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Higher-order spectra have been used to investigate nonlinear interactions between frequency
modes in a driven Chua’s circuit. The spectra show that an energy transfer takes place to the
dominant frequencies in the circuit, i.e. the input frequency, the primary peak frequency and the
harmonics of both frequencies. Other frequencies couplings become less important. Obviously,
powers are (nonlinearly) related at different frequencies. When the circuit undergoes a period
doubling sequence to chaps, the gain is increasing.

1. Introduction

Recently, higher order spectral techniques were used
to study nounlinear dynamics equations, circuits and
systems like the well-known Chua’s circuit [Elgar
& Chandran, 1994]. Second order or bispectral
analysis isolates the nonlinearly induced phase
coupling between triads of Fourier modes in quad-
ratically nonlinear systems. Therefore, bispectral
analysis allows us to study quadratic nonlinear in-
teractions in the nonlinear system. In the same
manner, the third order spectral or trispectral anal-
ysis isolates the nonlinearly induced phase coupling
between quartets of Fourier modes in cubical non-
linear systems.

Elgar and Kennedy [1993] applied the bispec-
tral analysis technique to study the nonlinear in-
teractions in Chua’s circuit. They showed that the
quadratic nonlinear modal interactions in the
Rossler-type attractor are important, but that also
cubic nonlinear interactions are important to the
dynamics. For circuit parameters that lead to the
double scroll chaotic attractor Elgar and Kennedy
showed that the system then is certainly not domi-
nated by quadratic nonlinearities.

An interesting phenomenon in many forced non-
linear dynamics equations is the fact- that during
chaotic behavior, signal amplification of the input
signal or driven term is maximal [Halle et al., 1992;
Anishchenko et al., 1994]. This behavior can be
used to advantage in developing high sensitivity de-
tectors or low-noise amplification [Leenaerts, 1996].
However, so far this property of nonlinear dynamic
systems is not yet understood very well,

The primary purpose of the presented study
is to apply the higher-order spectral analysis tech-
nique to study the nonlinear modal interactions in
a driven Chua’s circuit and to obtain further under-
standing of the underlying physics of Chua’s circuit
[Madan, 1993].

Definitions and properties of the spectral analy-
sis technique, in particular bispectrum and trispec-
trum analysis, are reviewed in Sec. 2. Chua’s circuit
and some computational aspects related to this re-
search are discussed in Sec. 3. Section 4 deals with
the bicoherence spectra of the period-1 and period-
4 limit cycle behavior of Chua’s circuit when the
circuit is driven with a sinusoidal signal. In Sec. 5
the Rossler-type attractor and double scroll chaotic
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attractor will be studied by means of the bi- and tri-
coherence spectra. This is followed by conclusions
in Sec. 6.

2. Definitions and Properties of
Bispectrum and Trispectrum

Let a stationary random process be represented as

N
z(t) = ) Ane™rt + Afemiont (1)

n=1

where w is the radian frequency, t is time, the
subscript n is a frequency modal index, asterisk in-
dicates complex conjugation, and the A, are com-
plex Fourier coefficients. Define E[-] as the expected
value or average operator and suppose that the data
z(t) is discretely sampled. Then the power spec-
trum and discrete bispectrum can be defined as

P(wi) = 0.5E ALk A%, (2)
B(wy, wj) = E[AukAwi Al twj] (3)

respectively [Haubrich, 1965; Nikias & Raghuveer,
1987].

If for instance the modes are independent, the
average triple product of Fourier coefficients is zero,
resulting in a zero bispectrum. For a discrete time
series with Nyquist frequency wy, the bispectrum is
uniquely defined within a triangle in the (wi, w2)-
space with vertices at (w; = 0, wy = 0), (w; =
WN/2s w2 = wnyp) and (w1 = wy, w2 = 0). In
this paper, we will use the normalized magnitude

of the bispectrum, called the squared bicoherence,
defined as

, | B(w, wj)l|?
b* (w, UJJ) E[|Akawj‘2]E[lA“’k+wj|2] W

The bicoherence does give an indication of the rel-
ative degree of phase coupling between triads of
Fourier components with & = 0 for random phase
relationships and b = 1 for maximum coupling.

In a similar manner the discrete trispectrum
and tricoherence can be defined as

T(wh, W), i) = ElAuk Auj Awi Al puoj o] (5)
‘T(wka Wy, wi)|2 ’
|Akaijwi|2]E[|Awk+wj+wi|2]
(6)

tz(wka Wi, w’t) = E[

respectively. The tricoherence is a measure of the
fraction of the power of the quartet of Fourier com-
ponents (wg, wj, W;, Wet+j4+3) that is owing to cubic
nounlinear interactions. Agﬁin owing to symmetry
relations, the trispectrum needs only to be defined
in a subset of the complete (w1, w2, ws)-space. For
sum interactions, this reduced region of computa-
tion is a tetrahedron with base equal to the triangle
given above for the region of computation of the
bispectrum [Haubrich, 1965].

A 95% significance level on zero bicoherence is
given by Haubrich [1965] as

b2so; = 6/(degree of freedom in the estimate of %)
()

This means that there is only a 5% chance that
a bicoherence estimate would exceed this value if
the process were truly Gaussian. This relation-
ship holds for any higher-order coherence [Chan-
dran et al., 1993].

3. Chua’s Circuit

Chua’s circuit is given in Fig. 1 where the input
sinusoidal signal is injected as voltage in series with
the inductor. Tests with the input signal injected
at other places in the circuit indicate no significant
difference in the obtained results.

For the circuit the following parameters
are assumed: C; = 10 nF, Cy = 100 nF, L =
18 mH, Ry = 12.5 Q (inductor’s resistance), G, =
—T757.576 uS, Gy = —409.091 yS and E=1 V. We
will vary R as indicated in Table 1.

The amplitude of the input signal is chosen at
—60 dBV to assure that the circuit will remain in its
chosen mode. For instance, applying an input signal
with larger amplitude to the circuit operating in
period-4 limit cycle without the signal, the circuit is
forced into the Rossler-type attractor. The software
program INSITE [Parker & Chua, 1989] was used
to verify that this kind of behavior would not occur
during our experiments.

A fourth order explicit Runge-Kutta method
was used to compute the trajectories of the circuit.
The trajectory v,(t) (see Fig. 1) was sampled (sam-
pling frequency was 49.9 kHz) to obtain 192 short
records, each 512 points long. A Hanning window
with 75% overlap was applied to each short time
series to reduce spectral leakage. Power and higher-
order spectra were computed with a final frequency
resolution of 97 Hz. The spectra are statistically
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Fig. 1.

Table 1. Values of R for the cases
studied.

Case R(Ohm)
period-1 1887
period-4 18565
Rossler-type attractor 1848
double scroll attractor 1770

Table 2. Color scale,

minimum contour plottted

b=0.7 b=0.4

0.7 04
0.75 0.5
0.8 0.6
0.85 0.7
0.9 0.8
0.95 0.9
1 1

significant for bgzy, = 0.125. The correctness of the
used methods was verified by obtaining similar re-
sults as Elgar & Kennedy [1993].

The used scale for the contours in the spectra
plots is given in Table 2.

4. Bicoherence of Period-1
and Period-4

In this section the bicoherence and power spectra
for data obtained from a forced Chua’s circuit op-
erating in the limit cycle region are presented.

Chua's circuit and the characteristic of the nonlinear resistor. Dimensional values for the circuit are given in the text.

Let us first examine the period-1 limit cycle.
Figure 2(a) shows the bicoherence spectrum for the
situation without input signal. Clearly visible is the
strong quadratic coupling between motions at the
primary central peak frequency and its harmonics
[e.g. fi = 2.9 kHz, f, = 2.9 kHz, fi = 2.9 kHz,
fa = 5.8 kHz,...]. Figure 2(b) shows the bicoher-
ence spectrum when an input signal at 1200 Hz
is applied. Besides the fact that there is a cou-
pling between this input frequency and the central
peak frequency and its harmonics, energy is trans-
ferred to the primary peak motion and its harmon-
ics. Quadratic interactions between other frequen-
cies are reduced as can seen by comparing Fig. 2(a)
with 2(b).

This effect of transferring energy to only the
primary peak and its harmonics and the input fre-
quency can also be observed for a period-2 and
period-4 limit cycle. The latter situation is shown
in Fig. 3. The bicoherence for the situation with
applied input signal (frequency 1200 Hz) shows
quadratic coupling only between the sums and dif-
ferences of the input frequency and the central peak
frequency and between the central peak frequency
and its higher harmonics. Other frequency cou-
plings are not significance anymore.

5. Rossler-Type Attractor and
Double Scroll Attractor

The Rossler-type attractor is chaotic and has a fairly
broadband power spectrum. Motions corresponding
to the remnant of the primary peak (f = 2.9 kHz)
are quadratically coupled to both higher frequencies
(horizontal band of contours) and to lower frequen-
cies as can be seen from the vertical bands of con-
tours in Fig. 4(a). Applying an input signal with
frequency of 1 kHz the bicoherence does not differ
[Fig. 4(b)]. This means that the coupling of the
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Fig. 2. Bicoherence spectra of a period-1 limit cycle. The minimum contour plotted is b = 0.7. (a) without applied input
signal, (b) with input signal at f = 1200 Hz.

input frequency with the primary peak and its har-
monics is not quadratic.

the situation without an input signal and shows
that there exist cubic couplings between nearly all

. To verify whether or not the coupling is cubic
we computed the tricoherence. The plots in Fig. 5
are generated for a sum frequency fy = fi + fo +
f3 = 6800 Hz, i.e. twice the primary peak frequency
plus the input frequency. Figure 5(a) represents

the components of the system, conform the work
of Elgar & Chandran [1991]. However, these cou-
plings are weaker than the quadratic couplings, the
minimum contour plotted is b = 0.4. When the
input signal is applied (f = 1000 Hz), an energy
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Fig. 3. Bicoherence spectra of a period-4 limit cycle. The minimum contour plotted is b = 0.7. (a) without applied input

signal, (b) with input signal at f = 1200 Hz.

transfer can be observed in the tricoherence
[Fig. 5(b)]. The cubic coupling between the in-
put frequency and the peak frequency (fy = fo =
2900 Hz, fs = 1000 Hz) becomes visible as well as
between the input frequency and the higher har-
monics. These couplings are strong, other frequen-
«cies cubic couplings play a less important role. The

observation that the input frequency is at least cu-
bically and not quadratically related to the primary
peak frequency of the Chua’s circuit means also that
the amplification of this input signal is higher than
in the limit cycle regions. The limit cycle regions
were dominated by quadratic couplings between the
frequency modes.
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Fig. 4. Bicoherence spectra of a Rossler-type attractor. The minimum contour plotted is b = 0.7. (a) without applied input

signal, (b) with input signal at f = 1000 Hz.

Finally the double scroll chaotic attractor is in-
vestigated. As already shown by Elgar & Kennedy
[1998], the double scroll is not dominated by
quadratic interactions, the bicoherence spectrum
is empty. Higher-order interactions play here an
important role and therefore we investigated the
tricoherence (Figs. 6-7). The sum frequencies were

chosen to be 3900 Hz and 6800 Hz, while the min-
imum contour plotted are b = 0.4 and b = 0.7
respectively. '

First, we can observe a cubic coupling between
the first subharmonic of input frequency and the
primary peak frequency and vice versa [Fig. 6(b)], a
cubic coupling between the second harmonic of the
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Fig. 5. Tricoherence spectra of a Réssler-type attractor. The minimum contour plotted is b = 0.4. The constant sum
frequency is fs = 6800 Hz. (a) without applied input signal, (b) with input signal at f = 1000 Hz.

primary frequency and harmonics of the input fre-
quency ete. Notice that there exists only a weak cu-
bic relation between the main frequencies 2900 Hz,
2900 Hz and 1000 Hz [Fig. 7(b)]. Higher order spec-
tral analysis is needed to investigate whether higher
order couplings between the primary frequencies are
involved or not.

Second, we can again observe an energy trans-
fer. With applied input signal the couplings be-
tween the primary frequency and its harmonics and
the input frequency and its harmonics become more
dominate than without input signal. In general the
couplings in the double scroll attractor are stronger
than in the Rossler-type attractor. This will
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Fig. 6. Tricoherence spectra of a double scroll attractor. The minimum contour plotted is b = 0.4. The constant sum
frequency is fq = 3900 Hz. (a) without applied input signal, (b) with input signal at f = 1000 Hz.

influence the gain, the amplification of the input
signal will be higher in this case than in the Rossler-
type attractor.

6. Discussion and Conclusion

From the experiments we may conclude that when
an input signal is applied, the nonlinear coupling

between the input frequency and the central peak
frequency and higher order harmonics are dominat-
ing the bi- and tricoherence spectra. An energy
transfer is taken place to the dominating frequen-
cies in the circuit, nonlinear couplings between all
kinds of frequencies become less important.

We conjecture the existence of a power-
frequency mechanism, similar to the well known
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Fig. 7. Tricoherence spectra of a double scroll attractor. The minimum contour plotted is & = 0.7. The constant sum
frequency is fs = 6800 Hz. (a) without applied input signal, (b) with input signal at f = 1000 Hz.

Manley-Rowe equations [Manley & Rowe, 1956] or
its extensions [Tanaka, 1986]. These energy equa-
tions relate the average powers at different frequen-
cies in nonlinear time dependent elements. The
results of this research show that also in Chua's
circuit powers are (nonlinearly) related at different

frequencies, certainly when the circuit is driven by
a sinusoidal signal.

The obtained results are in agreement with the
experiments done by Halle et al. [1992]. There it
was shown that the amplification rises when the cir-
cuit undergoes a period-doubling sequence to chaos.
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We observe a similar effect. In the Rossler-like at-
tractor the coupling is weakly cubic where in the
limit cycle regions it is mainly quadratic. Therefore,
the amplification of the amplitude of the input sig-
nal will also be related to a more cubic nonlinearity
rather than a quadratic nonlinearity, resulting in a
higher gain when the circuit exhibits a Rossler-like
attractor. A similar reasoning can be held for the
double scroll region where the coupling is certainly
not quadratic and at least cubic.
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