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Chaos from a Time-Delayed Chua’s Circuit

A. N. Sharkovsky
Invited Paper

Abstract—By replacing the parallel LC “resonator” in Chua’s
circuit by a lossless transmission line that is terminated by a
short circuit, we obtain a “time-delayed Chua’s circuit,” whose
time evolution is described by a pair of linear partial differential
equations with a nonlinear boundary condition. If we neglect the
capacitance across the Chua’s diode, which is described by a
nonsymmetric piecewise-linear vr — i characteristic, the result-
ing idealized “time-delayed” Chua’s circuit is described exactly
by a scalar nonlinear difference equation with continuous time,
which makes it possible to characterize its associated nonlinear
dynamics and spatial chaotic phenomena.

From a mathematical view point, circuits described by or-
dinary differential equations can generate only femporal chaos,
whereas the time-delayed Chua’s circuit can generate spatial-
temporal chaos. Except for stepwise periodic oscillations, the
typical solutions of the idealized time-delayed Chua’s circuit
consist of either weak turbulence or strong turbulence, which are
examples of “ideal” (or “dry”) turbulence. In both cases, we can
observe infinite processes of spatial-temporal coherent structure
formations.

Under weak turbulence, the graphs of the solution tend to limit
sets that are fractals with a Hausdorff dimension between 1 and
2 and is therefore larger than the topological dimension (of sets).

Under strong turbulence, the “limit” oscillations are oscillations
whose amplitudes are random functions. This means that the
attractor of the idealized time-delayed Chua’s circuit already con-
tains random functions, and spatial self-stochasticity phenomenon
can be observed.

I. GENERALIZING CHUA’S CIRCUIT TO INFINITE DIMENSIONS

The original Chua’s circuit [1] consists of a linear passive
resonator (parallel LC tune circuit) connected across a non-
linear active circuit composed of a Chua’s diode [2], a linear
capacitor C1, and a linear resistor R, as shown in Fig. 1.

In most publications [3], Chua’s diode is characterized by
a continuous odd-symmetric three-segment piecewise-linear
function. In this paper, we consider an “infinite-dimensional”
generalization of Chua’s circuit obtained by replacing the LC
resonant circuit by a lossless transmission line of length [
terminated on its left (x = 0) by a short circuit, as shown
in Fig. 2(a).

Since the effect of the transmission line is to provide a “time
delay” in the dynamics of Chua’s circuit, we will henceforth
call this circuit the “time-delayed Chua’s circuit.” Our main
objective in this paper is to investigate the asymptotic be-
haviors of the voltage v(z,t) and the current i(x,t) at all
points along the transmission line (0 < z < [). Since the most
interesting and complex “turbulent-like” dynamical behaviors
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Fig. 1. Decomposition of Chua’s circuit into a passive linear subcircuit on
the left and an active nonlinear subcircuit on the right.
ion iy iy R
A
i
Fig. 2. (a) Time-delayed Chua’s circuit; (b) vg — i g characteristic of Chua’s

diode is chosen to be a three-segment piecewise-linear function symmetric
(m_1 = m1) with respect to the point vg = E > 0.

occur when the vg — ig characteristic of Chua’s diode is not
symmetric with respect to the origin, we have chosen the three-
segment piecewise-linear function shown in Fig. 2(b), where
) R = G(’U R — E)

II. TIME EVOLUTION EQUATIONS

The lossless transmission line in Fig. 2(a) is defined by the
following linear partial differential equations:

ov(z,t) _  0i(z,¢)
ox L at L
diz,t) _ Ou(z,t) @
or at

where L and C denote the inductance and capacitance per unit
length of the transmission line. The boundary conditions are
given respectively at x = 0, and x = 1 by

0(0,8) = 0 3)
i(,1) = Go(l,t) — E — Ri(l,0)) + CIWM
@
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where G(-) is defined by

_ [mou, lu] <1
Glu) = {mlu — (my1 —mo)sgn u, |ul>1 )
and u = vg — E.
The general solution of (1) and (2) has the form
v(z,t):a(t—"—u’)—a(wf) 6)
. 1
i t) = Zlalt - —)+a(t+ )] M

where v = VLC is the velocity of the incident and reflected

waves, and Z = \@ is the characteristic impedance of the
transmission line.

Note that (1)—(4) constitute a system of two linear partial
differential equations with a nonlinear boundary condition (at
2 = [). Since this problem is presently analytically intractable,
we will investigate here only the limiting case where the
capacitance Cj in Fig. l(a) is replaced by an open circuit,
i.e., C; — 0. Under this assumption, we can substitute (6)—(7)
into (4) with C; = 0 and introduce the new variables

1 21
af — 5, ,B(T) = Oz(;T) (8)
to obtain the following difference equation:
Blr +1) = f(B(r))- ®

The symbol f(-) denotes a piecewise-linear (single-valued or
multivalued) function defined by

f(B) = AxB— By, where pe I, k=01 (10
Ap=—-1+¢q
B, = q_o[mk(l_m_o)]
2 M
2z
* T I YRvZ
mM_1 = My (]1)

h=(5:]s- 5| <o)
I = {B: 25~ 5)> 6}
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q0 ’

6=

It follows from the above derivations that the time evolution
of the “time-delayed Chua’s circuit with C; = 0 is governed
by a scalar nonlinear difference equation with a continuous ar-
gument, namely, (9). The qualitative behavior of this equation
is determined by the properties of the 1-D map

8~ 1) 02

where f(-) is defined in (10).

1II. ASYMPTOTIC BEHAVIORS

To describe the behaviors of the solutions of the “time-
delayed Chua’s circuit with C; = 0, it will be convenient
for us to use the language of dynamical systems theory. Let
X = [0,1]. and let C(X) denote the space of all smooth or
continuous functions

{(v(z).

with some appropriate topology, e.g., uniform metric. The
solution vi(z) = wv(r,t) and i(z) = i(z,t) of (1)-(4)
(assuming C; = 0) with initial condition vo(z) = w(z,0)
and ig(x) = i(x,0) defines an infinite-dimensional dynamical
system

).i(2)): 0 <z <1} (13)

Ft:(vo(n),io(z)) +—  (velx),i(2)).

(14)

For the class of problems defined above, it is the usual situation
that the trajectories F*[(vo,io] have no w limit set in the

_ phase space C(X), and the dynamical system (14) has no

attractor in the phase space C(X) (at least for the reason
that the Lipschitz constants can grow to oc). In order to
describe the asymptotic (as t — oo) behavior of the infinite-
dimensional system (14), it is necessary for us to complete
the phase space C(X) with the help of a suitable metric.
For “weak” turbulent oscillations to be described below, it
is sufficient to use the Hausdorff metric for the function
graphs. For “strong” turbulent oscillations, however, we need
to introduce some specially constructed metric, such as the one
given in [4] involving all finite-dimensional joint distributions
in combination with the operation of averaging. We will
henceforth assume that our phase space has been completed
by compactification via some special metric. In the following,
it will be useful to consider both the 1-D system (12) and the
infinite- dimensional system (14) simultaneously.

Case 1. R > —-— — Z: 1In this case, the behavior of both
dynamical systems are simple. In the /-D system, there exists
an attracting fixed point, or attracting cycle, that attracts all,
or almost all, trajectories. Correspondingly, in the infinite-
dimensional system, the oscillations either vanish as ¢ — oo
or tend to a periodic solution, as in Witt [5] and Nagumo and
Shimura [6].

Case 2. R < —-L — Z: In this case, it is possible to ob-
serve chaotic osctllatzons in the infinite-dimensional system.
The system can also have oscillations that vanish as ¢ —
oc as well as stable stepwise periodic oscillations but only
with period 2 (for example, when R = 0 or R = 0). In
addition, the infinite-dimensional system can also have a more
complicated asymptotically stable periodic solution of period
4. The corresponding solutions for the 1-D system are as
follows. The 1-D map f has an attracting fixed point, an
attracting cycle of period 2, or an attracting cycle of period 4,
which occurs after a period-doubling bifurcation.

If we exclude the above classes of solutions, where it is
possible to derive exact estimates, then only two other types
of asymptotic behaviors can exist for the infinite-dimensional
system (14), namely, weak turbulent oscillations or strong
turbulent oscillations (7], [8].
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The simpler case of weak turbulence corresponds to the case
where the 1-D map f(-) has an attracting cycle that attracts
all trajectories except those belonging to the repeller, which
is a Cantor set K consisting of unstable trajectories. It has a
zero Lebesque measure (mes K = 0) but a positive Hausdorff
dimension (dimyg > 0). If “p” is the period of a stable cycle
of the /-D system, then almost every trajectory of the infinite-
dimensional system (i.e., almost all solutions of (1)~(4) with
C1 = 0) will be asymptotically periodic with period p, and
its w-limit set is a periodic trajectory in the completed phase
space. Each point of the limit trajectory is a multivalued (on
some Cantor set) function graph that is a fractal set with a
Hausdorff dimension dimyg > 1. The attractor of the infinite-
dimensional system in this case consists of such periodic orbits
of the same period.

The most complicated case of strong turbulence corresponds
to the situation where the /-D map f(-) has no attracting
cycles, and its attractor consists of one or several intervals
where there is a smooth invariant measure p. In this case, if
we use the special metric defined in [4], then the following
asymptotic behavior applies:

The w-limit set of almost every trajectory of the infinite-
dimensional system (14) is a periodic trajectory where each
point on the trajectory is a random function. The distribution
of the values of such a random function for each z is
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determined by the measure u. Hence, in this case, the attractor
of the infinite-dimensional system consists of random functions,
which form periodic orbits. This phenomenon corresponds to
a very strong “spatial chaos.”
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