linear control techniques. Here they are
obtained by solving riccati equations from linear optimal
control.

Case 1. Choose R = 10/7, Rp = 0, C; = 0.1, C; = 2,
L=1/7,G,=—0.1,Go = —4, E =1 and d = 15. We have

64.1991  11.5414 0.7025

F; = | 11.5414 7.2798 —1.5885 |
0.7025 —1.5885 2.3227
1.2225 0.8829 0.1750

F, = 0.8829 6.0161 —1.5067

0.1750 —1.5067 2.4885
By using LMI algorithms, a common P that satisfies sta-
bility conditions (17),(18) is found to be
0.0292 —0.0300 0.0130
P=1] —0.0300 0.1094 —0.0585
0.0130 —0.0585 0.1504
Fig. 3 shows the response of Chua’s circuit (initial condi-
tion (0, 1,0), control is activated at ¢ = 200).

Case 2. Choose R =10/7, Ry =0, C1 = 1.0, C, = 19/2,

L = 19/14, a = —4/5, ¢ = 2/45 and d = 3. We have
3.2489 0.3890 0.0219
F; = | 0.3890 3.2060 —0.3066 ] ,
0.0219 —0.3066 3.1370
2.8655 0.3468 0.0191
F, = | 0.3468 3.2018 —0.3069

0.0191 —0.3069 3.1370

and a stability guaranteeing common P is found to be

0.5219 0.0041 —0.0030
0.0041 0.5038 —0.0030 | .

P=
|:—0.0030 —0.0030 0.5252
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Fig. 4. Response of Chua’s circuit (Case 2)

Fig. 4 shows the response of Chua’s circuit (initial condi-
tion (—1,0.8,1), control is activated at ¢ = 400).

Remark The proposed control laws guarantee the stability of
the fuzzy control system consisted of the fuzzy model and the
PDC controller. When the fuzzy model is an exact representa-
tion of the nonlinear plant, the global stability is achieved. In
the application to Chua's circuits, the semi-global stability is
achieved, i.e., the control law can achieve any prescribed region
of stability by employing proper sectors. This is a very powerful
and practical aspect of the proposed framework.
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