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Abstract: Of all the piecewise-linear circuits
known so far which exhibit two stable states, it is
typical that their resistor characteristics each have
at least three segments. The paper shows that
bistability cannot be achieved via a two-segment
characteristic in the plane. On the other hand,
complicated bistable behaviour, including chaotic
attractors, can occur locally at the boundary of
two linear regions in higher-dimensional circuits.
By using a three-segment characteristic, at least
three attractors can be generated in the planar
Lienard oscillator and five attractors are exhibited
in three-dimensional Chua’s circuit. Basin struc-
ture of the corresponding attractors is examined
using numerical simulations. The use of basin
delineation in the triggering of multistable circuits
is shown.

1 Introduction

For several decades, from the very beginning of digital
electronics, all textbooks and research works have been
describing structures, capable of storing elementary 1-bit
information, with resistors whose characteristics are
approximated by at least three linear segments. We show
that the number of segments necessary to achieve
bistability has not yet been minimised.

Piecewise-linear (PWL) systems are being widely
studied today from various aspects. For instance, two-
segment idealised resistor characteristics have been used
in synthetising Lorenz-type dynamics in circuits [1]. Dis-
continuous three-segment characteristics are considered
in modelling multivibrators [2], while continuous sym-
metric three-region vector fields are treated in, among
others, References 3 and 4. Our main concern will be to
investigate the number and character of steady states,
especially the number of attractors, in circuits governed
by two- and three-region continuous vector fields.

The term bistability, here in its broader sense, will
comprise situations when the two steady states can be
arbitrary attractors, e.g. stable fixed points, limit cycles or
chaotic attractors. In Section 2 we show that classical
two-point bistability cannot arise in any dimension by
patching up two linear vector fields continuously. An
oscillatory type of bistability, however, is possible in
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dimensions
Section 4.
A most flexible and at the same time very simple
circuit for investigating dynamic properties of multistable
systems is Chua’s circuit which was used as a chaos gen-
erator [5]. The circuit in Fig. 1 is described by the system

Cy(dvy/dt) = Glv, — vy) — glv,) — I
Coldvy/dt) = Glo, — v,) + i 0
L(di/dt) = —v,

where g(v;) is the
G =1/R.

greater than two as demonstrated in

PWL resistor characteristic and

_——

Fig. 1 Circuit associated with system defined by eqn. 1

The number and character of the steady states for eqn.
1 depends on the choice of the circuit parameters as will
be shown in the following Sections.

2 General two-region continuous vector fields

The most widely used and simplest PWL vector fields are
those which create linear ‘layers’. More precisely we state
the following.

Definition: Let n > 1, r > 2 be integers. Denote by L] the
class of all continuous vector fields f: R" — R” with the
following property: there exist mutually parallel hyper-
planes h; (i =1, ..., r — 1) dividing R" into r regions &,
such that each restriction f/#%; (i=1, ..., r) can be
extended to a linear vector field f; on the whole of R". We
shall write f = (fy, ..., f,).

We focus our attention on the case r = 2. First we
prove:

Proposition 1: Each fe L (n > 1) can have at most one
sink.

Proof: Assume the contrary, ie. f=(f,, f;) € L} having
two sinks P, P. Write fi(x) = Ax + b, fy(x)=Ax + b,
where 4 = (a;)), A = (a;;) are matrices and b, b are vectors
of dimension n. Without loss of generality we may
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assume h; = {x =[x, ..., x,]|x; = 0}, so that f,(x) and
Jfo(x) coincide if x; = 0. Then

A Xy + QX3+ 4+ a,x, + b;
=Xy + A3 Xy + 0+ Ay X, + b,

forevery i = 1,2, ..., nand for arbitrary choice of x,, x;,

-.» X,. Necessarily b = b and a;; = a;; for all 1 <i<n,
2 <j<n Denote as A®, A® the matrices obtained,
respectively, from 4, A by replacing their first column
with vector —b. The first co-ordinates of P, P can then
be expressed as

xP =det A%/det A x¥ = det A%/det 4

by the Cramer rule. From the earlier equalities, det 4° =
det 4*. Moreover sign (det 4) = sign (det A) = +1 or
—1 according to whether n is even or odd (since the
determinant of a matrix is the product of its eigenvalues
and by assumption all real parts of the eigenvalues of A4,
A are negative). Hence sign (xf) = sign (xT), i.. both sinks
P, P lie in the same halfspace cut out by h, — a contra-
diction.

We next concentrate on two-region planar vector
fields. Let f=(f;, fy)e L% and let 4, A stand for the
Jacobian matrices of f; and f;, respectively. The follow-
ing lemma is a consequence of the Bendixson criterion

(61.

Lemma: A necessary condition for a limit cycle to occur
for fis that the product of the traces (Tr A}Tr A) be non-
positive.

It is intuitively obvious and not difficult to prove that
for a periodic attractor or repeller to arise in an fe L? it
is also necessary that one of the following obtains:

(a) both f, and f, are spiral-type

(b) f; is saddle-type and f;, is spiral-type or vice versa.

In Appendix I of Reference 7 it is proved that two limit
cycles cannot arise in case (a). Following the arguments
there one can extend the result also to the case (b):

Theorem: At most one limit cycle can exist in the phase
portrait of any fe L3. Bistability cannot arise for any
such vector field.

Outline of proof: Suppose f generates a limit cycle and
f=(f1.f;) where f| is spiral source-type and f, is saddle-
type. The proof for other combinations is similar. With a
suitable choice of local section (e.g. a line segment
through the source, parallel to the x, axis) for the Poin-
caré return map one can derive the formula [7]:

T1(4)
gl = {i/g(i)}{_[] Trd+ f

Ta2(h) A

Tr A} (2)
0
where 4 is the x, co-ordinate of the initial condition in
the local section for the Poincaré map, g(4) is the x, co-
ordinate of the corresponding returned point and 7,(4),
T,(4) denote the amounts of time spent by the solution
curve in the halfplanes governed, respectively, by f, and
f>. In a manner similar to that given in Reference 7, we
can see that T, is a decreasing function of A and T, is an
increasing function of A. By the lemma and our assump-
tions, Tr 4 > 0 and Tr 4 < 0, whence, from eqn. 2, the
derivative g'(4) = {i/g(4)}G(4) with the function G
decreasing in the whole domain of definition. Finally we
introduce the function F(i)= g(4)/4 and derive F'(4).
Using the expression for g'(4) we obtain F'(1) =
{G(%) — FX(A)}/{AF(4)}. Since G is decreasing, it follows
[7] that F is decreasing too. Moreover there is ¢ > 0 such
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that F(A) = C > 1 for every Ae€(0,¢) and F is a strictly
decreasing function of 4 in the rest of the definition
domain. The first part of the theorem is thus established
because periodic orbits correspond to those A for which
F(#) = 1. The second part also follows, using proposition
1 and the Poincaré-Bendixson theorem.

Employing the above theorem, we sum up the possible
steady state combinations in two-region PWL vector
fields.

Proposition 2: Suppose fe L2 and let P, and P, denote,
respectively, stable and nonstable equlibrium points;
denote C; and C, similarly for limit cycles. Chaotic limit
sets being excluded by the Poincaré-Bendixson theorem,
only the following combinations of steady states for f are
possible:

P, or P, for one steady state
ppP, PP .PC, or PC,

for two steady states

PPC or PP.C, for three steady states.

The actual existence and circuit realisation of some non-
trivial combinations are demonstrated in Section 3.

3 Attractors in the three-segment Lienard
oscillator

By omitting the capacitor branch C, in Fig. 1, the clas-
sical Lienard oscillator is obtained. Setting I =0, C, =
L =1 and v = vy, its dynamics are described by the gen-
eralised Lienard equations

dv/dt =i — g(v)

di/dt = —i/G — v &)

Our objective is to observe the dynamics of eqn. 3 with
three-segment PWL characteristic g passing through the
origin. For the numerical simulation we chose the follow-
ing parameter values:

G=16 m =-025
m=—-25 m*=-025 (€3]
B =-04 B* =04

Here m~, m, m™* are the slopes, respectively, of the left,
centre and right segments of the characteristic g and B*
are the breakpoints. We will observe the bifurcation phe-
nomena by changing the slope m™*, while the other
parameters in eqn. 4 remain constant. To facilitate
explanation of the circuit dynamics, #(A4) will denote the
basin boundary for attractor 4, and «(T) and «w(T) will,
respectively, stand for the «- and w-limit sets of trajectory
T

The situation for the values in eqn. 4 is depicted in Fig.
2a. Three attractors are exhibited by the circuit: two
stable stationary points P*, surrounded by unstable
periodic orbits C;f, and a stable limit cycle C,. Now let
m* vary. For m* < —1.6 there is no fixed point in the
halfplane v > 0, whereas for —1.6 <m* < —0.89 the
equilibrium P* is unstable: the circuit is monostable.
Increasing m*, a large stable orbit C, is born at
m™ ~ —0.89. An oscillatory flip-flop is thus formed. The

value m* = —0.625 is a Hopf bifurcation point: P*
becomes a sink and an unstable limit cycle C; appears
around P* — the circuit represents a triflop (Fig. 2a).
Using the above notation we have #(P*)= C/,

BP)=C,, BC)=C; v C, v W), «{W5(0)} =
Cr, W0} =C;, o{Wi(0)}=ao{W(0)=C,,
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where W¥0), W*0) [W5.(0), W*%(0)] denote the stable
and unstable [half] manifolds of the origin O.
This situation persists up to m' ~ —0.165 when
5.(0) and W*(0) merge to form a homoclinic orbit.
Boundary #(P*) changes and consists of the homoclinic

Fig. 2

Bifurcations in Lienard’s oscillator
a Limit cycles for the triflop defined by parameter values in eqn. 4. The grey and white regions inside C, represent the basins, in reverse time, for the orbits C*
b Domains of attraction for C, (dark grey), P~ (light grey) and P* (white)at m™ = 0.18

¢ Basin structure after breakdown of homoclinic, m* = 0.3
d Case of symmetric characteristic g at m* =0

and the origin. Since the vector field is structurally
unstable at this point, the homoclinic breaks down im-
mediately with a slightest increase in m*. For
—0.165 < m* < 0.21 the basin of P* wraps around C,
(see Fig. 2b) where m* = 0.18, Z(P*) = B(C,) = W0) v
C,,  BP)=oW (0) =a{W'(©0)} =C;,  and
w{W%(0)} = P*, o{W"(0)} = C,. Another homoclinic
connection H occurs at m* ~ 0.21, this time by flowing
of W'(0) into W5(0). As a result, 4(C)=H v O,

IEE PROCEEDINGS-G, Vol. 140, No. 1, FEBRUARY 1993

BP)Y=H L0 U W_(0), BP)=C;, o{W.(0)} =
P W (0)} = C, , o{W:(0)} = o{W"(0)} = 0.
After the breakdown of the homoclinic at m* > 0.2t a
triple of nested cycles is created through the appearance
of the periodic repeller C, (Fig. 2¢), which is the bound-

ary for the basin of C,. Further, #(P")=C,, #(P") =
C,uC uWY0), oW (0)}=C,, «{W(0)}=C,,
w{W*%(0)} = w{W*(0)} = P*. Collision of C, with C,
occurs at m* ~ 0.338 resulting in the disappearance of
C,. The stable manifold W%O) and the basin for P*
become unbounded for every m* > 0.338: the circuit is a
flip-flop.

We could have changed both slopes m* simultan-
eously and obtained a symmetric bifurcation scenario
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similar to the above — see Fig. 2d for a symmetric choice
of m* =0 with Z(P*) = B(P™) = WX0) u C,, B(C,) =
C,, t{W(0)} = {W*(0)} =C,, o{W"“(0)} = P* and
o{W"(0)} =P".

To end this Section, some remarks on realisability are
in order. We wish to find parameter values such that
various steady-state combinations of Proposition 2
(Section 2) are generated via two-segment characteristic
g. The first four combinations are easy to realise and we
have already seen that combination P, P, C, can be gen-
erated setting G =16, m™ = —025, m=m* = —25,
B* = 404 (see Fig. 2). Combinations P.C, and P,C; are
obtained, respectively, with G =2, m~ =m=03,
mt=—-13 B*=+1 and G=2, m =m= —1,
m* =1, B* = £ 1. To find out why P, P, C, is not realis-
able with G > 0 assume f=(f},f,) e L} is generated by
eqn. 3 where m™ = m, f, is saddle-type and f, is spiral-
type. Let 4 and A denote, respectively the Jacobian
matrices for f; and f,. Then Trd = —m — 1/G, Tr 4 =
—-m* —1/G, detA=—-m/G+1 and detd = —m*/G
+ 1. By the hypothesis on f;, f,:det 4 <0 < det 4.
From the Lemma of Section 2 Trd <0< Tr 4 if C,
exists. The two left-hand inequalities yield —1/G <
m < —G, while the two right-hand inequalities give
—G <m* < —1/G which cannot be met at the same
time. Therefore combination P, P,C, is only realisable
with (synthesised) negative conductances, e.g. with
G=—-13,m =m=25m"=0.7, B* = +1. Thus, via
two segments and G arbitrary, the circuit is capable of
realising any combination of Proposition 2.

4 Two-segment bistability

Having explored the vector field classes L3 and L2 we
move on to the more complex three-dimensional circuits.
In contrast to L? the situation is further complicated by
the appearance of chaotic attractors in vector fields of
class L}. In Section 2 it was proved that vector fields
from L do not give rise to bistability if n = 2. For n > 3,
however, this is no longer true.

Consider the system of eqn. 1 where the characteristic
g has two segments with slopes m~, m and the breakpoint
B™. On the basis of the information contained in Refer-
ence 7 the parameters for the two-dimensional circuit,
obtained from Fig. 1 by letting C, — 0, were chosen so as
to satisfy the conditions for existence of a nonstable limit
cycle C, . The periodic orbit is also present in the three-
dimensional circuit of Fig. 1 at the following parameter
values

1/C, =8 1/C,=1 1/L=T G=07 (5)
m =-01 m=-08 B =-1 [=0

Computer simulation revealed, however, that a stable
limit cycle C; coexists in a close neighbourhood of the
saddle-type periodic orbit C, . This is quite remarkable
since balance between the contractive force of the half-
space v; < B™ and the expansive force of the halfspace
v, > B is reached at two different locations.

At the parameter values (eqn. 5) the co-ordinates of
the stable fixed point P~ are v, ~ —1.167, v, =0,
i~ 0.817 and the eigenvalues of the Jacobian matrix at
the origin O were computed to be 4, ~ 1.3396, 1, 5 ~
—0.618 + j1.9484, while those at P~ were pu; ~ —5.45,
Hy, 3 =~ —0.0252 £ j2.483. The nonstable periodic orbit
C, is a saddle-type source (in backward time) of the tra-
jectories defining the boundary surface W9C,) that
separates the domains of attraction for P~ and C, . Some
techniques for graphical representation of boundary sur-
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faces and basins, applied to Chua’s circuit, are illustrated
in Reference 8. Here we use the grid technique to delin-
eate the basins of attraction for C; and P~. In Fig. 3a
the green—orange and the black-orange boundaries define
the cross-sections of boundary surfaces W¥C,) and
W*O) respectively. The basin boundaries for the two
attractors are Z(P7)= W¥C,) v W¥O0) and %(C,)=
W¥(C, ). Of course the stabie manifold WO) is linear in
a close neighbourhood of the origin since it coincides
there with the stable eigenspace ES(O).

5 Basin structure in three-segment Chua’s circuit

We now examine the appearance of steady states, attrac-
tors and the corresponding basin structure bifurcations in
the system defined by eqn. 1 with three-segment charac-
teristic g. By analogy with Section 3, the slope m™* of the
right-hand segment will serve as the bifurcation param-
eter.

5.1 From flip-flop to pentaflop

With the parameter set (eqn. 5) and m* < —0.7, B* =1,
the circuit is a flip-flop model described in the preceding
Section. Another equilibrium point P* appears for
—0.7 <m* < —0.607 which is a sink. This can be veri-
fied, for example, by applying the Routh stability cri-
terion [10]; see also the Appendix in Reference 11. Thus
the circuit represents a triflop whose phase portrait is
very much like that of Fig. 3a, the difference being that
the black region is the domain of attraction for the sink
P*, and #(P*)=WS%0). A Hopf bifurcation at
m* ~ —0.607 signifies the birth of not only the stable
orbit C; around P™ but also of a large saddle-type orbit
C, . Despite the emergence of C;', the circuit remains tri-
stable, because P* loses its stability. In Fig. 3b
m* = —04 with B(P")=WC,) u WY0) v W¥C,),
BC,) = WHC,) v WC,), BCHy=P" L W0) U
W¥(C,). Note the tabular shape of the unbounded stable
manifold W*(C,) which separates those initial conditions
that are attracted toward P~, C; or C; from those
which diverge. Compare this with the question about the
behaviour of W*¥C,) raised in Reference 5, pp. 802-803.
For a more thorough treatment of the question refer to
References 8 and 9. If m* > —0.24 the divergent trajec-
tories of the system become convergent, namely toward a
large stable periodic attractor C, encircling the tube
WH(C,). Thus the circuit is a tetraflop in the interval
—024 <m* < —0.18. At m* ~ —0.18 the equilibrium
point P* regains its stability, thus adding one more
attractor to the system. The domains of attraction in the
odd-symmetric pentaflop circuit with m* = —0.1 are
depicted in Fig. 3¢ and d. The large stable limit cycle C, is
not visible because of its great size. Altogether, the total
number of equilibrium solutions is nine: six periodic
orbits along with three fixed points. The five attractors
survive until m* ~ —0.05 at which value the orbit C}
disappears and the phase portrait is similar to Fig. 3b.
Another attractor is lost if we increase the slope to
m™ = 1.25, when C, and C, grow together and disappear.
The remaining three attractors P*, C, keep their stability
for all m* > 1.25. Fig. 3e shows the situation with
m* =5,

5.2 Other 1-parameter bifurcation phenomena

Some additional bifurcations can be observed from
Chua’s circuit if we change parameters other than m™*
while keeping the remaining ones fixed. It turns out that,
even if the zeros P* are sinks, the circuit can be chaotic,
although we did not observe the double-scroll structure
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[5]. In what follows we assume the basic set of param- 5.2.1 Capacitance bifurcations
eters is chosen as in eqn. 5 with m* =m~ = —0.1 and Let 1/C, vary. For 0 < 1/C, <7 the equilibria P* are
B* = 1, (i.e. symmetric three-segment characteristic g). sinks and no periodic motion can be observed. In the

Fig. 3  Flip-flop through pentaflop

The visible parts of the axes have length 9 in Fig. 3a-d and 4 in Fig. 3e. v, =
abscissa, i = ordinate

2 Basin structure for the 1wo-segment bistability (parameter values of eqn. 5). In
the cross-section, at v, = 0, orange is the basin for P~ (black dot) and green
represents those starting states which tend to C; (black orbit). White closed curve
is saddle-type limit cycle C, with initial conditions v, = —12612, v, = 0,
i ~ 1.4002. Divergent orbits are represented by the black region and the white
lines are the characteristic g and the load line.

b Triflop basin structure al m* = —0.4. Blue area corresponds to the attractor
C, (black cycle in the halfspace v, > 0) at the centre of which is the nonstable
equilibrium P* (white dot). The large closed white trajectory is the saddle-type
periodic orbit C, (initial conditions r, ~ —1.545, v, ~0,i = 3.3575)

¢ Symmetric three-segment characteristic (m* = —0.1) generates five autractors:
C; (small black orbits) with blue and green basins, fixed points P* (black dots,
orange and purple basins, respectively) and the large stable periodic orbit C,
(black basin outside the tube) with initial conditions v, ~ 5747, v, = 0431,
i~ -2541. Nonstable saddle-type orbits are drawn in white: C;° (two small
cycles) and C, (large cycle), while the origin is the only nonstable stationary point |
d Cross-section of pentaflop basins at v, = 0

e Situation after disappearance of C, and C,: trifiopatm™ =5
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interval 7 < 1/C, < 7.7 a large stable cycle C; is present,
so that the circuit represents a triflop. At 1/C, ~7.7 a
period-doubling cascade is initiated: period-1 for 7.7 <
1/C, < 9.05, period-2 for 9.05 < 1/C; <9.29, period-4 if
9.29 < 1/C, <9.35 etc. Finally the circuit becomes
chaotic, and a pair of Réssler’s spiral-type attractors are
born around P* (Fig. 4; see also Reference 11 where the
zeros P* are nonstable). The circuit has a pentaflop

Fig. 4
Broken line is projection of saddle-type limit cycle C (initial conditions v, =~
—1.2389, v, =~ 0, i = 1.2908) encircling the stable equilibrium P~

Rdssler’s spiral-type attractor at 1/C, = 9.5

structure analogous to that of Section 5.1. The Rossler’s
attractors persist at least for 9.38 < 1/C, <9.7. With a
further increase in 1/C,, instead of merging to form a
double-scroll attractor, these attractors seem to disappear
— the system is tristable with P* and C; for its attrac-
tors. The equilibria P* lose their stability and C, van-
ishes at 1/C,,~ 10.22.

5.2.2 C, bifurcations

Here a similar bifurcation scenario can be observed as
with C,, but the equilibria P* lose their stability en route
to chaos. P* are sinks for 1/C, > 1.1. In the interval
0.69 < 1/C, < 1.1 period-1 orbits are present around P*.
These orbits bifurcate into period-2 orbits which persist
for 0.62 < 1/C, < 0.68. The equilibria P* become non-
stable at around 1/C, ~ 0.59 which value falls within the
period-4 interval. If 1/C, is decreased further, Rassler’s
(at, for example 1/C, = 0.55) and the double scroll attrac-
tor (1/C, = 0.35) can be observed.

6 Switching in multistable PWL circuits

When investigating a sequential circuit it is often a
matter of practical importance to know how to switch
among its stable steady states. In the flip-flop circuit of
Section 4 this can be achieved, for example, by using the
conductance G as the switching parameter: at G =03
and G = 0.5, the equilibrium P~ is the only attractor of
the circuit, lying in the basin of P~ and of C;, respec-
tively, for the original set of circuit parameters (eqn. 5).
By varying G for appropriate time periods one can switch
between the attractors P~ and C,. In some other situ-
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ations, trigger pulse I (Fig. 1) can be used for the pur-
poses of switching. By way of illustration, consider the
triflop from Section 5.1 at m* = 1. For each of the pulse
values I = 0.8, I = —2 and I = 0.3, the circuit is mono-
stable with the corresponding sinks P,, P,, P, lying on
the load line (Fig. 5). Let the starting point be P atlI=0.

Fig. 5
White and green broken lines are characteristics shifted by pulse height 1 =08
and I = —2, respectively.

Trajectory of switching process in the triffopatm™ =1

Then applying successively the pulses I = 0.8 of width
W(I) =50 (white trajectory), I =0 with W(I)=20
(yellow), I = —2 with W(I) =20 (green), I =0 with
W(I) = 20 (purple), I = 0.3 with W(I) = 50 (not shown in
Fig. 5 to avoid clutter) and I =0 with W(I) = 50, the
switching sequence

P -P -C, »P,>P"—>P;>P"

is realised.

In these, as in many other cases, cross-sections of
basins can be utilised in estimating the appropriate slope
of the load line or the height of the pulse needed to
achieve the triggering effect. For more information on the
control of memory cells, see References 8, 12 and 13.

7 Concluding remarks

The two-segment bistability minimises the number of seg-
ments necessary to generate two attractors with the PWL
type of nonlinearity. Employing symmetry, this permits
the generation of as many as five attractors by using only
three-segment approximation to the nonlinear element.

In the chaotic systems investigated so far, all the equi-
librium points involved were nonstable. This need not
always be the case, however, as shown in Section 5.2.1.

We have seen in the last Section how computer-
generated cross-sections of basins can be exploited in the
estimation of switching parameters. The associated
boundary surfaces make it possible to find out the
parameters of the critical control pulses (the pulses at
which the trajectory reaches the boundary surface). In
such a way, an in-depth analysis of problems connected
with metastability [14] will be possible, and answers to
questions regarding unstable states of flip-flop sensors
[15] can be given.
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