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Abstract—We investigate complex dynamic phenomena in ar-
rays composed of interacting chaotic circuits. Such arrays can
be thought of as a model of nonlinear phenomena in spatially
extended (high-dimensional or infinite-dimensional) systems and
active media with potential applications in signal processing. In
this paper, we consider a particular structure of the network in
which there exists double diffusive interactions between the cells.
Such a double interaction can be considered as a paradigm and
means for understanding very complex interactions existing in
real systems where separate cells can communicate in various
ways. We consider two basic cases where separate cells without
coupling exhibit two different types of chaotic behavior. Depend-
ing on the connection structure, initial conditions imposed in the
cells, the array exhibits various kinds of spatially ordered chaotic
waves. Patterns of behavior depending on the excitation of the
array and the connection structure are studied in this paper.
Chua’s circuits are taken as standard chaotic cells.

1. INTRODUCTION

YNAMIC properties of networks of oscillatory and
chaotic elements [1], [2], [4]-[8], [10]-[18] is one
of the very lively studied topics. Several special issues of
journals are devoted uniquely to studies of spatially extended
systems, active media, and coupled lattices [20]-[22] showing
important areas where studies of dynamic phenomena in
coupled oscillators find potential applications. Studies of
dynamic phenomena in arrays composed of chaotic electronic
circuits are very important in such investigations as they
provide a universal model for phenomena observed in other
domains. Electronic circuits are capable of displaying most
of the phenomena known so far in such classes of systems.
Networks composed of chaotic cells are important as a model
for physical systems with many degrees of freedom and also
biological signal processing. They offer possible interesting
engineering applications eg., in information processing [16].
Due to the high dimensionality of these systems, most of the
studies are based on simulation experiments alone. Simulation
also poses difficult problems for researchers—solution of
30000 nonlinear differential equations, as in the case
of 100 x 100 array of third-order oscillators, requires
sophisticated problem-oriented software and can be very time-
consuming.
Kaneko [7], [8] introduced a classification of dynamic phe-
nomena encountered in coupled systems. The most interesting
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Fig. 1. Schematic diagram of a chaotic cell (Chua’s circuit with inputs) used

in the numerical experiments.
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Fig. 2. Eventually passive characteristic of the nonlinear resistor used in the
simulation experiments.

Fig. 3. Schematic diagram of interconnections between neighboring cells.
There exists a double diffusive coupling between neighbors. Each line denotes
resistive coupling.
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Fig. 4. Propagation of the wavefront through the 50 x 50 CNN array composed of Chua’s circuits. Disturbance is initiated at
the network center (25,25 = 0.1). All other initial conditions across the network are set to zero. Four snapshots are shown.
(a) After 100 iterates. (b) 400 iterates. (c) 500 iterates. (d) 900 iterates (timestep 0.1 s). Development of a circular (concentric,

target) waves and their propagation is clearly visible.

are “self-organization” phenomena. The simplest type of such
an “organized” behavior is synchronization or coherent be-
havior when the behavior of some cells is identical in time.
In some cases, groups of neighboring cells can synchronize
forming a “cluster.” Oscillator arrays often show universal
behavior [10] characterized by Feigenbaum constants. Large
array can exhibit waves of different types including solitons
and recently discovered in arrays of electronic oscillators,
spiral waves [17], and travelling wave fronts [15]-[17].

The most complicated types of dynamics encountered in
large interconnections of chaotic oscillators are: hyper-chaos,
characterized by more then one positive Lyapunov exponent
and the spatio-temporal chaos (sometimes referred to as turbu-
lence (7], [8]) when the observed trajectories exhibit chaotic
properties both in time and space (thus characterized by
positive Lyapunov exponents in time and space). There are
very few tools for studying these types of behavior. Building
of experimental laboratory equipment is both expensive and
extremely difficult. Electronic circuitry and available simula-
tion tools offer versatility difficult to find in other areas of
research. For the purpose of this study, an application-specific
software package has been developed. Below, we present

some important results of our simulation studies showing that
an array composed of chaotic cells is capable of displaying
nonlinear chaotic wave phenomena not described up to now
in the literature.

II. STRUCTURE OF THE ANALYZED NETWORK

Our previous studies carried out in ladder and ring in-
terconnections of Chua’s circuits revealed interesting types
of oscillatory phenomena [12]. In this paper, we study the
dynamic behaviors encountered in planar interconnections of
identical simple electronic oscillators (Chua’s circuits)—an
extension of experiments carried out previously. In our pre-
vious studies, we concentrated on interconnections resembling
Cellular Neural Networks—each oscillator had a well-defined
input and output [14]. Here, the structure is generalized to
the case where the oscillators are coupled bidirectionally
(diffusively) by means of two resistors (double coupling)
cross-connected between the capacitors C; and C5 of the
neighboring cells as depicted in Figs. 1 and 3.

In this study, we consider square grids of the size 50
50 (2500 cells) only. We employ as a standard chaotic cell
the Chua’s circuit. The unit cells are interconnected only with
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Comparison of propagation of the circular waves in the 50 x 50 array of doubly-coupled Chua’s circuits. Disturbance is

initiated at the center (25,25 = 0.1). All other initial conditions across the network are set to zero. Snapshots are taken after 300

iterates (timestep 0.1 s) for four different values of G;. (a) Gy

= 0.005S5. (b) Gy =0.01S. (¢) G1 = 0.05S. (d) G; = 0.15. The

wavelength of the circular waves and speed of propagation in the array grow with growing coupling conductance. Above certain
threshold for G'1, the amplitude of oscillations grows rapidly—the oscillation are no longer chaotic in time but become periodic.

nearest neighbors (local interconnections). In our experiments,
the cells at the corners are connected with three neighbors,
the cells at the edges have connections to five neighbors,
and internal cells have eight neighbors each. The equations
describing system dynamics can be written in a simplified
way for each cell as follows:

= (A1 + N; A7)z + Agyi — Ayzi — Ay Z Zj

JEN;
¥i = Azz;
z = —Aami + (A + N;Ag)zi + Asf(2;) — Ag Z z; (1)
JEN;
where
1
f(z) = maz + S(mi —ma)(|z + By, | = |2 = B, )
1
+i(mo—ml)(|z+Bp1|_|2_Bp1|) @)
with mg = -0.8, my = —0.5, ms = 08, B, = 1,
B,, = 1.5. The graph of this piecewise-linear function is

shown in Fig. 2.

In (1), we use the following notation:

A=-F Ay=-4,As=1, Au=-§& A =-4&,
Ag = —F, Ar = —g—;. N; denotes here the set of neighbors
of the ith cells (as mentioned above, eight neighbors are being
considered).

In simulation experiments, we used typical parameter values
for Chua’s circuit for which an isolated Chua’s circuit gen-
erates chaotic oscillations—either the double scroll attractor

L =1/7H, C; = 1/9F, C3 = 1F, G = 0.75) or the spiral
attractor (L = 1/7H, C; = 1/9F, C; = 1F, G = 0.785).
Depending on the actual connection strength (coupling resistor
values) and initial conditions imposed in the cells, a variety
of wave phenomena could be observed.

ITI. PROPAGATION OF CHAOTIC WAVES IN THE ARRAY

We have carried out an extensive study of wave propagation
phenomena in arrays of interconnected chaotic circuits that
enabled us to find out some basic properties of these phenom-
ena. In all experiments described below, a 50 x 50 network
was considered. In all experiments, we used the fourth-order
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Fig. 6. Experiment showing effects of wave front collisions.
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Circular waves are
x50,50 = 0.1). All other initial conditions across the network are set to zero. Four snapshots are shown. (a)
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initiated at two opposite corners

After 300 iterates. (b) 500 iterates. (c) 900 iterate. (d) 1700 iterates (timestep 0.1 s). After a long time, spatial structure consisting
of lines of coherently oscillating circuits is visible. Along the diagonal line, some reminiscence of concentric waves still exists.

Runge-Kutta integration algorithm with time step 0.1. All
experiments assume a uniform structure of the network—a
square grid in which each chaotic cell is connected with nearest
neighbors only.

Experiment 1: In this experiment, we observed how the
disturbance initiated at the center of the network propagates
through the array. The experiment is initiated by introducing
a nonzero initial condition on Cj capacitor at the position
(25, 25) in the array. All initial conditions in other cells
are zero. Fig. 4 shows four snapshots taken after 100, 400,
500, and 900 iterates of the integration routine. The coupling
conductances were equal in the network Gy = 0.0055 (R; =
200 Q). Analysis of the results obtained indicates that a
circular wave front that propagates in all directions through
the network is generated. Behind the wavefront, concentric
waves centered at the cell at which the process was initiated
are visible. After hitting the edges, the waves maintain their
spatial circular shape—they behave as autowaves—they do not
reflect or interfere. The somewhat astonishing effect is that a
large number of disordered (chaotic) cells can produce highly
ordered “spatially organized” behavior while their temporal
behavior remains chaotic.

Experiment 2: In this experiment, we study the influence
of the values of coupling resistance on the propagation of the
wave in the network. As in previous experiment, the process
is initialized at the central cell by introducing a nonzero initial
condition on C, capacitor. Initial conditions in other cells
are set to zero. Fig. 5 shows four snapshots taken after 300
iterates of the integration routine for four different values of
G]Z G1 = 0.0055, G1 = 0.015, Gl = 0.058, and G1 =0.15.

Analysis of the results obtained indicates again that circular
waves propagating from the center are generated. It is clear
however that there exists a threshold value of G above which
the character of oscillations changes. Below the threshold,
the waves are chaotic in time, spatially ordered—and have
low amplitude. Above the threshold value of the coupling
conductance, the amplitude of the oscillations grows rapidly,
and the time wave forms change—they are no longer chaotic
but periodic. This phenomenon can be explained if we realize
that strong coupling between the cells causes the trajectories
to enter the second linear region (eventual passivity of the
nonlinear characteristics in the cells—Fig. 2) and separate cells
change their behavior to periodic. This kind of phenomenon
of sudden change of type of oscillation and of their amplitude
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Influence of coupling coefficients on the wave collision effects in the array. The waves are initialized at opposite corners

(1,1 = 250,50 = 0.1), and all other initial conditions across the network are set to zero. Four snapshots are shown. (a) After

700 iterates, G1 = 0.005S5. (b) After 700 iterates, G
G = 0.1S (timestep 0.1 s).

could be called “chaotic resonance’ between the cells—two (or
more) cells operating in a chaotic mode when strongly coupled
amplify mutually their oscillations eventually producing large-
amplitude periodic oscillations.

The second property that is clearly visible is that the
wavelength of the circular waves and speed of propagation
in the array grow with growing coupling conductance.

Experiment 3: In the third experiment, we studied colli-
sions of waves initiated at two distinct points in the net-
work—namely at two opposite corners. In this case, circular
concentric waves (so-called target waves) are generated from
these two points and propagate through the array. These
chaotic in time and circularly ordered in space waves collide
eventually at the center of the array. It seems that the collision
of two waves has a different effect to the “edge” effects
observed in experiment 1—at the center (collision point) both
chaotic waves do not annihilate or interfere, however, the
“side” effects become visible—after a long time, part (near
the edges) of the array becomes perfectly synchronized—there
are groups (lines) of circuits oscillating in a perfectly coherent
way while along the diagonal some reminiscence of concentric
waves is still visible (Fig. 6(d)).

= 0.015. (c) After 500 iterates, G1 = 0.05S. (d) After 500 iterates,

Experiment 4: This experiment has been carried out to
show the influence of the coupling conductance on the effects
of collisions of chaotic waves. Fig. 7 presents four snapshots
showing the collisions for four different values of Gi: Gy =
0.0058, G; = 0.015, G; = 0.05S, and G; = 0.1S.

For larger coupling conductance value, as in Experiment
2, the wave forms observed are of high amplitude and time-
periodic.

Experiment 5: In all previous experiments, the structure of
the network and the position of initialized cells were perfectly
symmetrical. Experiment 5 has been carried out in order
to investigate how the oscillations develop in the case of
asymmetrically excited network. Nonzero initial conditions
were applied at three cells—one on the edge z1, 10 = 0.1, and
two locations inside the network: z19 7 = 0.1 and z35 40 =
0.01. As can be expected, circular wave fronts are initiated
at all three cells—as the third initial condition was 10 times
smaller then the two others for some time its influence is hardly
visible (Fig. 8(a)). After 300 iterates, the three developing
wave fronts are of comparable size. The coupling coefficient
was chosen above the ‘“chaotic resonance” threshold, thus
the waves have a large amplitude. The experiments have
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Dynamlc behavior in the array initialized in an asymmetric way—nonzero initial conditions were applied at locations:

x1.10 = 0.1, x19,7 = 0.1, and z35,42 = 0.01. All other initial conditions in the network are set to zero. Four snapshots are
shown: (a) After 100 iterates. (b) 300 iterates. (c) 500 iterates. (d) 800 iterates (timestep 0.1 s). Development of wave fronts from
all three initialized cells is visible. (c) shows the collision of the wave fronts. An interesting fact is that the systems have a “memory

effect”—i

shown that the chaotic network maintains for a long time a
kind of memory effect—cells where the waves were initiated
can easily be identified (Fig. 8(c) and (d)). This kind of
memory effect of initial condition could offer interesting
applications—but requires further thorough study.
Experiment 6: In this experiment, we observed again how
the disturbance initiated at the center of the network propagates
through the array, but this time the parameters of each cells
have been changed in order that it produced a different type of
chaotic behavior—namely a Rssler spiral-type attractor (G =
0.785). The experiment is initiated by introducing a nonzero
initial condition on C3 capacitor at the position (25, 25) in the
array. All initial conditions in other cells are zero. Fig. 9 shows
four snapshots taken after 100, 1600, 1700, and 2500 iterates
of the integration routine. The coupling conductances were
equal in the network G = 0.0055 (R; = 200 2). Analysis
of the results obtained indicates that for a long time there is
a very small propagation effect—a wavefront of very small
amplitude can be seen (Fig. 9(a) and (b)). A very interesitng
effect is the change of the wave front shape. Initially, it is
almost rectangular (Fig. 9(a)) and then before the qualitative

in (c), (d), the centers were the nonzero initial conditions were applied are still visible.

change of the behavior, it becomes circular (Fig. 9(b)). After
about 1700 iterates, suddenly a burst of chaotic oscillations at
the center appears which develops very slowly in all directions
(Fig. 9(c) and (d)). This phenomenon was highly intriguing
for the authors, and for a long time, we believed that it is an
integration routine artifact. Thorough studies using different
integration routines and different timesteps carried out also
with networks of various sizes have convinced us that the
network composed of spiral-chaos oscillators behaves in a
very unpredictable manner—very different to nice (although
chaotic) spatial structures observed in the case of double scroll
attractors. In this case, we observed in many cases a sort
of self-organization—bursts of high-amplitude oscillations at
very particular positions in the network—depending on the
coupling, initial conditions and size of the network.
Experiment 7: In this experiment, we study the influence
of the values of coupling resistance on the propagation of the
wave in the network of Chua’s circuits generating a spiral
attractor (as in the previous experiment). As in the previous
experiment, the process is initialized at the central cell by
introducing a nonzero initial condition on the Co capacitor.
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Fig. 9. Dynamic behavior in the 50 x 50 network composed of Chua’s circuits operating at a spiral type chaotic attractor.
Disturbance is initiated at the network center (25 25 = 0.1). All other initial conditions across the network are set to zero.
Four snapshots are shown. (a) After 100 iterates. (b) 1600 iterates. (c) 1700 iterates. (d) 2500 iterates (timestep 0.1 s). For a
long time, only very small amplitude waves are visible. After around 1700 iterates, a burst of high-amplitude oscillation can be

observed which persists for a long time.

Initial conditions in other cells are set to zero. Fig. 10 shows
four snapshots taken after 300 iterates of the integration routine
for four different values of G,: G; = 0.005S, G; = 0.018,
Gy = 0.058, and G, = 0.15.

Analysis of the results shows that in all four cases circular
waves propagating from the center are generated. For different
values of G, we observe, however, qualitatively different
effects. In the first case, (G; = 0.0055) for a long time we
observe a very low-amplitude oscillations, which then converts
into high-amplitude ones, traveling slowly from the center to
the edges. In Fig. 10(a), a moment before chaotic burst is
shown.

In the second case, we observe a very short low-amplitude
period. The amplitude of oscillations increases, and high-
amplitude chaotic oscillations are born in the center of the
network. The wave front of these oscillations moves quicker
than in the first case, but their amplitude is approximately
the same. In Fig. 10(b), the state of the network after high-
amplitude chaotic burst is presented. In the last two cases
(Fig. 10(c) and (d)) when the coupling conductance is large,
the amplitude of the oscillations grows rapidly, and the time
wave forms change—they are no longer chaotic but periodic.

An intriguing effect is that in the cases of high coupling
conductances, we observe in time a “stiffening effect”—the
wavelength changes in time becoming longer and longer, the
oscillations of neighboring cells get better and better synchro-
nized—as if a sheet of soft material waving in the air was
getting stiffer due to “starching”—after a very long transient,
this stiffening effect leads to complete synchronization—all
cells oscillate simultaneously—in the picture, the whole square
moves up-and-down.

IV. CONCLUSION

The main results of our study can be summarized as follows:

e Our study reveals extremely interesting phenomena not
described so far in the literature. Several interesting types
of dynamic behaviors have been confirmed to exist in the
considered arrays of Chua’s circuits. These include: spa-
tially synchronized states, spatio-temporal chaos, tempo-
ral hyperchaos, chaotic wave propagation, chaotic bursts,
“stiffening effect.”

* For asymmetrically applied initial conditions, a memory
effect has been observed—i.e., the system maintains for
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Fig. 10. Comparison of propagation of the circular waves in the 50 x 50 array of doubly-coupled Chua’s circuits. Disturbance
is initiated at the center (x = 0.1). All other initial conditions across the network are set to zero. Snapshots are taken after 300
iterates (timestep 0.1 s) for four different values of G1. (a) G1 = 0.005S. (b) G1 = 0.015. (¢) G, =0.055. (d) Gy =0.15. The
wavelength of the circular waves and speed of propagation in the array grow with growing couplmg conductance. Above a certain
threshold for G1, the amplitude of oscillations grows rapidiy—the oscillation are no longer chaotic in time but become periodic.

a long time the information where the initial conditions
were applied.

* A particular kind of cluster formation (coherent oscilla-
tions of several cells) is development of wave fronts and
target waves. These chaotic waves show properties resem-
bling autowaves—they do not interfere or disperse. The
wavelength grows with growing coupling conductance.
Above some threshold value of the coupling conductance,
the character of oscillation in the network changes from
chaotic time wave forms of small amplitude to periodic
waves of high amplitude.

» Several intriguing behaviors have been observed in ar-
rays of circuits producing spiral-type attractors. These
phenomena recall observations reported in biology and
physics literature—self-organization and “edge of chaos.”
These phenomena require further thorough study.

 Changes of the coupling resistances and initial conditions
offer a possibility of controlling the dynamic behavior.
One can choose between different types of dynamics. To
be able to take advantage of this kind of control and
possibly find useful applications for the arrays of chaotic
elements, more investigations must be carried out.
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