International Journal of Bifurcation and Chaos, Vol. 7, No. 4 (1997) 903-909

© World Scientific Publishing Company

CONTROL BIFURCATION STRUCTURE OF RETURN
MAP CONTROL IN CHUA’S CIRCUIT

BYOUNG-CHEON LEE, KI-HAK LEE and BO-HYEUN WANG
Information Technology Laboratory,
LG Electronics Research Center, 137-140, Seoul, Korea

Received July 28, 1995; Revised February 26, 1996

We demonstrate that return map control and adeptive tracking can be used together to locate,
stabilize, and track unstable periodic orbits (UPOs). Through bifurcation studies as a function
of some control parameters of return map control, we observe the control bifurcation (CB)
phenomenon which exhibits another route to chaos. Nearby an UPO there are a lot of driven
periodic orbits (DPOs) along the CB route. DPOs are not embedded in the original chaotic
attractor, but they are generated artificially by driving the system slightly in a direction with
feedback control. Based on the CB phenomenon, our adaptive tracking algorithm searches for
the location and the exact control condition of the UPO by minimizing feedback perturbations.
We discuss the universality of the CB phenomenon and the possibility of immediate control
which does not require much prior analysis of the system.

1. Introduction

The basic concept of controlling chaos is that a lot
of unstable periodic orbits (UPQOs) are embedded
in a chaotic attractor and they can be stabilized
by applying small time-dependent parameter per-
turbation. Recently, extensive theoretical and ex-
perimental researches have been made in this field
that the concept of controlling chaos is considered
as quite common. Using these control methods, we
cannot only control a chaotic system to periodic mo-
tion, but also design new chaotic systems in which
we utilize chaotic behaviors in a positive sense.
OGY [Ott et al., 1990] proposed a feedback
control method which is able to stabilize UPOs
by making small time-dependent perturbation on
some available system parameters. Although OGY
method have provided an important breakthrough
of the theoretical aspect of controlling chaos, it is
a little complicated because we have to reconstruct
an attractor and establish a Poincaré map from an
experimental time series. Furthermore it requires
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much prior analysis of the system dynamics and its
responses on the change of system parameters. A
number of modifications of OGY have been intro-
duced depending on the systems under study.

Hunt [1991] proposed occasional proportional
feedback (OPF) method as an 1D simplification of
OGY. In this approach, an experimental time se-
ries is sampled with some sampling period T, and
the feedback control proportional to the difference
between the set point and the sampled data is ap-
plied to the system if the sampled data is within
the control window. It was proven to be very ef-
fective especially for high-frequency systems such
as chaotic lasers [Roy et al., 1992; 1994]. In this
approach, however, the sampling period must be
nearly matched with the system’s natural period
for successful control.

Peng and Petrov [1991, 1992] simplified OGY
in another way. They established an 1D return
map from an experimental time series and targeted
the fixed point of an unstable periodic orbit in
it. They demonstrated their method using the
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chemical Belousov—Zhabotinsky (BZ) reaction sys-
tem. Compared to OPF, it has the advantage of
using the natural period of the system.

For the tracking of UPO, Triandaf and Schwartz
[1993] used a predictor-corrector scheme as an ex-
perimental continuation method. Using the current
and the past control conditions, a new control con-
dition for a slightly moved system is predicted. Ap-
plying the predicted control, system responses are
analyzed and the control condition is corrected for
the error to be brought to zero. For example, the
fixed point X of an UPO is adjusted until the mean
of the parameter perturbation is brought to zero.

Petrov et al. [1994] proposed another tracking
procedure. Based on return map control, they ap-
plied mild convergent and mild divergent controls
alternately to the system, analyzed the system re-
sponses, and calculated a new control condition.

In this paper we use return map control and
adaptive tracking together to locate, stabilize, and
track UPO. Through bifurcation studies as a func-
tion of some control parameters of return map con-
trol, we study the change of the controlled periodic
orbit when some control parameters of return map
control are moved away from the exact control con-
dition to UPQ. We observe the control bifurcation
(CB) phenomenon which suggests the existence of
another route to chaos induced by feedback control.
We show that there are a lot of driven periodic or-
bits (DPOs) nearby an UPO along the CB route.
Our adaptive tracking method is based on the CB
phenomenon.

We first briefly review return map control,
the CB phenomenon, and our adaptive tracking
method. The experimental results applied to the
chaotic Chua’s circuit are continued. We further
discuss the universality of the CB phenomenon and
the possibility of immediate control which does not
require much prior analysis of the system.

2. Control and Tracking Algorithm

2.1. Control algorithm

We use return map control with the concept of con-
trol window. From a measured time series we col-
lect all the local maximum states X,, and construct
a return map from them. In the local vicinity of
the fixed point of an UPO, a local linear approxi-
mation can be made. Once an orbit X, occasion-
ally comes within the local linear region, we apply
feedback perturbation proportional to the difference

between the measured state and the targeted fixed
point to some accessible system parameters or state
variables.

The dynamics in the local vicinity of a fixed
point on the return map can be approximated by

Xnt+1=MXn — Xr)+ Xr, (1)

where X, is the nth local maximum state, Xy is the
targeted fixed point, and ) is the Floquet multiplier.
If the width of the control window is set to X, and
X, comes into the control window (Xr — X,, <
X, < Xr + X4), the feedback perturbation to sta-
bilize the UPO Xp can be calculated by [Petrov
et al., 1994]

b6p = k(Xn ~ Xr), (2)
where the proportionality constant & is given by
A
k= m—m— . (3)
0X
(=15~

dp

The feedback perturbation ép is applied only during
a kick time d. The kick time d is an another control
parameter and it should be less than the natural
period of the system.

The concept of the control window represents
the range of linear approximation of the dynamics.
If it is too narrow, the length of the chaotic tran-
sient will increase and the dynamics will be sensi-
tive to external noise reducing the stability of the
controlled periodic orbit. If it is too wide, the ap-
proximated linear control given by Egs. (1)—(3) will
fail. In this study we use a relatively wide con-
trol window for the global control of the period 1
UPO. We also try to show that our adaptive track-
ing method can be used to find the exact location
and the control condition of UPO over a wide con-
trol window. Furthermore we are interested in the
change of controlled orbits when the control condi-
tion moves away from the exact control condition
to UPO.

To stabilize higher periodic UPOs, one usually
has to construct a delayed return map of X, 1., ver-
sus X, where m is the period of UPO. But the intro-
duction of the control window makes it easier with
the same delay 1 return map. If we set a narrow
control window and only consider the states which
come into it, some high periodic UPOs can be se-
lected and stabilized depending on the selection of
a fixed point X and the width of a control window
Xuw.
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The feedback perturbation 6p is considered as
the control output of the feedback controller. De-
pending on the application of the control output,
feedback control can be classified as the parameter
perturbation and the state perturbation. In the next
section, we will show that both of them work well
under the same theoretical basis.

2.2. Control bifurcation

Bifurcation is one of the important characteristics
of chaotic systems which represents the hierarchi-
cal coexistence of order and chaos in a chaotic sys-
tem. The system bifurcation (SB) as a function of
some system parameters is the property of the sys-
tem itself. Now we consider the case of feedback
controlled chaotic systems and the bifurcation as
a function of some control parameters of feedback
control.

We are interested in the change of controlled
orbits when the control condition moves away from
the exact control condition to UPO. The control pa-
rameters in return map control are the fixed point
Xp, the proportionality constant k, the width of
the control window X,,, and the kick time d. As-
sume that we have the exact control condition to
UPOQ, ie.,, Xr = Xp, and k = ko, for some fixed
Xy = Xy, and d = dy. What happens if we fix
Xr = XF, and move k around ko, or fix k = ko
and move Xr around Xp,? Through bifurcation
studies as a function of some control parameters, we
observe the control bifurcation (CB) diagrams qual-
itatively similar to SB. We will present only several
results in the following section, but CB seems to be
a unwversal phenomenon which is widely observed in
many chaotic systems and in many feedback control
methods.

2.3. Adaptive tracking of unstable
periodic orbit

The CB route suggests a new possibility for the con-
trol and the tracking of chaotic systems. CB shows
that there is a bifurcation phenomenon as a function
of some control parameters and UPO is located in
the middle of CB. There are two directions in CB,
one to order and the other to chaos. If we check the
fluctuation of feedback perturbations along the CB
route, we observe that UPQO is the point of zero-
mean of the perturbations along the Xp-mode CB
and the point of minimum deviation of the per-
turbations along the k-mode CB. Based on these

facts, we can start control immediately, if we know
the approximate location of the fixed point and the
direction to order.

Firstly we get an approximate fixed point of
UPO from the analysis of the original return map.
To find the direction to order, we apply some small
test feedback controls to the system along the two
possible directions and analyze the system res-
ponses. If the dynamical range of the system shrinks
along one direction, it is the direction to order. For
the adaptive tracking of UPO we apply feedback
control with some starting control conditions, col-
lect all the data which come into the control window
of the return map, and analyze the running average
and running deviation of the data. We adjust the
fixed point Xr to the running average and adjust
the proportionality constant k£ for the running de-
viation to be brought to zero using the following
equations,

Xr(n+1) = Xp(n) + o(X* - Xr(n)), 4)
k(n+1) = k(n) + sgn(k(n))Bé*, (5)

where X* is the running average and 6* is the run-
ning deviation. « and [ are some stiffness constants
of the adjustment and sgn(k(n)) is the predeter-
mined direction to order. In this way we can locate
and stabilize UPO automatically.

When the system condition is moving slowly,
tracking of UPO can be made using the same
method. The change of system parameter causes
the change of feedback perturbation and our adap-
tive tracking procedure chooses a new control con-
dition for the feedback perturbation to be brought
to zero.

3. Results

3.1. Locating and stabilizing
unstable pertodic orbit

We demonstrate our control and tracking method
numerically with the well known Chua’s circuit
[Shil’'nikov, 1994]. It is a simple electronic circuit
which displays a variety of dynamical behaviors,
from chaos to order. Its simplified dynamical equa-
tions are

t=Aly -z - f(z)),
g=w_y+z7 (6)
é:_By7
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where f(z) = bz + 3(a — b)(|z + 1| — |z — 1|) is the
piecewise-linear negative resistance, and A, B, a,
and b are system parameters.

In this paper we use a standard system param-
eter set (A = 83, B = 14.87, a = —1.27, and
b = —0.68) which provides a double-scroll chaotic
attractor. To start return map control, we can con-
struct a return map from any one of the three time
series. In the point of the control output of the
feedback controller, we can apply feedback pertur-
bations to any one of either the system parameters
or the state variables. As a standard control con-
dition we construct the return map from the time
series z and perturb the parameter A (denote as
z — A). Furthermore, we set the width of the con-
trol window X, to 1.5 and the kick time d to 1.0.
Note that the natural period of the system is about
2.1 for the standard system parameter set.

To find the location of period m UPO we collect
all the local maximum values of z and construct the
return map of X, versus X,,. The intersection
of the collected data with the X,,4,, = X, bisectrix
is the fixed point Xr . The fixed point obtained in
this way has some experimental uncertainty. If we
apply our adaptive tracking method starting from
Xr, we can get the exact location of UPO and
stabilize it.

The experimentally obtained fixed point of the
period 1 UPO (UPO,) is Xp, = 4.2. Applying a
small test feedback control k; = —0.1, we observe
the shrinkage of dynamical range which represents
that the direction to order is negative in this case.
Starting from Xp = 4.2 and k; = —0.1, we apply
the adaptive tracking given by Egs. (4) and (5).
Figure 1 shows the process of automatic search and
stabilization of UPO;. Note that the fixed point X

5.0

is adjusted continually and the control signal con-
verges rapidly to zero. The experimentally tracked
exact location of the fixed point and its control con-
dition are Xp, = 4.2385 and ko = —0.2.

This is a simple experimental control procedure
and does not require much information on the sys-
tem dynamics. With an approximate location of the
fixed point and the direction to order, we can start
control immediately for any experimental system.

3.2. Control bifurcation

If the control parameters, Xr and k, are moved
away from Xpg, and kg, a control bifurcation (CB)
appears. Typical CB diagrams are shown in Fig. 2.
Figure 2(a) is the k-mode CB obtained by moving
k from 0 to —0.4 for a given Xrp = Xpg,. The di-
rection to order is negative in k. As k moves from
zero control (k = 0) to ky, = —0.184, a reverse bi-
furcation appears converging to UPO;. kp, is the
first bifurcation point between UPQO; and period 2
orbits. It represents the least control condition re-
quired to stabilize UPO;. When k moves further
over some critical value, k., = -—0.38, control to
UPO; becomes unstable and the system switches to
another periodic orbits. For a wide range of k (k. <
k < kp,), UPO; can be stabilized. Figure 2(b) is the
Xr-mode CB obtained by moving Xr from 4.2 to
4.6 for a given k = ky. Another CB diagram ap-
pears and the direction to order is negative in Xp.
Note that the characteristic period 7 double-scroll
orbit appears in Fig. 2(a) and a period 7 single-scroll
orbit appears in Fig. 2(b).

To get more systematic information about the
CB structure of return map control, we search for
the distribution of bifurcation points in the control
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Fig. 1.

Automatic search and stabilization of the period 1 UPO (UPO;) by using return map control and adaptive tracking.

Horizontal axis is time in arbitrary unit and vertical axis is the state variable z. Small horizontal signals around the z =0
axis are the control signals. Note that the fixed point Xr is adjusted continually and the control signal converges rapidly

to zero.
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Fig. 2. Typical control bifurcation diagrams. (a) k-mode
CB with Xr = Xg,, (b) Xr-mode CB with k = ko.

parameter space (X, k). Figure 3(a) shows the
distribution of bifurcation points around UPQO;. by
is the bifurcation points from period 1 to period 2
orbit, by from period 2 to period 4 orbit, and by
from period 4 to period 8 orbit, respectively. b3
and by are the locations of the periodic window of
period 3 and period 7, respectively. A unified and
continuous CB structure seems to exist in the con-
trol parameter space. Figure 3(b) shows the 3D
view of the mean of the feedback perturbations at

parameter perturbation

Xt

(b)

Fig. 3. Control bifurcation structure of return map control
in (X, k) plane. (a) Distribution of bifurcation points in
(Xr, k) plane, (b} 3D view of the mean of the feedback per-
turbation at the bifurcation points.

the bifurcation points. Note that the only UPO
is Xrp = X, for kc < k < kp, and the feedback
perturbations have zero mean only at UPO. The
possibility of adaptive tracking comes from this fact.
Indeed, the adaptive tracking given by Egs. (4) and
(5) represents the process of automatic search for
UPO along the CB route.

What are the periodic orbits appearing in the
CB diagrams? All the periodic orbits except UPO
are some kind of driven periodic orbits (DPOs)
which are generated artificially by driving the
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chaotic system in a direction with feedback con-
trol. To stabilize UPO, only small and zero-mean
feedback perturbation is required. On the other
hand, to stabilize DPOs, we should drive the sys-
tem with quite a lot and non-zero-mean feedback
perturbations. Figure 4 shows that the period 2
DPO generated by Xr = Xp, and k = —0.17 is
not embedded in the original chaotic attractor while
UPO; is embedded in it. If we want to control
the chaotic attractor to slightly different periodic
orbits rather than UPO and a small system mod-
ification is allowed, DPOs in the CB route can be
good candidates.

State : (3.9 4.516826) 1

Fig. 4. DPO, UPO and uncontrolled chaotic attractor in
return map. DPO is not embedded in the original chaotic
attractor while UPO is embedded in it.

Table 1. k& values of the first bifurcation points to the
period 1 UPO for all combinations of control input and con-
trol output. They are all searched and stabilized by using
adaptive tracking.

In T y z
Out Xr, =2.7771  Xp, = 0.5473  Xrp, = 4.2385
x +0.937 —3.170 —0.454
y +(*) —8.100 —0.805
z +1.410 —6.540 —~0.833
A —0.364 ~4.000 —0.184
B +0.384 +5.600 +0.165
a +0.099 +0.490 +0.053
b +0.326 +1.470 +0.214

(*) +1.563 with d = 1.8.

If we try the return map control and the adap-
tive tracking for other combinations of control in-
put and control output including both parameter
perturbation and state perturbation, we get simi-
lar results. Table 1 shows the k values of the first
bifurcation points for all combinations. The ex-
istence of the first bifurcation points implies the
existence of the CB phenomena and the control-
lability to UPO. Note that all combinations have

(b)

Fig. 5. Tracking UPO using our adaptive tracking method.
Circled solid line represents the tracked UPO. (a) Tracking
the period 1 UPO (UPO;) when A moves from 7.5 to 9.0,
(b) Tracking the period 3 UPO (UPO3) when A moves from
8.1 to 8.5.
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characteristic directions to order and the same UPO
can be stabilized by applying feedback perturbation
to any one of the system parameters or the state
variables. Both the parameter perturbation and the
state perturbation methods work well under the
same theoretical basis.

3.3. Tracking unstable periodic orbit

Figure 5 shows the results of tracking UPO using
our adaptive tracking method when the system pa-
rameter A moves slowly. Figure 5(a) represents the
tracking of UPO; when A moves slowly from 7.5
to 9.0. As A increases, the system goes to more
chaotic regime and the control to UPO; becomes
unstable. The adaptive tracking procedure given
by Egs. (4) and (5) detects the change of the sys-
tem responses under the parameter change and up-
dates the control conditions, Xz and k, until the
mean and the deviation of feedback perturbations
converge to zero. Figure 5(b) represents the track-
ing of the period 3 UPO (UPOj3) when A moves
slowly from 8.1 to 8.5. We target the topmost fixed
point among the 3 possible fixed points and select
a narrow control window of X, = 0.2. Depending
on the selection of a fixed point Xr and the width
- of a control window X,,, some high periodic UPOs
can be selected, stabilized, and tracked. But a nar-
row control window can make the control process
be sensitive to external noise.

4. Conclusions

We demonstrated that return map control and
adaptive tracking method can be used together not
only to track UPO, but also to locate and stabilize
UPO. Our adaptive tracking method is based on the
CB phenomenon. This is an experimental method
which does not require much prior analysis of the
dynamics, so it is easily applicable to a wide range of
experimental systems.

CB generated by feedback control provides an-
other route to chaos and it seems to be a universal
phenomenon. In this paper we only presented the
case of Chua’s circuit and the case of return map
control, but it is widely observed in many other
chaotic systems and in many other feedback control
methods. We are mainly interested in the control
to UPO, but DPOs existing nearby UPO along the
CB route are also available. DPOs are generated by
driving the system slightly in a direction with non-
zero-mean feedback perturbation and they are not
embedded in the original chaotic attractor. If we
need slightly different periodic orbits rather than
UPO and a small system modification is allowed,
DPOs can be good candidates.
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