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The Evolution of Spatio-Temporal Disorder in a
Chain of Unidirectionally-Coupled Chua’s Circuits

Grigory V. Osipov and Vladimir D. Shalfeev

Abstract— The nonlinear dynamics of a chain of unidirection-
ally coupled Chua’s circuits is investigated. The nonlinearity is
chosen to be smooth and the coupling between cells in the chain
is linear. The phenomena of oscillatory spectrum complication
along the chain caused by developing instabilities, suppression of
oscillations, and chaotic synchronization of the cells are demon-
strated.

1. INTRODUCTION

NVESTIGATIONS OF the spatio-temporal dynamics of

cellular nonlinear networks (CNN) consisting of a large
number of coupled active cells [1] generally encounter con-
siderable difficulties. Some progress has been made in the
investigation of the dynamics of networks having a regular
configuration, in particular, in array models for which one can
exploit the spatial homogeneity of the medium [2].

In this paper we analyse some properties of the spatio-
temporal dynamics of a one-dimensional (1-D) CNN consist-
ing of coupled Chua’s circuits [3] when the coupling between
the cells is unidirectional. This model is interesting not only
as a particular case of a 1-D CNN with mutual coupling, but
also as an example of a flow system.

The dynamics of flow systems modelled by chains of uni-
directionally coupled active cells had been actively studied
in the literature [2], [4]-[9], where Van der Pol generators,
rotators, and inertial generators were chosen as the cells. Spa-
tial bifurcations giving rise to chaos had been observed. The
regime was periodic at the beginning of the chain. But as the
generator number increases, the periodic regime bifurcates into
a quasi-periodic regime which, in turn, bifurcates into a chaotic
regime. It was shown that using this approach one can explain
the spatial evolution of turbulence following the universal
Feigenbaum’s law. The authors of [2], [7] considered as an ex-
ample a chain of unidirectionally-coupled rotators in which the
Landau-Hopf scenario of complex dynamics is realized, i.e.,
the more rotators interact with each other, the more compli-
cated are the motions due to the appearance of new frequencies
incommensurate with the previous ones, thereby increasing the
dimension of the resulting quasi-periodic motions.

In this paper we choose Chua’s circuits as the cells of a 1-D
CNN. It is known [10], [11] that an extremely complicated
dynamics is inherent in the individual Chua’s circuit cells
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Fig. 1. Smooth nonlinearity defined by (4) is chosen for Chua’s circuits in
this paper.
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Fig. 2. Bifurcation plane of the parameters for system (3).

even when couplings are not taken into account. Therefore
it is to be expected that not only complex regimes typical
of the nonlinear partial dynamics of Chua’s circuits, but also
other spatio-temporal phenomena stimulated by the collective
interaction of cells may emerge in the coupled CNN ([3],
[12]-[16]. It is not our goal to give a more or less complete
description of the spatio-temporal dynamics of 1-D CNN
consisting of Chua’s circuits. Instead, we will consider only
some phenomena which appear to be important for both theory
and applications, namely, the instability development and the
suppression of oscillations along the chain and chaotic syn-
chronization. These spatio-temporal phenomena are evidently
not only typical of the 1-D CNN of Chua’s circuits considered
here but have a more general nature as well [2].
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Fig. 3. Evolution of periodic motion in a chain and the transition to chaos.

II. A MODEL OF 1-D CNN OF CHUA’S CIRCUITS

We consider a 1-D CNN consisting of unidirectionally
coupled Chua’s circuits. In the absence of coupling, a math-
ematical model of a single Chua’s circuit may be written in
the form [10]

b=aly -z - f(z))

J=r—y+z
2 =—py. (1)

The nonlinearity f(z) is usually approximated by a three-
or five-segment piece-wise-linear function. In modeling the
dynamics we tried to have in the mathematical model a
minimal number of parameters. For this purpose we consider
a smooth nonlinearity of the form

fz) = cz -

2001:
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Then the system (1) may be written as

& =a(y - h(z))
y=r—-y+z
z= —,3% (3)
where
_ 2¢cox _
h(.’l/') =T — I_W’ c] = 1 +ec. (4)

Modeling the system (3) with nonlinearity (4) showed that
the partitioning of the plane of the parameters (a,3) into
domains of the existence of different regimes is analogous to
that available in the literature for a piecewise-linear function
f(z). Modelling was made for the nonlinearity (4) at co = 0.7
and c¢; = 1.05. The form of the function A(x) is given for this
case in Fig. 1. Fig. 2 presents some bifurcation curves on the
plane (a,3) (they will be needed for our further analysis).
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Fig. 4. Phenomenon of chaotic synchronization.

We now consider a model of a 1-D CNN. Obviously, the
CNN dynamics depends on the type and the value of coupling
between the cells, although it is difficult to give a priori
preference to one or another type of coupling because the
problem is essentially nonlinear. For simplicity, we restrict
ourselves in this paper to the case when the neighboring cells
are coupled linearly and only in one coordinates direction
(increasing cell number). Hence, the model of this 1-D CNN
is described by:

& =o(y; — h(z;)) + dzj—1
Ui =T~y T3
We assume that the condition zo(t) = 0 is fulfilled at the

boundary. An important assumption made in the model (5) is
that all cells in the chain as well as couplings are identical,
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which means that the chain is spatially homogeneous. The
number of the cell j is regarded as the spatial coordinate.
It is also worthy of notice that for the coupling considered
it is natural to regard the coupling coefficient d as a control
parameter since it can give rise to different oscillatory regimes
in the CNN cells. This is connected with the fact that the
desired regime of oscillation in a single CNN cell may be
chosen in accordance with the partitioning of the plane of the
parameters (c, 3), and the coupling signal may be considered
as a known external forcing of each subsequent cell by the
preceding one.

Let us now chose our initial regime in the first cell of the
chain (5) to be a regime of regular periodic oscillations and
then consider the scenarios of the evolution of such a periodic
regime with the increase of the number of the cell, i.e., along
the chain.



690 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 42, NO. 10, OCTOBER 1995

LogS(w)
"
a=12.

p=20.

d=0.5 =1

~

20
1.6
1.0
as
a0

-5

=10

-1.85

<48 <18 -10 45 00 o5 1.0
Y

1.5 &0

“

20 P ¢

wl»oas(v)
# =6
-
€
L
L
-H
-4
-+
-
~19]
-4 R
wl-ons(w
o Jj=10
L
4
L,
[
~H
-4
~
~
-
i/

Fig. 5. Suppression of chaotic oscillations along the chain.

1II. THE DEVELOPMENT OF INSTABILITIES
AND SPATIAL TRANSITION TO CHAOS

For the values of the parameters o« = 9,8 = 20,d = 0.3
(see Fig. 2, point A) in (5), we found that, as the spatial
coordinate j is increased, the periodic oscillations change in
accordance with the following scenario. Owing to developing
instabilities, the periodic oscillations in the first cell transform
through a series of spatial period-doubling bifurcations to
chaotic oscillations. The spectra and projections of the attrac-
tors onto the (z;,y;)-plane are given in Fig. 3 for five cells
of the chain (j = 1, 3,4, 5, 6). Periodic mutually synchronized
oscillations (period Tp) occur at frequency wq = 3.8 in the first
and second cells. The oscillatory regime of a doubled period
2Ty is realized in the third cell, oscillations of period 4T, occur
in the fourth cell, and of period 87}, in the fifth cell. The regime
of chaotic oscillations that looks like a double-scroll Chua’s
attractor in space (g, Ys, 26) emerges in the sixth cell.
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Note that, depending on the values of the parameters of the
individual cells, and of the coupling d, not all of the sequence
of period doubling motions may be realized in the chain.
This is explained by the discreteness of the spatial coordinate
j which is the control parameter in the transition to chaos.
Consequently, the excitation of chaotic oscillations (such as a
double-scroll or a spiral Chua’s-attractor) may occur only for
certain values of d.

IV. SPATIAL CHAOTIC SYNCHRONIZATION

If we choose the parameters of the chain (5) such that
each individual cell oscillates chaotically, then a regime of
spatial chaotic synchronization is established in the CNN for
definite values of the coupling coefficient d. The result of
our experiments on the model (5) are presented in Fig. 4 for
a = 10 and # = 20 (point B in Fig. 2). The regime of chaotic
oscillations sets in any individual uncoupled cell depending
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Fig. 6. Suppression of periodic oscillations along the chain.

on initial conditions. Therefore, a spiral Chua’s-attractor is
observed in the first cell in Fig. 4. If we introduce the coupling
d >0, then, as j is increased, the chaos is transformed and an
attractor of the double-scroll type is realized in the second
cell. It is nonsymmetric -because the forcing of the second
cell by the first one consists of an oscillation in the positive
half-space for the variable z; (i.e., the average value of 1 is
positive). With a further increase of j, double-scroll attractors
occur in the third and subsequent cells as well. The oscillation
intensity remains almost unchanged and the spectrum becomes
smoother. A regime of chaotic synchronization is observed for
j > 5 where no pronounced changes appear in the spectra of
oscillations, as is evident in Fig. 4 for j > 5.

V. SUPPRESSION OF CHAOTIC AND PERIODIC OSCILLATIONS

Since the domain of the existence of chaotic oscillations
on the o — 3 parameter plane borders on regions of regular
motions it should be expected that the change of the cou-

pling parameter d may, generally speaking, lead to a loss of
chaoticity, i.e., a cell which has had chaotic partial dynamics is
transformed into a regime of periodic regular oscillations when
coupling is introduced. Fig. 5 demonstrates the suppression of
chaotic oscillations along the chain (here o = 12,8 = 20
and d = 0.5, point C in Fig. 2). The chaotic oscillations
which are rather intense in the first few elements are gradually
suppressed, as j is increased, and we can observe that a regime
of periodic oscillations is already realized for j > 5. Thus,
clusters of cells oscillating regularly or chaotically are formed
in the chain. A remarkable result we obtained here is that the
width of the regular and chaotic clusters (i.e., the number of
cells) may be controlled.

Not only chaotic but also regular periodic regimes may
be suppressed along the chain [2]. As an example, we show
in Fig. 6 the change, as j increases, turn a periodic motion
regime to a static regime at o = 8.2, = 20 and d=1.0
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(point D in Fig. 2). This is the spatial analog of the inverse
Andronov-Hopf bifurcation phenomena for increasing values
of j. '

VI. CONCLUSION

For a unidirectionally coupled chain of Chua’s circuits with
increasing j, we have demonstrated the following phenomena:
spatial development of excitations and the transition to chaos,
spatial chaotic synchronization, and spatial suppression of
excitations. Of course, these phenomena of spatio-temporal
dynamics do not give a complete picture of the dynamic
behavior of the chain of interest. However, they are rather
typical of the dynamics of the chains of coupled Chua’s
circuits. It can be expected that these phenomena will occur in
more general cases, in particular, in more complicated types
of unidirectional couplings (nonlinear coupling, coupling along
several coordinates, etc.), in 2-D CNN, in CNN consisting of
generalized Chua’s circuits, etc.
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