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ABSTRACT

The known principles of wave digital filters are used to
simulate certain nonlinear circuits by digital means. As
nonlinear elements, in particular, resistances having a con-
tinuous piecewise-linear voltage-current characteristic are
considered. It turns out that a representation of a non-
linear resistance in terms of the wave variables may exist
even if the voltage-current characteristic is neither voltage-
controlled nor current-controlled. As an example, Chua’s
circuit is considered. It is shown that in the wave digi-
tal model of this circuit essentially the same double scroll
attractor can be observed as in the corresponding analog
realization.

INTRODUCTION

Every wave digital filter can be considered to be a digital
model of its reference filter, i.e. the continuous-time filter
from which the wave digital filter is derived [1]. In many re-
spects, both the digital filter and its reference filter behave
similarly. If, for example, a reference filter is stable, pas-
sive and/or lossless, the corresponding wave digital filter
will be stable, (pseudo-)passive and/or (pseudo-)lossless,
respectively. In principle, almost any type of continuous-
time filter can be used as a reference filter. However, of
particular importance are classical reactance filters in lad-
der or lattice configuration. Then, the resulting wave dig-
ital filter possess many interesting properties, which make
these filters so attractive for practical applications (1]

The analogy between a wave digital filter and its refer-
ence filter is based on the following principles:
1. As frequency variable the well-known bilinear trans-
form of the z-variable is used, i.e. the quantity

¥ =(z~1)/(z +1) = tanh(pT/2), z= T, (1)

where p denotes the actual complex frequency and T,
the operating period of the digital filter.

2. Instead of voltages and currents so-called wave quan-
tities are adopted as signal parameters. If v denotes
the voltage and i the current at a port, the waves
traveling in the forward and the backward directions
are defined by

a=v+Ri and b=v- Ri (2)

respectively, where R is a positive constant, the so-
called port resistance.
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Hereafter it is shown that these principles can not only
be applied to linear filter circuits but also to certain non-
linear circuits. In particular, it will be demonstrated that
chaotic phenomena, which may occur in a certain nonlin-
ear continuous-time circuit [2]-[4], can be observed in the
corresponding wave digital model as well.

LINEAR BUILDING BLOCKS

All linear elements used in classical passive filter circuits
(resistances, capacitances, inductances, gyrators, circula-
tors, ideal transformers, unit elements, and quasi-reciprocal
lines) and resistive sources can be digitally simulated by
obeying the principles mentioned in the Introduction (1]
As examples, let us consider only a resistance, a capaci-
tance, and an inductance.

From the voltage-current characteristic of a resistance
Ry, i.e. from v = R;1, we obtain

_R-R
=R @

where a and b are the incident and the reflected waves,
respectively, which are defined by (2). If, as in most cases,
the port resistance is chosen equal to the element value R,
(3) reduces to

b=0. (4)

The reactive elements such as the capacitance and the
inductance are defined under steady-state conditions at an
arbitrary complex frequency. Denoting the complex ampli-
tudes of the voltage and the current by V and I, respec-
tively, and using the equivalent frequency defined by (1 )s
we may describe the capacitance and the inductance by

V =RI/Y and V = ¢RI, (5)
respectively. If, in both cases, the port resistance is chosen
equal to the element value, we obtain from (5)

B=z'4 and B=-z14, (6)
respectively, where A and B are the complex amplitudes
of the incident and the reflected waves. The correspond-
ing expressions for the instantaneous wave quantities are
therefore given by

bt)=a(t~T) and  b(t)=—a(t—T). (7ab)
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Hence a capacitance is simulated by a simple delay, and an
inductance, by a delay combined with a sign inverter.

In terms of voltage and current, equation (7a) can equiv-
alently be expressed as

o(t) = v(t - T) + R[i(t) +i(t - T))]. (8)

Setting R = T'/(2C), we can easily check that (8) is exactly
the same expression that would be obtained from the usual
equation of a capacitance, i.e. from

o(t) = v(t=T) + é/;r i(r)dr, (9)

by applying the trapezoidal rule to the integral. A similar
conclusion can be drawn for the inductance.

The simulation of the interconnections present in the ref-
erence filter is achieved by the so-called adaptors. These
are n-port building blocks composed of adders and mul-
tipliers. An n-port parallel adaptor serves to simulate a
parallel connection of n ports, and an n-port series adap-
tor, a corresponding series connection. In Fig. 1 there is
shown an example of a three-port parallel adaptor and a
corresponding signal flow diagram. As the reflected wave
bs is independent of the incident wave ay, port 3 is called
reflection-free.
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Fig. 1. Three-port parallel adaptor, with port 3 reflection-free, and
signal-flow diagram.

NONLINEAR RESISTANCES
Consider a nonlinear resistance and assume first that the
current i can be expressed as a (single-valued) function of
the voltage v, i.e.
i=iv),
where v can take on any real value. The incident and re-
flected waves at this resistance, which is said to be voitage-

controlled, are given by
a = f(v) = v+ Ri{v) (10a)
and

b= g(v) =v — Ri(v). (10b)

If f has an inverse, f~!, defined on the real axis, we can
obviously write

b=b(a) = g(/~(a)- (11)

It is easy to show that the unique invertibility of f, i.e. the
existence of f~!, is not only sufficient but also necessary
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for being able to express b as a function of a. In fact,
if f(rn) = f(v2) did not imply v vg, we would have
g(v) # g(va)-

Clearly, f~! will exist if f is strictly monotonic. To
guarantee the strict monotonicity of f, R has to be chosen
such that

either Lo g A i) (12a)
R vi#va U2 — Uy
1 i(v2) —i(v1)
- < - —_—— 12b
or R ::?, vz — vy ( )

holds. If i(v) is continuous and piecewise-differentiable with
derivative #'(v), ( 12a) and (12b) can be replaced by

1/R > — inf ¥ (v) (13a)

and

1/R < —sup+'(v), (13b)

respectively. As the port resistance R has to be positive,
we will have to choose, in practically all cases, R according
to (12a) or (13a) unless the suprema in (12b) and (13b)
are negative.

As an example for a voltage-controlled resistance let us
consider a continuous piecewise-linear function consisting
of n + 1 segments, which can be described by {5]

i(v) = i(0) + gov + Y_ g (v — v | = [v.])

v=1

(14)

where go, g,, and v, are real constants, with v,.; < v,
(v = 2 to n}). Denoting the slope of i(v) in the intervals
(=00,v1), (vy,04+1), and (vn,0) by Go, Gy, and Ga, re-
spectively, we may write

go = (Go +Gn)/2
and

o =(G,-Guo1)/2, v=1ton.
In order to make sure that a function b = b(a), where a and
b are defined by ( 10 ), can be derived from ( 14 ), the port
resistance R has to meet one of the inequalities ( 13 ), i.e.

either 1/R > —infd'(v) = —minG,
v v

or 1/R < —sup#'(v) = —maxG,.

If R is appropriately chosen, b(a) turns out to be a con-
tinuous piecewise-linear function, which can be written in
the form

b(a) = b(0) + coa + Y_ ¢, (la — au| = |av]),

v=1

where cg, ¢,, @y, and b(0) can be derived from the slopes
G, and the constants appearing in ( 14 ) according to



co=(eo+en)/2, ¢o=(av—0v-1)/2, v=1t0on

e =(1-RG,)/(1+RG,),v=0ton

a, =v, + Ri(v,), v=1ton

b(0) = —(1+ o) Ri(0) - 3 _ ¢, (|R3(0) — oy | — |as |).

v=1

Next, we assume that the nonlinear resistance is current-
controlled, i.e. that the voltage v is a (single-valued) func-
tion of the current 1:

v = v(i).

The waves @ and b are then given by

a=fi(i) =v(i)+Ri
and
b =g, (i) = v(s) — Ri.

To express b as a function of a, we have now to make sure
that f is invertible, in which case we may write

b =b(a) = g1 (f7(a))-

The strict monotonicity of f and thus its invertibility will
be guaranteed if R meets

R> - ing 202)=v()

either <
S1#4a 13 — 11
or R< - sup w

Gigis 12—

In some cases, the nonlinear resistance will neither be
voltage-controlled nor current-controiled. Nevertheless, a
description in terms of the wave quantities may still be
possible if an appropriate parametric representation of the
voltage-current characteristic exists. As a simple example
of a resistance having such a characteristic, we consider an
ideal rectifier, which is usually defined by

(v<O0AI=0)V(v=0A1:2>0).

For convenience, we will use the equivalent parametric rep-
resentation

v=(£-¢]) and i=(£~[€|)/R,

where £ is a real parameter (—co < ¢ < oo0) and where
R is an arbitrary positive constant, which will be chosen
equal to the port resistance. From (2) and ( 15) we con-
clude that a corresponding parametric representation for
the wave variables is thus given by

a=2f and b= -2(¢.

(18)

We can therefore describe, for arbitrary port resistances,
the ideal rectifier by the simple function

b= —|a|.
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Fig. 2. Nonli circuit ding to Ref. 2.

DIGITAL MODEL OF CHUA’S CIRCUIT

We consider the arrangement shown in Fig. 2, which has
been suggested by Chua and studied by various authors
(see e.g. [2]-[4]). It contains four linear one-port elements
and one nonlinear resistance denoted by R and having the
characteristic ( Fig. 3)

i=Glu+%(G,—G;)(|u+vo[—lv—vo|), (16)

with G; = —500 uS, G; = —800 uS, vop = 1 V. The element
values of the linear elements are given by

C, =5.5nF, R; = 1.428kQ}, Ly = 7.07mH, C = 49.5nF.

The wave flow diagram derived from the circuit of Fig. 2
is depicted in Fig. 4. In order to be able to determine
the coefficients of the series adaptor and the two parallel
adaptors, we have first to fix the port resistances of those
ports that are terminated by the reactive elements. Clearly,
this must be done by taking into account the operating
period T, which has been chosen equal to 10 us. In general,
the choice of T should be made in such a way that, in
the frequency range of interest, the impedance of a wave
digital reactive element (i.e. ¥R or R/y) approximates
the impedance of the corresponding analog lumped element
(i.e. pL or 1/pC). (Note that the resonant frequency of the
parallel circuit consisting of Ly and C, is given by 8.5 kHz.)
The port resistances are then to be fixed according to

Ry =T/(2C1), Ry =2L/T, and R, =T/(2C).

From these resistances and from R;, as given above, the
following numerical values for the adaptor coefficients have
been calculated:

v = 0.066673, v, =0.061931, ~; = 0.373901.
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£

Fig. 3. Characteristic of the nonli i d d by (18).
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Fig. 4. Wave digital model of the circuit of Fig. 2.

Due to the fact that the port terminated by the nonlinear
element has to be reflection-free, the corresponding port
resistance cannot be chosen arbitrarily but is determined
by the other port resistances and is given by

R =569.2 Q.

Using this resistance, we obtain from (16) for the charac-
teristic of the nonlinear element the expression

b=e(a)=mu+%(ez —01)(la+ a0l —la—aol), (17)

with
o1= (1 — Gy R)/(1 + Gy R) = 1.7966,
22= (1 - G1 R)/(] + Gg R) = 2.6722,
ao=v5(1 + G2 R) = 0.544T V.

This characteristic is plotted in Fig. 5.

Finally, in Fig. 6 there are shown some projections of the
trajectory, which has been observed in the digital model of
Fig. 4. These projections are very similar to those published
in Ref. 3. It is interesting to note that an increase of the
operating period T by a factor of two has not essentially
changed the trajectory.
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Fig. 5. Plot of the characteristic defined by (17).
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Fig. 6. The observed chaotic attractor.
(a) Projection onto the (—1s, v1)-plane.
(b) Projection onto the (-1, vq)-plane.
(c) Projection onto the (v, vy)-plane.
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