
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 50, NO. 4, APRIL 2003 579

Although the optimal� is the one which minimizes�(�), it is not
easy in practice to find this value. The reason for this follows from
Theorem 5.

Theorem 5: LetAT +A = �Q with Q positive definite. Then the
value of� which minimizes�(�) is given by

�opt =
kArk

krk
(48)

wherer is the vector obtained by the minimization procedure

r = argmin
x 6=0

xTQx

kxkkAxk
: (49)

Proof: The minimization of�(�) is equivalent with the minimax
problem

min
�

max
x

kAxk2 � �xTQx+ �2kxk2

kAxk2 + �xTQx+ �2kxk2
x 2 Rn

� > 0: (50)

This can be reformulated as

min
�

max
x

1

�

kAxk2

xTQx
+ �

kxk2

xTQx
: (51)

For any givenx, the unique positive value of� which minimizes the
expression between the curly brackets of (51) is given by

� =
kAxk

kxk
: (52)

Since the duality gap [10, p. 23] is therefore zero, we can insert this
value for� in (51), and this completes the proof.

However, the vectorr defined by the minimization procedure (49)
is not easy to obtain. On the other hand, Theorem 4 guarantees that
�(�) < 1 for 0 < � < 1 wheneverA + AT is negative definite,
which is always possible by means of a transformation of the state space
variables. Hence, any positive value of� results in a stable reduced-
order model. In [7] it has been shown that an interval of “good” values
for � is given by

2

�
!max � � �

�

2
!max (53)

where!max is the bandwidth (in rad/s) of the system. Note that the
geometric mean of the interval in (51) is� = !max, which is therefore
a straightforward choice for�.
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Chaotic Cryptosystem With High Sensitivity
to Parameter Mismatch

K. Li, Y. C. Soh, and Z. G. Li

Abstract—In this brief, we present a new sufficient condition for the sta-
bilization and the synchronization of Chua’s circuit. The Chua’s circuit is
used in our chaotic secure cryptosystem and the relaxed stability condition
enabled us to obtain a larger bound on the impulsive interval, which leads
to a higher efficiency in bandwidth utilization. In the proposed system, we
introduce a concept of magnifying glass to enlarge and observe some minor
parameter mismatch and hence it increases the sensitivity and the security
level of the cryptosystem. We shall use speech transmission as an example
to illustrate that the proposed cryptosystem can achieve excellent encryp-
tion effect and it is sensitive to the parameter mismatch.

Index Terms—Chaotic cryptosystem, Chua’s circuit, impulsive
synchronization.

I. INTRODUCTION

Over the past decade, chaotic dynamics have been successfully
exploited in communication applications, and these include chaotic
encryption for security, chaotic spreading codes for multiuser ac-
cess in spread-spectrum systems, and chaotic modulation for the
transmission of analog and digital information [1]. The advances in
the synchronization of chaotic systems [2]–[4], [9] have created the
possibility of communication using chaotic waveforms as carriers,
and particularly in application to secure communications. Indeed, a
lot of chaotic secure communication systems have been proposed
[3]–[10], and the chaotic secure communication systems have moved
into the fourth generation [8]. All of the first three generations have
adopted the continuous chaotic synchronization scheme. The fourth
generation uses impulsive chaotic synchronization [7] to increase
the efficiency of bandwidth usage. Various theoretical and experi-
mental results of impulsive chaotic synchronization and applications
to chaotic communications systems can be found in [18]–[20]. Al-
though impulsive chaotic synchronization has been widely studied
[7], [13], [14], the existing results are still very conservative.

Chaotic cryptography systems [6] are schemes that combine the clas-
sical cryptographic techniques and chaotic synchronization to enhance
the degree of security. However, the proposed attacks [10]–[12] have
shown that most of these methods are still not secure or have a low
security. A basic requirement of security is that the intruder must not
be able to attack the system by using approximate parameters with a
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small decryption error. In the chaotic secure communication systems,
chaotic-system parameters play the key role in secure transmission.
Thus, to improve the security, we need to increase the sensitivity to
system parameters mismatch.

There are two objectives in this brief. One is to derive less conser-
vative impulsive synchronization condition for Chua’s circuit, so that
a larger bound on the impulsive interval can be obtained and it im-
proves the efficiency of bandwidth utilization. The other is to increase
the parameter sensitivity of chaotic self-synchronization systems by the
concept of a magnifying glass, so that the security level of the cryp-
tosystem based on chaotic systems can be enhanced. The magnifying
glass enlarges and observes minor parameter mismatch and this greatly
increases the sensitivity of the cryptosystem. By digitizing the message
signals, the system can be used in all types of digital security transmis-
sion purposes such as text, image, email transmissions and so on. In
this brief, we use audio transmission as an application example.

The organization of this brief is as follows. In Section II, a detailed
chaotic cryptosystem is presented. In Section III, a new sufficient con-
dition for the stabilization and the synchronization of Chua’s circuit is
derived. In particular, a larger impulsive interval is derived. Section IV
contains the security analysis of the proposed system. In Section V, an
application example of audio transmission system is presented. Finally,
some concluding remarks are given in Section VI.

II. NEW CHAOTIC CRYPTOSYSTEM

In this section, a general chaotic cryptosystem that is essentially a
stream cipher system is proposed. Chaotic systems are characterized by
their sensitivity to initial conditions, random-like behavior, and contin-
uous broadband power spectrum. The central problem in stream cipher
cryptography is the difficulty of efficiently generating long running-key
sequences from a short and random key [1], [15]. In chaotic cryptosys-
tems, the sequences of binary random variables based on chaotic dy-
namics are used as the running-key sequences.

The chaotic cryptosystem is mainly composed of two parts: an
encrypter and a decrypter. We use Chua’s circuits, which have been
proven mathematically to be chaotic in the sense of Shil’nikov’s
theorem, to implement the chaotic system. The details of each part are
described as follows.

A. Encrypter

The dimensionless state equations of Chua’s circuit are given as

_x1 = k�(x2 � x1 � f(x1))

_x2 = k(x1 � x2 + x3)

_x3 = k(��x2 � 
x3)

(1)

where�, � and
 are constants,k 2 f�1; 1g andf(x) is the nonlinear
characteristic of the Chua’s diode in Chua’s circuit given by

f(x) = m1x+ (1=2)(m0 �m1)fjx + 1j � jx � 1jg (2)

and wherem0 andm1 are two negative constants andm0 < m1.
In this Chua’s circuit,�, �, 
, m0 andm1 are the key parameters
and the receiver circuit needs to have these same parameters to ensure
synchronization.

We letA denote the linear system matrix of (1), i.e.,

A =

�k� k� 0

k �k k

0 �k� �k


: (3)

Let � denote the largest eigenvalue of matrix (A + AT ), i.e.,v =
�max(A + AT ).

We further define the following function:

�(&1; &2) = maxf&1 � 2k�+ 2j�m0j; (1 + �)2=&1

+ (� � 1)2=&2 � 2k; &2 � 2k
g;

&1 > 0; &2 > 0: (4)

We are interested in the following set of(&1; &2)

� = f(&1; &2)j�(&1; &2) < v + 2j� m0jg: (5)

Clearly, if j�m0j > 0, then� is a nonempty set.
In our system, the signals are transmitted through a digital channel,

therefore the synchronization pulses should be first quantized by a pre-
defined quantizerQ(�), which depends on the amplification factorK
used in (6). A fix length of binary bits is used to code each synchro-
nization pulse.

We shall use the state variables of the chaotic circuit to provide
the desired key sequence. To further enhance the security of the cryp-
tosystem, we introduce the concept of a magnifying glass, which is
composed of an amplifier and an observer.

The amplifier

k0(t) = K x21(t) + x22(t) + x23(t)
1=2

: (6)

The observer

k(t) = k0(t) (7)

whereK is a large number which can be chosen arbitrarily andbac is
the integer truncation ofa. K is a key design parameter and should be
known exactly to the decrypter circuit.

The scrambled signalvR is given by

vR(t) = E(p(t); k(t)) (8)

wherep(t) is plaintext,k(t) is key sequences,E(�; �) is an applied
stream cipher function and can be chosen according to different system
demand.

B. Decrypter

The impulsive differential system in the decrypter is given by

_~x1 = k�(~x2 � ~x1 � f(~x1)

_~x2 = k(~x1 � ~x2 + ~x3); t 6= �n; n = 1; 2; . . .

_~x3 = k(��~x2 � 
~x3)

(9)

and

~x1(�n)

~x2(�n)

~x3(�n)

=

~x1(�
�

n )

~x2(�
�

n )

~x3(�
�

n )

�B

Q(x1(�n))� ~x1(�
�

n )

Q(x2(�n))� ~x2(�
�

n )

Q(x3(�n))� ~x3(�
�

n )

;

n = 1; 2; . . . (10)

whereB is a 3� 3 matrix to be designed to satisfy certain inequality,
Q(�) is a predefined quantizer,f�ng(1 � n < 1) satisfy

0 < �1 < �2 < � � � < �n < �n+1 < � � � ; �n !1 asn!1

with �n = n
i=1 Ti; Ti are impulsive time intervals;��n are the times

immediately prior the times�n. The upper bound�i(1 � i < 1) of
each impulsive intervalTi in our scheme are defined as follows:

�2j�1 = T̂1 �2j = �̂1T̂1; 1 � j � 1: (11)
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In (11), �̂1 is a positive number and is determined by the parameters
of Chua’s circuit. A typical example is given bŷ�1 = jm1j. In our
scheme, matrixB andT̂1 are to be designed to ensure the synchroniza-
tion of the two chaotic systems (1) and (9) in the transmitter and the
receiver, respectively. The value ofT̂1 is exactly the same as the length
of the first packet from the encrypter to the decrypter.

In the decrypter, the plaintext is recovered via

~k(t) = K(~x21(t) + ~x2(t) + ~x23(t))
1=2 (12)

~p(t) =D(vR(t); ~k(t)) (13)

where ~p(t) is the recovered encrypted signal,D(�, �) is the corre-
sponding decryption function, and~k(t) is recovered in the receiver
circuit and should approximatek(t). If the chaotic systems in the
decrypter and encrypter are synchronized, the decrypter can find the
same~k(t), as in the encrypter,k(t).

III. STABILIZATION AND SYNCHRONIZATION OF CHUA’S CIRCUIT

In this section, we shall derive some less conservative conditions for
the stabilization and the synchronization of Chua’s circuit.

For simplicity, we denote&10; &20 such that �(&10; &20) =
min& >0; & >0 �(&1; &2), then it can be easily known that

�(&10; &20) < � + 2j�m0j: (14)

Introducing the following impulsive control:

u(k; X(t)) = BX(t); t = �n; n = 1; 2; . . . (15)

We then have the following result.
Theorem 1: The origin of Chua’s circuit (1) under impulsive control

(15) is asymptotically stable if

0 � �(&10; &20) � �2 ln(�d1)=(1 + �̂1)T̂1 (16)

where� > 1, andd1 is the largest eigenvalue of (I +B)T (I +B).
Proof: Choose the Lyapunov function asV (X) = XTX. It fol-

lows that _V (X) � �(&10; &20)kXk2. Similar to the proof of Theorem
2 in [14], the origin of Chua’s circuit under impulsive control (15) can
be proven to be asymptotically stable.

Remark 1: Note that the condition for asymptotic stability of Chua’s
circuit provided in [14] is given by

0 � v + 2j�m0j � �2 ln(�d1)=(1+ �̂1)T̂1:

From (16), it is clear that our condition is less conservative. This means
that it is easier for the designer to design the impulsive intervals.

We shall next examine the synchronization of the two Chua’s
circuits, which are called the driving system and the driven system,
respectively in [7] and [14]. In an impulsive synchronization con-
figuration, the driving system is given by (1), whereas the driven
system is given by (9).

From (1) and (9), we leteT = (e1; e2; e3) = (x1 � ~x1, x2 �
~x2; x3 � ~x3) be the synchronization error and~X = (~x1; ~x2; ~x3)

T .
We then have

_e = Ae+	(X; ~X); t 6= �n; n = 1; 2; . . .

e(�n) = (I +B)e(��) +B(X(��)�Q(X(��));

n = 1; 2; . . .

(17)

where

	(X; ~X) = [�k�f(x1) + k�f(~x1) 0 0 ]T :

For a constant� satisfying� > 1 and�d1 < 1, we define the fol-
lowing time interval bounds:

�1 =�2 ln(�d1)=(1+ �̂1)�(&10; &20)

�2 =�2�̂1 ln(�d1)=(1 + �̂1)�(&10; &20): (18)

In view of the fact that we cannot transmit the ciphertext before the
two Chua’s circuits (1) and (9) are synchronized; it is important to make
the synchronization time as short as possible. To achieve this, the im-
pulsive intervals should be as small as possible and for this the constant
� is chosen to be as large as possible. For example, we choose the im-
pulsive intervals for synchronization as�1=4 and�2=4, respectively.

We then have the following result on synchronization time.
Lemma 1: For any" > 0, we definen0 as follows:

n0(") = log� ke0k=("� (�1$=(�1 � 1))q) (19)

wheree0 is the initial error vector,q is the quantization parameter

�1 = � exp((3=8)�(&10; &20)(�1 +�2)) (20)

$ =(1=2)d
1=2
1

kBk(exp(�(&10; &20)(�1 +�2)=8)

+ exp(�(&10; &20)maxf�1; �2g=8)): (21)

If n � n0("), thenke(�2n; t0; e0)k < ".
Proof: Define a functionV (e) for the system (17) as follows:

V (e) =
p
eT e = kek : (22)

It follows that

_V (e) � (1=2)�(&10; &20)V (e): (23)

Similarly from (17), we have

V (e(�n)) � d
1=2
1

V (e(��n )) + (1=2)kBkq: (24)

We then have

V (e(�2n; t0; e0)) � V (e0)=�
n
1 + (�1$=(�1 � 1))q: (25)

Thus, whenn � n0("), we haveke(�2n; t0; e0)k < ".
After the two Chua’s circuits are synchronized, it is desirable to have

larger impulsive intervals so that the utilization of channel bandwidth
can be significantly improved. To achieve this objective, the constant
� is chosen to be as small as possible. We also have to maintain the
synchronization of Chua’s circuit after the impulsive intervals are in-
creased. This is given by the following result.

Theorem 2: For any" > 0, we denote

~" = minf("=(exp(�(&10; &20)maxf�1; �2g=2)�kBkq=2)d�1=21
;

("� ~$ q)�g (26)

where

~$ = (1=2)d
1=2
1

kBk(exp(�(&10; &20)(�1 +�2)=2)

+ exp(�(&10; &20)maxf�1; �2g=2)): (27)

Whenn � n0(~"), we havejkXk � k ~Xkj < ".
Proof: The proof is similar to that of Lemma 1.

Based on the above results, our system will work as follows. At the
beginning, the constant� is chosen as large as possible, the impulsive
intervals are chosen as�1=4 and�2=4, respectively. After the two
Chua’s circuits are synchronized, the constant� is then chosen to be as
small as possible, and the impulsive intervals are chosen to be closer to
�1 and�2, respectively.
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(a) (b)

(c)

Fig. 1. Simulation results with speech signal. (a) Original speech signal. (b) Transmitted signal. (c) Recovered speech signal.

(a) (b)

(c)

Fig. 2. The error between the key sequences in the encrypter and decrypter when there is 1% parameter mismatch in (a)�; (b) �; and (c)m ; respectively.

Before we end this section, we shall analyze the effectiveness of our
proposed secure chaotic secure communication system. Let the average
effectiveness factor ofn time frames be given by

ATN (i; n) = 1� nL

n

l=1

Ti+l (28)

whereL is the length of the synchronization impulses.
Then, the effectiveness factor of a scheme can be defined as

STE = lim
n!1

ATE(0; n): (29)

Obviously, the greater theSTE, the higher is the effectiveness of the
scheme.

For the purpose of comparison, we letSTE,ST̂E andS ~TE denote
respectively the effectiveness factors of the schemes in [7], [14] and

the present approach. Then the maximum effectiveness of the various
schemes is

STEmax =1� L(v + 2j� m0j)=j ln(� d1)j (30)

ST̂Emax =1� L(v + 2j�m0j)=j ln(� d1)j (31)

S ~TEmax =1� L�(&10; &20)=j ln(� d1)j: (32)

Clearly, the effectiveness of the present scheme is improved when
compared to the schemes proposed in [7] and [14].

IV. SECURITY ANALYSIS

In the proposed scheme, we have used the magnifying glass to trans-
form the chaotic state variables into key sequences before encrypting
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the message signal. Assuming that there is a small mismatch that re-
sults in�xi(t) = �i(i = 1; 2; 3), then the signal getting through the
amplifier has

~k(t) = K

3

i=1

(~xi(t) + �i)
2

1=2

:

Since the parameterK is a large number, any mismatch will be enlarged
many times. Thus, even a minor mismatch of the parameters will pro-
duce a large decryption error, resulting in an incorrect decryption key
sequence.

The design of the value ofK is related to the asymptotic stable time
of the chaotic system and the desired precision of the system. A larger
K will produce a more secure system but it requires more synchroniza-
tion time. Thus, in practice, a tradeoff is required when we choose the
value ofK.

To recover the plaintext, the two chaotic systems in encrypter and
decrypter must be synchronized to get the same key sequences. The
intruder who wants to eavesdrop the transmission message must know
not only the exact parameters and the structure of the chaotic system
but also the synchronization impulses. Since the lengths of impulsive
intervals are not constant in our system, it is difficult to perform the
inverse prediction and to identify the synchronization impulses and the
scrambled signal if the lengths of impulsive intervals are unknown.

V. SECURESPEECH-TRANSMISSIONSYSTEM

In this section, we design a secure speech-transmission system using
the proposed chaotic cryptosystem. The speech is compressed by a
linear prediction coding (LPC) [16] before being encrypted. The stream
cipher encryption function is chosen as

E(p(t); k(t)) = k(t) + p(t):

The information signal is considered as an additional noise added
to the driving signal. It becomes “invisible” within the chaotic signal.
Moreover, in order to reduce the transmission burden, we need to de-
crease the amplitude of the transmitted signal in practice. So, when the
scrambled signalvR is obtained, the actual transmitted signal is that
divided byK. Therefore, in the receiver, the received signal needs to
be increasedK times before decryption.

The parameters chosen for our simulation are as follows.
In the two Chua’s circuits, the initial conditions are
given by [x1 (0)x2 (0)x3 (0)] = [�2:12�0:05 0:8] and
[~x1 (0) ~x2 (0) ~x3 (0)] = [�0:2�0:2 0:1], respectively. That is, the
encrypter and the decrypter are initially not synchronized. Just as in
[17], we letk = 1, m0 = �1:138411196, m1 = �0:722451121,
and � = 9:351590850, � = 14:790313805,

 = 0:016073965. It can be easily computed thatv = 14:4069,
&10 = 14:25; &20 = 16:8705; �(&10; &20) = 16:8385.

We choose the impulsive controller aŝ�1 = 0:5, B =
[�1:05 0 0; 0 � 1 0; 0 0 � 1]� = �1:05. Then,d1 = 0:0025. For
any� satisfying� > 1 and0 < j�d1j � 1, we choose� = 300 at the
beginning. After the two Chua’s circuits are synchronized, choose� =
1:1. We have�1(300) = 2:275� 10�2; �2(300) = 1:137� 10�2

and �1(1:1) = 12:76 � 10�2; �2(1:1) = 6:38 � 10�2.
As a comparison, their values in [14] can be computed as
�1(300) = 1:07 � 10�2;�2(300) = 5:4 � 10�3, and in [7],
�max(300) = 8:03 � 10�3. Therefore, in our scheme, the upper
bounds of impulsive interval are greatly improved.

In our experiments, we choose the impulsive intervals asT2i�1 =
5 � 10�3 s andT2i = 2 � 10�3 s at the beginning and choose them
asT2i�1 = 1:2� 10�1 s andT2i = 6� 10�2 s after the two Chua’s
circuits are synchronized. We useK = 100. The quantizer step is
q = 5 � 10�8.

In the transmitter LPC analysis, the original speech signal is divided
into frames of size 20 ms (160 samples), with an overlap of 10 ms
(80 samples). Fig. 1 shows the simulation results of the speech signal.
Fig. 1(a) is the original speech signal, the word “matlab.” Fig. 1(b) is
the transmitted signals and Fig. 1(c) is the recovered signal.

To illustrate the effectiveness of the proposed system, we study its
sensitivity when there is parameter mismatch in Chua’s circuit. We in-
vestigate the cases when�, �, andm0 have 1% mismatch in the re-
ceiver, respectively. Fig. 2 shows the key sequences errors between the
encrypter and the decrypter. We can see that the error signals are not
stable, that is, the key sequences in the encrypter and the decrypter are
completely different. The original speech signal cannot be recovered
from the incorrect reflection coefficients and the residual signal in the
receiver.

VI. CONCLUSION

We have proposed minor parameter mismatch and using an impul-
sive control synchronization strategy, the proposed system is shown to
be sensitive to parameter mismatch and it improves the security of the
chaotic secure communication system.
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