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In this letter the idea of synchronization of chaotic systems is further extended to the case
where all the drive system variables are combined to obtain a compound chaotic drive signal.
An appropriate feedback loop is constructed in the response system to achieve synchronization
among the variables of drive and response systems. We apply this method of synchronization
to the familiar Chua’s circuit and Murali-Lakshmanan—Chua circuit equations.

1. Introduction

The concept of synchronized chaos [Pecora &
Carroll, 1990, 1991] allows for the possibility of
building a set of chaotic dynamical systems such
that their common signals are synchronized.
Generally there are two methods of chaos synchro-
nization available in the literature [Lakshmanan &
Murali, 1996]. In the first method due to Pecora
and Carroll [1990], a stable subsystem of a chaotic
system is synchronized with a separate chaotic sys-
tem under suitable conditions. This method has
been further improved to cascading chaos synchro-
nization with multiple stable subsystems [Kocarev,
et al, 1992; Carroll & Pecora, 1993; Cuomo &
Oppenheim, 1993; Wu & Chua, 1994; Kocarev &
Parlitz, 1995]. The second method to achieve chaos
synchronization is due to the effect of one-way
coupling element between two identical nonlinear
systems without requiring to construct any stable
subsystem [Pyragas, 1993; Murali & Lakshmanan,
1994; Wu & Chua, 1994; Murali, Lakshmanan &
Chua, 1995]. In both these approaches, only one
chaotic signal from the drive system is utilized to
drive the response systems. In the present Letter,
the idea of synchronization of chaotic systems is
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further extended to the case where all the drive sys-
tem variables are combined so that a compound
chaotic drive signal is produced to drive the re-
sponse system. A feedback loop in the response
system is appropriately constructed to achieve syn-
chronization among the variables of the drive and
response systems. We consider only those cases in
which the compound signal so produced does not re-
semble any of the drive system variables. In Sec. 2,
we give a brief account of the theory of modified
chaos synchronization approach. In Sec. 3, we fo-
cus on the details of applicability of this modified
approach to the familiar Chua’s circuit. In Sec. 4,
we investigate the synchronization of chaos in the
Murali-Lakshmanan—Chua circuit equations using
the above method. Finally, in Sec. 5, a summary of
the results and conclusion are given.

2. Theory of Synchronization
using Compound Chaotic Signal

Let us consider a chaotic dynamical system de-
scribed by a set of first order differential equations
of the form

t=f(z,9,2), 9 =9(z, 9, 2), 2=h({z,y, 2). (1)
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Here (-) refers to the operation d/dt. Using the
Pecora and Carroll approach [Pecora & Carroll,
1990, 1991; Carroll, 1995] a set of cascaded sub-
systems is created as

i’ = f(m”a yl’ ZI), gl = g(xda y,» zl)a
:é, = h(xda yl) zl) .

(2)
If all of the Lyapunov exponents of Eq. (2) are less
than zero, then the response subsystem variables 1/,
2" and 2" will converge to the drive system variables
y, z and z respectively under the influence of the
single drive variable x4 = z [Pecora & Carroll, 1990,
1991].

However it is not necessary that one of the
drive variables alone is used for synchronization.
One can also combine and modify the drive sig-
nal appropriately, and then the transformation is
undone using the response system. Along these
lines, Carroll recently reported the synchronization
of chaotic systems using filtered signals [Carroll,
1994, 1995]. Alternatively, instead of using one
drive signal variable, one can transform the drive
variables by appropriate combinations to produce
a compound chaotic signal for use as the drive for

Drive Response

()2t

:

(a)
Drive Response

i
|
{
X 1
_ |
!
y I
— - I
1
z '
i
|
|

(b)

Fig. 1. (a) Block diagram of the cascading synchronization

approach through compound chaotic signal. (b) Block dia-
gram of the one-way coupling approach of synchronization
through compound chaotic signal.

synchronization. A suitable feedback loop can be
deviced in the response system to achieve synchro-
nization among the variables of the drive and re-
sponse systems. The schematic diagram of this
modified approach of cascading chaos synchroni-
zation using compound signal is illustrated in
Fig. 1(a). The set of equations for this new syn-
chronizing system is

Drive:

x:f($7 Y, z)7 y=g($, Y, Z), Z=h(.’17, Y, Z),

(3a)
z: =z + u(y, 2), (3b)
Response:
zg =z —u(y’, '), (4a)
&' = f(a", y, &), ¥ = g(za, ¥/, &),
¥ =h(zq, 9y, 7). (4b)

Here u(-) can be either a linear or nonlinear function
and z; is the compound chaotic signal used as the
drive and x4 is the signal generated in the response
system feedback loop. If the Lyapunov exponents
of the response system [Eq. (4b)] are negative under
the influence of x4 signal then the response system
variables 3/, 2/ and z” are synchronized with vy, z
and x variables respectively.

Similarly for the case of synchronization
through one-way coupling approach [Pyragas, 1992;
Murali & Lakshmanan, 1994], the compound
drive signal can be used as shown schematically
in Fig. 1(b). The associated set of equations are
represented as

Drive:

£B=f(£l?, Y, Z), y=9(~’0, Y, Z), Z:h(ﬂt}, Y, 2)7

(5a)

zr =z + uy, z), (5b)
Response:

zq =zt —uly, 2'), (6a)

&= f(z', ¢, &) +e(za — '), (6b)

§' =g,y 2", (6¢)

#F=hn,y, ). (6d)

Here ¢ is the one-way coupling parameter. If the
Lyapunov exponents of the response system
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[Egs. (6b)—(6d)] are negative under the influence
of 4 for appropriate £ values, then the response
system variables ', ¥’ and 2’ are synchronized with
their drive counterpart.

3. Synchronization of Chaos in
Chua’s Circuit

The rescaled Chua’s circuit equations [Chua et al.,
1993] are

;&:a(y—:c—f(:c)), 3]=:c—y+z, é=—f3y, (7)

where f(z) = bz +0.5(a — b)[jz + 1| — |z — 1|]. The
familiar double-scroll chaotic attractor as shown in
Fig. 2 is observed for the fixed parameters a = 9.0,
B = 14.87, a = —1.27 and b = —0.68. The time
series plot of the corresponding variables of Eq. (7)
are shown in Fig. 3.

3.1. Cascaded subsystems

To achieve synchronization, a cascading system of
equations along with a feedback loop having the
simplest function u(y, z) = y + z is represented as

Drive:
i=aly— - f(2)), (82)
y =z—-y+z, (Bb)
z= _ﬁya (80)
zi=z+uly, 2)Srx+y+z, (8d)
8.3
v 8
-0.3
-4 2 ] 2 4
x
Fig. 2. The double-scroll chaotic attractor of Eq. (7) for

=090, 3=14.87, a = —1.27 and b = —0.68.
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Fig. 3. Chaotic signals of Fig. 2. (a) variable z, (b) variable
y and (c) variable z.

Response:
zg=z—uly, ) =2~ (¥ +7), (8e)
¥ =xzq—y +72, (8f)
¥ =—py, (88)
a-:ll — Ol(y, _ :l?” _ f(.’L‘”)) . (8h)

The compound chaotic signal z; is shown in
Fig. 4(a). The numerically computed conditional
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Fig. 4. (a) The compound chaotic signal z: of Eqgs. (8a)-

(8d) for a = 9.0, f = 14.87. (b) The difference signal (z —z")
versus ¢ of Eqgs. (8a)-(8h).

Lyapunov exponents of the response system
Eqgs. (8f)—(8h) are (—0.05, —2.0019, —2.1942) and
thus the response system variables synchronize with
their drive counterpart. Figure 4(b) depicts the dif-
ference signal (z — 2") of Egs. (8a)—(8h). We may
note that the compound chaotic signal z; does not
resemble any of the drive signals z, y or z.

3.2. One-way coupled systems

One can also study chaos synchronization among
identical chaotic systems through omne-way cou-
pling scheme, without constructing any cascading
stable subsystems [Pyragas, 1993; Murali and
Lakshmanan, 1994; Murali, Lakshmanan & Chua,
1995]. We now apply this approach to Chua’s cir-
cuit as follows. The normalized state equations are
represented with u(y, z) =y + z as

Drive:

t=aoly—z-f(z)), (9a)

1=x—y+z, (9b)

z= ”ﬂy ) (9C)
=z +(y+2), (9d)
Response:

zg=z— (y' +2), (%)

' =oa(y — ' - f(z") + 6x(zqg — ),
(9%)
§=a -y +2, (%)
¥ =—py. (9h)
Here 6, is the one-way coupling parameter.

In this set-up, we have effected a one-way coupling
of two Chua’s circuits through a linear resistor.
The difference system of Egs. (9a)-(9d) and
Egs. (9¢)-(9h) is _

& =a(y" —z* — (f(z) - f(z))

—bz(z* +y* + 2%), (10a)
=z -yt + 2", (10b)
7 =-py", (10c) -

where z* = (z — 2'), y* = (y — ') and 2* =
(z — 2'). Asymptotically z*, y* and 2* tend to
zero, then we can easily see that f(z) — f(z') =
f'(n)(z—2") = f'(n)z* and f'(n) takes two values a
and b [Chua et al., 1993] asymptotically, depending
upon the region of operation. Then

" =oy* — " — s2%) — bz (z* +y* +2%),

(11a)
or
T* —a—s;a—06, a—0p —b z*
| = 1 -1 1 v,
z* 0 -8 z*
(12)

where s; = a, b; i = 1,2. The characteristic equa-
tion is

M4+ rA2+pA4+0=0, (13)

where k =1+ o+ as; + 65, p = as; + 26, + § and
o = Ba+ Pas;.

Itk >0,0 >0and kp—0c > 0, then z* =
y* = z* = 0 is a stable point and the response
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Fig. 5. The difference signal (z— z') versus ¢ of Egs. (9a)-
(9h) for 6, = 1.0.
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Fig. 6. The maximal conditional Lyapunov exponent (Amax)

versus §, of the response system Eqgs. (9e)—(9h).

system variables synchronize with the drive system.
In the present case the critical value of §,(= &) was
found to be 0.5066, and thus for all §; > 6, ~ 0.5066
the response system will synchronize. Figure 5 de-
picts the synchronized chaos behavior of Eq. (9) for
6, = 1.0, calculated numerically. Also, the maxi-
mal conditional Lyapunov exponent of the response
system Eqgs. (9f)—(9h) as a function of the one-way
coupling parameter §; is shown in Fig. 6. It is ev-
ident from this figure that the response system is
synchronized with the drive counterpart, which is
confirmed by a change in the sign of the maximal
conditional Lyapunov exponent of the response sys-
tem from positive to negative.

4. Synchronization of Chaos in
Murali-Lakshmanan-Chua Circuit

In this section, we have applied the idea of synchro-
nization through compound chaotic signal to the

recently reported simplest non-autonomous chaotic
circuit, namely, the MLC [Murali, Lakshmanan &
Chua, 1994a, 1994b, 1995] circuit. The normal-
ized state equations of two MLC circuits coupled
through one-way coupling element are represented
(with u(y) = y) as

Drive:

T =y—g(z), y=—0y— Pz + Fsin(wt),

n=z+uly) =z+vy, (14a)
Response:
za=z—uwy) =z -y,
i =y - g(a) + elaa— ), (14b)

i = —oy' — Bz’ + Fsin(wt),
where ¢ is the one-way coupling parameter and
g9(z) = bz + 0.5(a — b){|z + 1] — |z — 1}]. For the
parameters o = 1.015, 3 =1.0, F = 0.15, w = 0.75,
a = —1.02 and b = ~0.55, a double-band chaotic at-
tractor of Fig. 7 is observed [Murali, Lakshmanan
& Chua, 1994a, 1994b, 1995).

The difference systems of Egs. (14a) and (14b)
are

& =y" - (9(z) - g(a") — (=" +y"),

o . o (15)
vt =—oy* - Bz*,

where z* = (z — ') and y* = (y — ¢/'). Since g(z) —
g(z') = g'(n)z* and ¢'(n) takes two slope values a
and b [Chua et al., 1993] depending upon the region
of operation and basin of attraction asymptotically,
we have

*

Y=

[:it*] _ [—si——s 1 —5] [:v*]
gl L -8 —ollyl’
where s; = a, b; i = 1, 2. The characteristic equa-
tion is

Uy* - /837* 3
(16)

T =y" — sz —e(z” +y¥),

(17)

Nirpr+e=0, (18)

where = o+ $; +¢ and £ = s;o+ (o — ) + B.
If p,& > 0 then 2* = y* = 0 is a stable point
and the two systems (14a) and (14b) will synchro-
nize asymptotically. In the present case, the critical
value of ¢ was calculated to be 2.354, and thus for
all € > 2.354 the two systems (14a) and (14b) will
synchronize asymptotically.
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Fig. 7. (a) A double-band chaotic attractor of Eq. (14a) for

o =1015 8 =10, F = 0.15, w = 0.75, a = —1.02 and
b= —0.55. (b) The chaotic variables z, y and =; of (a).
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Fig. 8. The difference signal (z—z') of Eqgs. (14a) and (14b)
for € = 2.4 indicating synchronization.

=0.3
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Fig. 9. The maximal conditional Lyapunov exponent Amax
versus ¢ of Eq. (14b).

In order to investigate this phenomenon, we
have numerically integrated Eqgs. (14a) and (14b)
for ¢ = 2.4 and these two systems exhibit perfect
synchronization among their variables, as indicated
in Fig. 8, even if these two systems are integrated
numerically with different initial conditions. Also,
the conditional maximal Lyapunov exponent of
Egs. (14b) under the influence of the one-way cou-
pling parameter is shown in Fig. 9.

5. Discussions

In the above examples we have considered the trans-
formation function u(-) in Eq. (8) and Eq. (9) as a
linear one but one can consider appropriate nonlin-
ear functions also. As an example, in the follow-
ing we use a typical nonlinear function u(y, z) =
sin(y) + sin(z) in Eq. (9d) and u(y', ') = sin(y’) +
sin(z') in Eq. (9¢). Then the Eq. (9) is numeri-
cally integrated. Figure 10(a) shows the compound
chaotic signal z; of the present case and 10(b)
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Fig. 10. (a) The compound chaotic signal z; of
Egs. (92)-(9d) with u(y, z) = sin(y) + sin(z). (b) The dif-
ference signal (z — a') of Egs. (9a)~(9e) for 6. = 1.0.

shows the difference signal (z — z') versus ¢, indi-
cating perfect synchronization among the variables.
We have also tested other forms of function u(y, z)
in our numerical simulations, such as €Y, yz, y?z,
yz%, etc. and in all these cases synchronized chaotic
behavior has been achieved successfully.

To conclude, in this Letter, we have introduced
a procedure of achieving an efficient synchroniza-
tion using a compound chaotic signal. The proce-
dure has been tested successfully for Chua’s circuit
and the MLC circuit equations. More importantly,
the usage of a compound chaotic signal of more than
one chaotic variables to synchronize two chaotic sys-
tems can improve the security of a chaos-based se-
cure communication system and the wide choice
of the transformation functions u(-) can also act
as a key.
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