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Generation of n-Double Scrolls (n =1, 2, 3,

Johan A. K. Suykens and Joos Vandewalle

Abstract— Chua’s double scroll is probably the best known
and most extensively studied example of chaotic behaviour gen-
erated by electrical circuits. It is illustrated in this paper that
by meodifying the characteristic of the nonlinear resistor with
additional break points even more “complicated” attractors can
be obtained, called n-double scrolls (r=1,2,3,4,...). The new
circuit can be seen as a generalization of Chua’s circuit such
that the 1-double scroll corresponds to the classical double scroll.
The construction of the attractors was partially based on a
combination of linearization around equilibrium points and an
alternative method for studying nonlinear systems that we called
a quasilinear approach. This method is heuristic and qualitative
but may give additional global insight into the state space be-
haviour and may open new views towards the construction of
attractors.

Index Terms—Chua’s circuit, n-double scroll, bifurcations.

I. INTRODUCTION

NE OF THE simplest systems known up to date exhibit-
Oing chaotic behaviour with a rich variety of bifurcation
phenomena is Chua’s circuit [1], [3], [6]. Depending on
the parameter values of the system several portraits can be
obtained between order and chaos ranging from sinks to a
double scroll through period-doubling. In this paper it will
be shown how Chua’s circuit can be generalized to a new
circuit by modifying the characteristic of the nonlinear resistor,
leading to more complex attractors. Additional break points are
introduced in the nonlinearity and the description is parame-
terized. The obtained attractors will be called n-double scrolls
(n=1,2,3,4,...)according to the specific parameterization.
The well known double scroll will correspond then to the 1-
double scroll in this framework. It is also illustrated how a
transition between multiple sink portraits and the n-double
scrolls can be achieved as a function of a bifurcation parameter
of the circuit.

The viewpoint that we take here is rather experimental.
Instead of a giving a rigorous mathematical analysis of all
bifurcation phenomena, which would become a very compli-
cated task for this generalized circuit, a local stability analysis
at the equilibrium points and a quasilinear interpretation [9] of
the state space behaviour is given. The approximate analysis
is confirmed by computer simulations.

This paper is organized as follows. In Section II, the new
circuit is described. In Section III, analysis of equilibrium
points is done, and finally, in Section IV, a quasilinear analysis
is given with respect to a bifurcation parameter of the system.
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Chua’s circuit for generation of the double scroll attractor.

82(x)

-9
-50

50 V] 50
X X
100
] sol- ]
x
3 o 1
an
] ol ]
. 100 .
[ 50 -100 -50 0 50 100
X X

Fig. 2. Nonlinearities k2(z), k4(x) and corresponding g2(z) = Crk2(2)2,

g4(1) = Cl k4(z)z

II. GENERALIZATION OF CHUA’S CIRCUIT

The electrical circuit of Fig. 1 with circuit dynamics de-
scribed as

Cldval' = G('Ucz - vCl) - g(”Cl)

02%-1 = G(Ucl — Uc?) + i, 1)
Ld—;é‘ = --T)C2
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Fig. 3. 2-double scroll attractor: (a) (z — y), (b) (z — ¥), (©) (& — 2), (@) =(?).

is known as Chua’s circuit {1}, [3], [6] where vc,, ve,, iL
denote respectively the voltage across C; and C and the
current through L and g(vc, ) is the piecewise-linear function
of Fig. 1 consisting of two breakpoints

g(vcl) = Moyvc, + 05(m1 - mO)l”Cl + Bpl
+0.5(mg — m1)|ve, — Bpl. (@)

By setting the parameters 1/C; = 9, 1/C, = 1, 1/L =7,
G = 0.7, mg = -05, my = —08, B, = 1 chaotic
behaviour is obtained (double scroll attractor). Equation (1)
can be written in the form

T = A(z)z 3)
as
i —a—k(z) a Of |z
Y| = b -b 1|y @
z 0 —c 0] |z

or £ = f(z) where z(t) = [z(H)y(t)z(t)]', f: R® — RS,
T =00, Y =V, 2 =1L, a=G[/C,b=G/Cy, c=1/L,
k(z) = (1/C1)g(z)/z(z # 0) and Cp = 1.
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A new circuit will be defined now in terms of the state
space description (4) where the nonlinear function k(z) will
be parameterized as k,(z)(g € IN, ¢ > 1). The nonlinear
function g(z) is adapted accordingly into gq(z) = Cikg(z)z.
The circuit is described by

z = (—a — kq(x))z + ay

y=br—-by+=z2

2= —cy )
with the following algorithmic description for kq(z)

if 0 < |z| < 610 kg(z) = 1

fort=2togq
j=2+3(i-2)
— b
if §;-1 < |z| < 8j: ke(z) = Otzl&z—l—(—s—]—l + a1
i — 61
if §; < |.E| < 0j41: kq(a:)
|lz| — &;
- _ 6
026j+1_5]_+01+042 ©)

if 6j+1 < ll‘l < 5]'+2: lcq(z) =
end
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Fig. 4. 3-double scroll attractor: (a) (z — ), (b) (z — y) (©) (z — 2), (@) =(¢).

if §4+3(q_2) < |J:|
ko(z) = (as/|z))(Bilz] + Ballz| + bass(g-2)|
+ - Ballz] = Sata(g-2)))

and by definition
Ay = (6162 bayaq-2)]" @)

The graphical description of some kq(z) and g,(z) is given
in Fig. 2. It is easily verified that for ¢ = 1'the circuit (5)
and (6) corresponds to' Chua’s circuit (4) and k;(z) = k(z).
Throughout the text we will only consider bifurcations with
respect to the parameter ¢ and take b = 0.7, ¢ = 7, a1 =
—8a/7, ag = 2a/7, a3 = a/0.7, i = —0.5, B, = —0.15,
Bs = 0.15.

III. LOCAL STABILITY ANALYSIS

3.1. Equilibrium Points and Jacobians

The equilibrium points of (5) and (6) are identified by setting

% = ¢ = 2 = 0 which yields the conditions

y=0
br+2z=0 ®)
z=0orky(z) =—a

This results into 4¢ — 1 equilibrium points: eq, = 0 and
eql; ;. eql,, j, €4}, 5, o With j = 2+ 3(i — 2) and
i=2,---,q with ¢ > 1. The latter appear in pairs (% refers
to the sign of the z component) with z components satisfying

case §;_1 < |z| < 6;:

zequ_l = i0.5(5j + 6]‘_1)
case 8; < |z| < 6j41:

Teqt,,, = £05(8j11 +65) ©
case 0443(q—2) < |zt

a3(ﬂl|weq4i+3(q—2)l + ,82||1'eq4i+3(qv2] I+ 64+3(q_2)l
+oBalleags | 1= davaa-2)

= —alz,__ +
| €944 3(q—2)
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Fig. 5. 4-double scroll attractor: (a) (z — y), (b) (z — y), (&) (z — z), (d) z(t).

The Jacobian matrix for (5) and (6) is equal to

—a— ——‘1—6(’“6(;)1) a 0

0
J(z) = é = b -b 1
0 —c 0
Evaluated at the equilibrium points this gives
(—a—a1 a O
J(eag) = b -b 1],
| 0 —-c 0
[-(@/D)5-1 a 0
J(*ﬂfj_l) = b —b 1
L 0 — 0
N _(a/7)¢j+1,j a 0
J(ajr1,5) = b -b 1],
L 0 —c 0
L [—a—as(Bi+B2+P) a O
J(eq4+3(q_2)) = b -b 1
L 0 — 0

3.2. Generation of n-Double Scrolls

In order to generate the n-double scroll attractors (n =
(10) 1,2, 3,4,...) the parameter a is fixed at a = 7. The attractors
are obtained by setting v; j_1 = 5 (for j = 2 + 3(i — 2),

i =2,---,q). Some examples are listed below

case g =2: Ap=1[5 7.5 11.25 14]*
— 2 — double scroll
case g=3: Az=[5758 10 15 16 18]
— 3 — double scroll
caseq=4: A,=1[466.58 12 13 18 27 30 32]t
— 4 — double scroll
an

The functions k4 (z) and gq(z) = Ciky(z)z are plotted in Fig.
2 for ¢ = 2 and q = 4. The associated equilibrium points and
eigenvalues of the Jacobians are shown in (12)-(14) at the
bottom of the next page.

For simulations a trapexoidal integration rule with constant

with «; j_1 = (8; +8;-1)/(6; — 6;-1) and $j41,; = (6;41 + step length equal to 0.05 was used and initial state z(0) =

8;)/(6j41 — 6;) for j =24+3(i—2)and i = 2,---,¢.

y(0) = z(0) = 0.1. The simulation results are shown in Figs.
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3-5 for the 2-, 3-, and 4-double scroll, respectively. Finally, in
Fig. 6, a simulation result is presented of a 6-double scroll with

Ag=1[4664812128 16 24 25.6
32 48 51.3 62 93 99.4 110]*. (15)

3.3. Bifurcations with Respect to a

Now the elgenvalues of the Jacobians (10) at eqo, qu -1
eqJ 11,5 eq4 +3(g—2) are studied as a function of the bifurcation
parameter a. In Fig. 7, these results are shown for y; ;_; =5
and ¢jq1; > O with j = 2+3(6—2) and ¢ = 2,---,q.
From this diagram the existence of multiple sinks can be

derived. In Fig. 8 an example is given for ¢ = 2 and ¢ =

4 (2-double sink). Hence transitions occur between ordered
n-double sink portraits and n-double scrolls for increasing
parameter a. The rich variety of phenomena observed in
between n-double sinks and n-double scrolls is not discussed
in this paper.

IV. A QUASILINEAR STUDY

In order to get a global view onto the state space behaviour
of (5) and (6) a quasilinear approach is applied, as described
in [9]. This method is heuristic but may give additional insight
compared to a local stability analysis, provided one keeps in
mind certain limitations of the method. Namely with respect
to stability analysis of nonlinear systems counterexamples to

865

the method exist like to the Aizerman conjecture [7], [9]. The
idea is simply to study the eigenvalues of A(z) in £ = A(z)zx.
Suppose

MA(z)) = o(2) + jw(z). (16)

For the system (5) and (6) only the following situation occurs

A1 =01
A2,3 = 023 + jw. {an

Regions S, U,., U; C R® are now defined as

if o1(zp) < 0 and 03 3(zp) <0 —zZp €S
if 0’1((1))9) > 0 and 02,3(1712) <0—zpel,
if oy(zp) <O and o2 3(zp) >0 —-zp € U;. (18)

In Fig. 9 these regions are plotted for the cases ¢ = 2 (Fig.
9(a)), ¢ = 3 (Fig. 9(b)), ¢ = 4 (Fig. 9(c)) as a function of
the parameter ¢ between 3 and 8. Only positive x values are
shown because of symmetry with respect to the origin. Some
intuitive but nonrigorous conclusions can be formulated from
these figures

¢ 2-double scroll:

eq,=[0 0 0]* J(eqo) — A = 1.76 23 = —0.73 £ 1.855
ey, = =[+6.25 0 F4.38]* (eq2 ) — A= =558 A3 =0.04+246j (12)
eqs 5 = [:|:9 38 0 F 6. 56]t J(eq3 2) — /\1 = 5.65 /\2,3 =-0.67% 240_7
eq; =[#21 0 F14.7)  J(eqf) —» A\ = —3.05 g3 =1018+£2.14j
* 3-double scroll:
=[0 0 0 J(eq&) - A =176 Aoz = —0.73 £ 1.855
eq2 1= [£625 0 F4.38]° J(eqy;) — Ay = —5.78 A3 = 0.04 £ 2.46j
eq3 2 =[£7.75 0 F5.43]' J(eqi,) — A1 =31.15 Ag3=—043+26j a3
eq5 4= [£125 0 F875]° J(egry) — A1 = —5.78 Ag3 = 0.04 £ 2.46]
eq6 5 =[+15.5 0 F10.85]' J(eqzs) — A\ =31.15 Ap3=-043126j
eqt = [+27 0 F18.9] J(eqt) — A1 = —3.05 p3=0.18+2.14j
* 4-double scroll:
eq, = [0 0 O] J(eqy) — A\ = 1.76 Aoz = —0.73 £ 1.85j
ey, = =[+5 0 F3.5] (eq2 1) = A= —5.78 A3 =0.04 +2.46j
eq3 , = [£6.25 0 F4.38 J(eq3 o)) > A1 =232 p3=—045%2.6
eq5 s =[£100 F7] J(eq5 W) — A =—578 Xg3=0.04=+246j (14)

eq65— [£12.5 0 F8.75]t

eq8 7 =[£225 0 F15.75]
qu s = [£28.5 0 F19.95
eqf, = [£48 0 F33.6]

J(eq6 ) — A =25.19
J(qu 7) — A1 = —5.78
J(qu g) — A1 =19.24
J(eqt) — A\, = —3.05

Aoz = —0.44 + 2.65

Ao = 0.04£246j

Azs = —0.47 + 2.595
A3 = 0.18 + 2145
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Fig. 6. 6-double scroll attractor: (a) (z — y), (b) (z — z), (c) enlarged part
of (b).

¢ In the 2-double scroll case (e.g., a = 7) one has the

configuration

U,-5-U;,-8S-U,-5-U;
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Fig. 7. Eigenvalue configurations of the Jacobians at eq,, eqf -1 eq]-iﬂ, i
eqqu(q_z), as a function of the parameter a with v;; 3 = 5 and
Gjt1,5 > 0 (for j = 24 3(¢ —2), 4 = 2,--+,q). The figure should be

read rowwise as follows: each row gives the location of the eigenvalues of a
Jacobian for the region of interest for a(a € [3, 8]).
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Fig. 8. Multiple sink portrait (2-double sink) for a = 4.

The configuration S — U; — S is responsible for the two
scrolls closest to the origin.

» The configuration U, causes the transition between the
scrolls.

V. CONCLUSIONS

In this paper Chua’s circuit was generalized by intro-
ducing additional breakpoints in the characteristic of the
nonlinear resistor, leading to n-double scroll attractors (n =
1,2, 3, 4,...). These attractors serve as an example to illus-
trate that a combination of a local stability analysis with a
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Fig. 9. Quasilinear study of the nonlinear circuit for generation of the
2-double scroll, 3-double scroll and 4-double scroll (slice at @ = 7 in (a),
(b), (c) respectively).

quasilinear approach may be an easy way to get a quick and
rough insight into complex behaviour revealed by nonlinear
systems. Hence the method may contribute as a tool towards
the construction of dynamics.
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