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In this paper we present a sufficient condition for master-slave synchronization of Lur’e systems.
The scheme makes use of linear full static state feedback. The criterion is based on a Lur’e-
Postnikov Lyapunov function for global asymptotic stability of the error system. The condition
is basically the same as the one for global asymptotic stability of the Lur’e system, controlled
with linear state feedback. The design of the feedback matrix is done by solving a constrained
nonlinear optimization problem. The method is illustrated on the synchronization of Chua’s

circuit.

1. Introduction

Recently there is a lot of interest in the use of
synchronization for secure communication applica-
tions. In [Hasler, 1994] an overview of methods
for synchronization is presented, including decom-
position into subsystems, linear feedback and an
inverse system approach. In order to use synchro-
nization in transmission systems, a useful informa-
tion-carrying signal is transmitted, hidden in a
chaotic signal. Methods for hiding the information
are, e.g. chaotic masking, chaotic switching and di-
rect chaotic modulation. ,
The work described in this paper is related to
synchronization by linear feedback, which investi-
gates the problem from the viewpoint of control the-
ory. It has already been shown that there is a close
relationship between the synchronization problem
and the problem of controlling chaos by linear feed-
back [Chen, 1993; Hasler, 1994; Wu & Chua, 1994].
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The same observation will be made here based upon
a matrix inequality, that expresses a sufficient con-
dition for global asymptotic stability of the error
system. Conditions for synchronization of general
nonlinear systems have been derived for quadratic
Lyapunov functions [Wu & Chua, 1994, 1995]. The
condition proved in this paper, is derived from a
Lur’e—Postnikov Lyapunov function, which consists
of a quadratic Lyapunov function plus integral term.
We consider Lur’e systems which consist of a lin-
ear dynamical system, feedback interconnected to a
static nonlinearity that satisfies a sector condition.
Many nonlinear systems can be represented in this
form, including e.g. Chua’s circuit [Guzelis & Chua,
1993]. The fact that the nonlinearities satisfy a sec-
tor condition is exploited to derive the matrix in-
equality. It also yields a systematic procedure for
designing the feedback matrix, by solving a con-
strained nonlinear optimization problem. Finally,
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in order to use this method for chaotic masking,
Lur’e systems that reveal high dimensional chaos
should be used in order to obtain secure commu-
nication schemes. Generalized cellular neural net-
works that generate high dimensional chaos are pos-
sible candidates for that purpose: they have been
represented as Lur’e systems in [Guzelis & Chua,
1993].

This paper is organized as follows. In Sec. 2 we
present the matrix inequality condition for synchro-
nization of Lur’e systems. In Sec. 3 we illustrate the
method on synchronizing Chua’s circuit.

2. Matrix Inequality for
Synchronization of Lur’e Systems

Let us consider a Lur’e system, which is of the form
[Boyd et al., 1994; Khalil, 1992; Narendra & Taylor,
1973]:

&= Az + Bu
y=Czx (1)
u=0(y),

consisting of a linear dynamical system, feedback
interconnected to static nonlinearities o;(-) that sat-
isfy sector condition [0, k] forall¢ = 1,..., ns; with
state vector z(tf) € R™ and matrices A € R"*",
B € R™™, C € R™*™ Using two identical
Lur’e systems in a master-slave synchronization
scheme with linear full static state feedback,
one has:

{(M):c = Az + Bo(Cxz) 7
(8)2=Az+ Bo(Cz2) + F(z — 2) )

Y=YT=[

(A-F)TP+ P(A-F)
BTP +kTC + kI'C(A - F)

with master M and slave S and feedback matrix
F € R*™*™, The aim of synchronization is then to
obtain ||z(t) — z(¢)|| — 0 for time ¢ — oco. Defining
the error signal e = = — z, one obtains the error
system:

¢ =(A— F)e+ Bn(Ce) (3)

with n(Ce) = o(Ce + Cz) — 0(Cz). In the sequel
we use the shorthand notation 7 for n(Ce). Assume
a sector condition [0, £] on 7(-) which gives the fol-
lowing inequalities for 7:

ni[ni—kcge]SO, i=1,...,np Yz, z€R", (4)

where ¢ denotes the ith row of C.

Now we investigate under what condition the
error signal goes to zero, whatever the choice of
the initial states z(0), 2(0). Therefore we take the
Lur’e-Postnikov Lyapunov function:

h c;re
Ve =eTPe+ 2 [ nlokdp  (5)

=1

with P = PT > 0 and y; > 0 (assume z is quasi con-
stant with respect to error dynamics). This func-
tion is positive everywhere and radially unbounded
and is used in order to show under which condition
the error system is globally asymptotically stable
with unique equilibrium point e = 0. The following
Theorem is obtained:

Theorem. LetI' = diag{v;}, T = diag{~n;} be di-
agonal matrices with v;, 7, > 0 for i = 1,..., ny.
Then, if there exist P = PT > 0, ', T and a feed-
back matrix F such that

PB4 kCTT 4+ k(A — F)TCTT

<0 6
—2T + kI'CB + kBTCTT (6)

then based upon (5) the system (2) synchronizes, with error system (3) having a unique and globally asymp-

totically stable equilibrium point e = 0.

Proof. Taking the time derivative of (5) and applying the S-procedure [Boyd et al., 1994] by using the

inequalities (4), one obtains:

V =¢TPe+eTPe+ Y 2vmi(cle)kclé < [(A— F)e+ BT Pe+ e P[(A — F)e + By
%

+ Z 2vini(cF e)kel [(A — F)e + Bn] — Z 2miniln — kel e).
7 %



Writing this as a quadratic form in [e; 7] one obtains
vV <[eF Y [;] <0.

This expression is negative VY nonzero z, z € R" if
Y is negative definite. B

Remarks

e The condition for global asymptotic stability of a
Lur’e system, stabilized by linear state feedback:

= Az + Bo(Cz)+u, u=Kz (7)

leads to the same condition as (6), if one takes
the Lyapunov function

T

vw>=prx+§fwﬁA‘maxmmw ®)

with P = PT > 0, v; > 0. The same observation
of similarity between this stabilization problem
and the synchronization problem has been made,
e.g. in Wu & Chua [1994].

e For a given Lur’e system and feedback matrix F,
one has a linear matrix inequality (LMI) in the
unknown matrices P, I', 7. Finding these un-
known matrices corresponds to solving a convex
optimization problem [Boyd et al., 1994]. The
overall design problem of finding a feedback ma-
trix F together with P, T', T such that (6) is sat-
isfiled however leads to a nonconvex optimization
problem.

3. Example: Synchronization
of Chua’s Circuit

In order to illustrate the previous Theorem, let us
consider the master-slave synchronization problem
for Chua’s circuit:

{ (M) 2 = Acz + Beg(Cex)

(8) 5 = Acz + Beg(Coz) + F(z — 2) (9)

A Chua’s circuit generates the double scroll attrac-
tor [Chua et al., 1986] for

—63 63 0
Ac=| 07 -07 1|,
L 0 -7 0

r—9
B.= 0} C.=[10 0
L 0

Master-Slave Synchronization of Lur’e Systems 667

and g(a) = —-0.5a — 0.15|a + 1| + 0.15]a — 1|. Tak-
ing A= A., B = B, C = —-C, [Guzelis & Chua,
1993] one obtains the representation (2), with o(-)
belonging to sector [0; 0.8] and k = 0.8. In order to
find a feedback matrix F' and matrices P, I' and T
such that (6) is satisfied and (9) synchronizes, the
following constrained nonlinear optimization prob-
lem has been solved

min_ Amax(Y) such that

<
Jmin, 1Pl <,

(10)

where Apax(:) denotes the maximal eigenvalue and
P = RTR. The constraint ||F||z < cis used because
otherwise the norm on F' becomes too large. In the
simulations ¢ = 5 was taken. Sequential quadratic
programming (SQP) [Fletcher, 1987] with numeri-
cal calculation of the gradients was used in Matlab
(function constr [The MathWorks Inc., 1994)) in or-
der to minimize (10). The cost function is differen-
tiable as long as the two largest eigenvalues of Y do
not coincide [Polak & Wardi, 1982]. Multistart local
optimization was done with starting points T’ = 0.1,
T =1, R= I3 and F arandom matrix with random
elements normally distributed with zero mean and
variance 1. Figure 1 shows the behavior of the cir-
cuits (9), corresponding to one of the feasible points
to (6), for some initial states of  and z.

4. Conclusion

In this paper we investigated the synchronization
problem of Lur’e systems, that consist of a linear
dynamical system with feedback interconnected to
a static nonlinearity that satisfies a sector condi-
tion. Using a Lur’e~Postnikov Lyapunov function a
matrix inequality is obtained that expresses a suffi-
cient condition for global asymptotic stability of the
error system. A systematic design procedure exists
in order to find the feedback matrix by solving a
constrained nonlinear optimization problem. The
method has been demonstrated on Chua’s circuit
with the double scroll. For secure communication,
Lur’e systems that produce high dimensional chaos
are needed. Generalized cellular neural networks
might be used for that purpose.
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Fig. 1.
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(a) The figure shows the 6 state variables through time of a master-slave synchronization system, where the master

system behaves as Chua’s double scroll for initial state [0.1; 0; —0.1]. For the slave system two randomly chosen initial states
were taken, shown at the top and bottom. (b) Corresponding error signals through time.
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