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Experimental chaos from autonomous
electronic circuits

BY MICHAEL PETER KENNEDY

Department of Electronic and Electrical Engineering, University College Dublin,
Dublin 4, Republic of Ireland

Autonomous electronic circuits provide a convenient framework in which to study
chaotic phenomena. These systems are easy to build, easy to measure, and easy to
model using differential and difference equations. Furthermore, they operate in real
time, and parameter values are readily adjusted.

In this work, we discuss the nature of chaotic steady-state behaviour and describe
how it manifests itself in autonomous electronic circuits. We study state space, time-
and frequency-domain measurement techniques for characterizing steady-state be-
haviour. Because of its value as a paradigm for exploring chaos, we choose Chua’s
oscillator as the vehicle for our experiments.

1. Introduction

DC equilibrium, periodic, and quasi-periodic steady-state solutions of electronic cir-
cuits have been correctly identified and classified since the pioneering days of elec-
tronics in the 1920s. By contrast, the existence of chaos has only been widely ac-
knowledged in the past 30 years.

Even though the notion of chaotic behaviour in dynamical systems has existed
in the mathematics literature since Poincaré’s work at the turn of the century, un-
usual behaviour in the physical sciences as recently as the 1970s was being described
as ‘strange’ (Ruelle & Takens 1971). Today, we classify as chaos bounded recur-
rent motion in a deterministic dynamical system which is characterized by sensitive
dependence on initial conditions (Thompson & Stewart 1986; Ott 1993).

Although the future behaviour of a chaotic system is determined exactly by the
initial conditions, sensitive dependence on initial conditions means that the precision
with which these conditions must be specified grows exponentially with the length
of the prediction. Thus, a real chaotic system appears to exhibit ‘randomness’ in
the time domain because its initial conditions cannot be specified with sufficient
precision to make accurate long-term predictions of its behaviour.

The earliest experimental observations of chaos in electronic circuits were in forced
nonlinear oscillators, including the sinusoidally excited neon bulb relaxation oscilla-
tor studied by van der Pol & van der Mark (1927) and Kennedy & Chua (1986),
the forced negative-resistance oscillator of Ueda & Akamatsu (1980) and the driven
series-tuned RL-diode circuit (Linsay 1981; Testa et al. 1982). More recently, chaos
has been observed and studied in a variety of unforced autonomous electronic circuits.

In this work, we discuss the nature of chaotic steady-state behaviour and describe
how it manifests itself in real electronic circuits.
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14 M. P. Kennedy
2. Autonomous electronic circuits

A lumped electronic circuit (one whose physical dimensions are small compared to
the wavelengths of its voltage and current waveforms (Chua et al. 1987)) containing
resistive elements (resistors and voltage and current sources) and n independent
energy-storage elements (capacitors and/or inductors) can be described by a system
of ordinary differential equations (called state equations (Chua et al. 1987)) of the
form,

X(t) = F(X(1),1),

where X (t) = (X, (t), X2(t),..., X,(t))" € R" is called the state vector and F is
called the vector field. X (t) denotes the derivative of X (t) with respect to time.

If the vector field F' depends explicitly on ¢, then the system is said to be non-
autonomous. Non-autonomous electronic circuits are discussed in the paper by Lak-
shmanan in this volume. If the vector field depends only on the state and is inde-
pendent of time t, then the system is said to be autonomous and may be written in
the simpler form:

X = F(X). (2.1)

In this work, we focus exclusively on autonomous electronic circuits. The time
evolution of the state of an autonomous electronic circuit from an initial point X,
at t = 0 is given by

¢:(Xo) = Xo + /OtF(X(T»dT, t € Ry,

where ¢; : R — R" is called the t-advance map. ¢, takes state X to state ¢;(X)
t seconds later. The solution ¢;(Xy) is called a trajectory through Xy, and the set
{p:(Xy),t € Ry} is an orbit of the system (2.1). The collection of maps {¢; }, which
describe the evolution of the entire state space with time, is called the flow.

(a) Steady-state solutions

An autonomous electronic circuit is an example of a deterministic dynamical sys-
tem. A deterministic dynamical system is one whose state at any time is completely
determined by its initial state and the rule (called its dynamic) which determines
the time evolution of its state space. Here, the initial state is X, the dynamic is
X = F(X), and the state at any time ¢ is given by X (t) = ¢¢(Xp)-

From a given initial state, a trajectory of a dissipative circuit wanders through
the state space, asymptotically approaching a region of the state space called a limit
set. (A dynamical system (2.1) is said to be conservative if V- F(X) = 0V X and
dissipative if V - F < 0 in some region of the state space (Ott 1993). Dissipation
enables trajectories to converge asymptotically towards limit sets in forward time.
Real electronic circuits are normally dissipative due to heat loss in positive-valued
resistors.) In the limit set, the system exhibits steady-state behaviour. An attracting
limit set (more commonly called an attractor) is a set of states to which nearby states
evolve in forward time. In an experiment, only attracting steady-state solutions can
be observed. Therefore, the steady-state behaviour of a real circuit corresponds to
motion on an attracting limit set. Because of the experimental focus of this work.
we consider only attracting limit sets.

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 1. Simulated state space trajectory, time waveform, and power spectrum for Chua’s
oscillator (see §4). Periodic steady-state, all spikes in the power spectrum are harmonically

related to the fundamental frequency. Time plot: horizontal axis, ¢ (ms); vertical axis, Vi(t) (V).
Power spectum: horizontal axis, frequency (kHz); vertical axis, power of V,(t) (dB).

(i) DC solution

The simplest type of limit set is an equilibrium point (also known as a stationary
point or a fized point), which corresponds to a DC solution of a circuit. Xq is an
equilibrium point of (2.1) if F(Xgq) = 0. Equivalently, ¢:(Xgq) = XgVt.

(ii) Periodic solution

A state X of the dynamical system (2.1) is called periodic if there exists T' > 0 such
that ¢ (X) = X. A periodic point which is not an equilibrium point is called a cycle.
A limit cycle is an isolated periodic solution; in state space the orbit corresponding
to a limit cycle trajectory is a simple closed curve I' C R™.

Since a limit cycle trajectory visits each point on I' with period T', the n component
waveforms X;(¢) of this trajectory are periodic with period T'.

If the vector field of an autonomous electronic circuit is a continuous function of
the state (as is typical in real electronic circuits), then no trajectory of the system
may go through the same point twice in two different directions. In particular, no two
trajectories may cross each other; this is called the non-crossing property (Thompson
& Stewart 1986).

The implication of this is that a second-order autonomous circuit (whose tra-
jectories lie in the plane) can exhibit just two types of steady-state behaviour: an
equilibrium point or a limit cycle (Vidyasagar 1978). An autonomous circuit contain-
ing just two energy-storage elements cannot produce a steady-state behaviour which
is more complicated than this. In particular, a continuous system described by an
autonomous second-order differential equation cannot exhibit chaos; for that, three
differential equations are required.

(iii) Quasi-periodic solutions

While a three-dimensional state space is mecessary to produce chaos in an au-
tonomous continous-time circuit, it is not sufficient. Another form of steady-state
behaviour which can occur in a state space of dimension greater than two is quasi-
periodicity.

A quasi-periodic function is one which may be expressed as a countable sum of
periodic functions with incommensurate frequencies, i.e. frequencies which are not
rationally related. For example X (¢) = sin(t) + sin(2t) is a quasi-periodic signal. In

Phil. Trans. R. Soc. Lond. A (1995)



16 M. P. Kennedy
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Figure 2. Simulated state space trajectory, time waveform, and power spectrum for Chua’s os-
cillator (see §4). Quasi-periodic steady-state, discrete power spectrum with incommensurate
frequency components. Time plot: horizontal axis, ¢ (ms); vertical axis, V1 (¢) (V). Power spec-
trum: horizontal axis, frequency (kHz); vertical axis, power of V2(t) (dB).
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Figure 3. Stretching and folding mechanism of chaos generation in Chua’s oscillator (see §4).
(a) Simulated spiral Chua chaotic attractor showing affine regions (D_1 and D;), separating
planes (U_; and U1), equilibrium points (P-,0, and Py), and their associated eigenspaces (E"
and E°). (b) Experimentally observed attractor. Vertical axis: Vi (1 V/div); horizontal axis:
V2 (200 mV/div). Positive-going intersections of the trajectory through the plane defined by
I3 = 1.37 mA are shown highlighted.

the time domain, a quasi-periodic signal looks like an amplitude-modulated wave-
form. In state space, a quasi-periodic limit set corresponds to a torus (see figure 2).

(iv) Chaotic steady-state solution

Chaos may be defined as bounded steady-state behaviour in a low-dimensional
determanistic dynamical system which is not an equilibrium point, not periodic, and
not quasi-periodic (Parker & Chua 1989).

Attracting equilibrium point, periodic, and quasi-periodic solutions of determinis-
tic dynamical systems have the property that trajectories from nearby initial condi-
tions which converge to the same limit set become correlated with time. By contrast,
two trajectories started close together on an attracting chaotic limit set diverge expo-

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 4. Experimental manifestations of chaos in the double-scroll Chua attractor from Chua’s
oscillator (R = 1800 Q, C1 = 9.4 nF) (see §4). (a) Two-dimensional projection of the attractor
in state space; vertical axis: Vi (1 V/div); horizontal axis: V2 (200 mV/div). (b) Time domain
waveforms. Upper trace: Vi(t) (2 V/div); lower trace: V2(t) (500 mV/div); horizontal axis: ¢
(2 ms/div). (¢) Power spectrum of V5(t). Vertical axis: power (dB); horizontal axis: frequency
(kHz). (d) Time domain waveforms showing sensitivity to initial conditions. Vertical axis: V4 (¢)
(2 V/div); horizontal axis: ¢ (500 ps/div).

(a) R A R (b

Figure 5. (a) Chua’s oscillator consists of a linear inductor L with series resistance Ry, a linear
resistor R, two linear capacitors C; and C2, and a nonlinear resistor Ng. (b) Three-segment
piecewise-linear driving-point characteristic of the Chua diode Ng.

nentially and soon become uncorrelated; this is called sensitive dependence on initial
conditions and gives rise to long-term unpredictability.

How can nearby trajectories diverge exponentially and yet remain within a bounded
limit set? This may be achieved by repeated stretching and folding of the flow, as
shown in figure 3.

Consider the spiral Chua attractor shown in figure 3. A trajectory spirals away
from the equilibrium point P_ along the plane E°(P-) until it enters the Dy region,
where it is folded back into D_; and returns to the plane E°(P_) close to P_. The

Phil. Trans. R. Soc. Lond. A (1995)



18 M. P. Kennedy

recurrent stretching and folding continues ad infinitum, producing a chaotic steady-
state solution (Kennedy 1993).

Note that two trajectories passing very close to Xy on E°(P_) are separated quite
dramatically when they cross the plane U_; and enter Dy. By the time they return
to D_q, they are no longer close. This illustrates sensitive dependence on initial
conditions.

In the time domain, a chaotic trajectory is neither periodic nor quasi-periodic but
looks unpredictable in the long-term. This long-term unpredictability manifests itself
in the frequency domain as a broad ‘noise-like’ power spectrum.

Figure 4a shows experimental manifestations of chaos in the well-known double-
scroll Chua chaotic attractor from Chua’s oscillator (Chua et al. 1986).

3. Necessary conditions for chaos in autonomous electronic circuits

We have seen that a dynamical system described by two autonomous first-order
ordinary differential equations can have a DC steady-state solution or a periodic
steady-state solution. A third state variable is required in order to exhibit more
complicated steady-state behaviour.

While a linear circuit can in principle exhibit quasi-periodic motion, the underlying
stretching and folding mechanism for generating chaos requires a nonlinearity.

We summarize these observations in the following necessary conditions. In order
to exhibit chaos, an autonomous electronic circuit consisting of resistors, capacitors,
and inductors must contain at least one locally active resistor, one nonlinear element,
and three energy-storage elements.

The active resistor supplies energy to separate trajectories, the nonlinearity pro-
vides folding, and the three-dimensional state space permits persistent stretching
and folding in a bounded region of state space without violating the non-crossing
property of trajectories.

4. Chua’s oscillator

The most widely studied continuous-time autonomous electronic circuit which
satisfies the necessary conditions for chaos is Chua’s oscillator (this volume). The
circuit contains a linear inductor, two linear resistors, two linear capacitors, and a
nonlinear resistor Ny called a Chua diode (Kennedy 1992).

Chua’s oscillator is described by three ordinary differential equations:

dV; G 1
Tl E(Vz -W) - o V1),
v, G 1

Aly _ 1y, R,

a L7 L
where G = 1/R and f(VR) = G Vg + %(Ga — Gy)(|Vr + E| — |Vk — E|) is the
three-segment piecewise-linear driving-point characteristic of the Chua diode (see
figure 5b).
This circuit is canonical in the sense that every continuous three-dimensional odd-
symmetric piecewise-linear vector field may be mapped onto it. The circuit can ex-
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Chaos from autonomous electronic circuits 19

hibit every dynamical behaviour known to be possible in an autonomous dynamical
system described by a continuous odd-symmetric three-region piecewise-linear vector
field (Chua, this volume).

In this work, we use Chua’s oscillator to illustrate by experiment some aspects of
chaos in autonomous electronic circuits. Our practical realization of this circuit is
detailed in Appendix A.

The piecewise-linear nature of the nonlinearity in Chua’s oscillator divides the
state space of the circuit into three distinct affine (linear with an offset) regions,
labelled D_; (V; < E), Dy (|Vi| < E), and D, (Vi > E), separated by boundary
planes U_; and U; (see figure 3a). In each of the affine regions, the circuit has an
equilibrium point with saddle-focus stability (Kennedy 1993). Associated with each
equilibrium point are two complex eigenvalues with a corresponding eigenplane E°,
and a real eigenvalue with associated eigenvector E".

A trajectory in the Dy region may be decomposed into its components along the
stable complex eigenplane £°(0) and along the unstable real eigenvector E*(0). The
component along E°(0) spirals towards the equilibrium point at the origin while the
component in the direction E*(0) grows exponentially away from the origin, so that
the trajectory eventually enters one of the outer regions.

A trajectory in the D_; region may be decomposed into its components along the
unstable complex eigenplane E°(0) and along the stable real eigenvector E*(0). The
component on E°(P_) spirals away from the equilibrium point P_ along this plane
while the component in the direction E"(P_) tends asymptotically towards P_. The
strong rate of contraction along the E*(P_) direction means that a trajectory spends
most of its time in D_; coasting very close to E<(P_) (see figure 3). Consequently,
the system appears locally to be almost two-dimensional and can therefore be readily
analysed using approximate one-dimensional discrete maps, as we shall see in §5e.

5. Experimental manifestations of chaos

(a) Bifurcations and chaos

It is often difficult to conclude from experimental data alone whether irregular
behaviour observed in an experiment is due to measurement noise or to underlying
chaotic dynamics. If, upon adjusting a control parameter, one of the known routes
to chaos is observed, this indicates that the dynamics might be chaotic.

A bifurcation is a qualitative change in the steady-state solution of a system. A
route to chaos is a continuous path with respect to the parameters of a dynamical
system along which the steady-state behaviour of the system changes (through a
series of bifurcations) from a stationary or periodic solution to chaos.

The period-doubling route to chaos is characterized by an infinite cascade of period-
doubling bifurcations as a parameter is increased or decreased. Each period-doubling
bifurcation transforms a limit cycle smoothly into one with half the frequency (twice
the period), thereby spreading the energy of the system over a wider range of frequen-
cies. An infinite cascade of such doublings results in a chaotic trajectory of infinite
period with a broad frequency spectrum which contains energy at all frequencies.

By reducing the variable resistor R in figure 5 from 2000 €2 towards zero, Chua’s
oscillator exhibits a Hopf-like bifurcation from DC equilibrium, a sequence of period-
doubling bifurcations to a spiral Chua chaotic attractor, windows of periodic be-
haviour, double-scroll Chua chaotic attractors, and a boundary crisis (Kennedy

Phil. Trans. R. Soc. Lond. A (1995)



20 M. P. Kennedy

Figure 6. Experimental bifurcation sequence for Chua’s oscillator showing the period-doubling
route to chaos (a)—(d), a period-three limit cycle in a periodic window (e), and a spiral Chua
chaotic attractor (f). (a) C1 = 10.2 nF (period-one limit cycle); (b) C1 = 9.8 nF (period-two
limit cycle); (¢) Cy = 9.7 nF (period-four limit cycle); (d) C1 = 9.6 nF (chaotic attractor with
Mébius band-like structure); (e) C1 = 9.55 nF (period-three limit cycle); (f) C1 = 9.5 nF (spiral
Chua chaotic attractor). Horizontal axis: Va(¢) (200 mV/div); Vertical axis: Vi(¢) (1 V/div).
Negative-going intersections of the trajectory through the plane defined by I3 = 1.37 mA are
shown highlighted.

1993). An alternative way to view a bifurcation sequence is by adjusting C;. Fix
the value of R at 1800 2 and vary C. To obtain a two-dimensional projection of the
three-dimensional state space, plot V] versus V5, for example, using an oscilloscope in
X-Y mode. The full range of dynamical behaviours from equilibrium through Hopf,
and period-doubling bifurcations, periodic windows, spiral Chua and double-scroll

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 7. Experimental bifurcation sequence for Chua’s oscillator showing period-doubling
(a)-(d), a periodic window (e), and spiral Chua chaotic attractor (f). Compare with figure 6. (a)
C1 = 10.2 nF (period-one limit cycle); (b) C1 = 9.8 nF (period-two limit cycle); (¢) Ch = 9.7 nF
(period-four limit cycle); (d) C1 = 9.6 nF (chaotic attractor with Mdbius band-like structure);
(e) C1 = 9.55 nF (period-three limit cycle); (f) C1 = 9.5 nF (spiral Chua chaotic attractor).
Upper trace: Vi(t) (2 V/div); Lower trace: V2(t) (500 mV /div); Horizontal axis: ¢ (500 ps/div).

Chua chaotic attractors can be observed as C is reduced from 11.0 to 7.0 nF (see
figures 6 and 4).

(b) Randomness in the time domain

Figures 7a—f show the voltage waveforms Vi(t) (upper trace) and Va(t) (lower
trace) corresponding to the attractors shown in figures 6a—f. The ‘period-one’ wave-
form is periodic; it looks like a slightly distorted sinusoid. The ‘period-two’ waveform

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 8. Measured power spectra for attractors in Chua’s oscillator using an HP3582A Spectrum
Analyzer with Hanning window. Compare with figures 6a- f and 7a—f. (a) Period-one limit cycle,
the power spectrum consists of a fundamental frequency and higher harmonics; (b) period-two
limit cycle, this periodic signal is characterized by a discrete power spectrum; (c) period-four
limit cycle, the fundamental frequency is roughly one quarter that of (a); signal is characterized
by a discrete power spectrum; (d) chaotic attractor, the chaotic waveform has a broadband power
spectrum but still strong periodicity; (e) period-three limit cycle, the fundamental frequency is
at approximately one third that of (a); (f) spiral Chua chaotic attractor, broad spectrum with
little periodicity evident. Horizontal axis: frequency (kHz); Vertical axis: power (mean squared
amplitude of V5 (t)) (dB).

is also periodic. It differs qualitatively from ‘period-one’ in that the pattern of a large
peak followed by a small peak repeats approximately once every two cycles of the
period-one signal; this is why it is called ‘period-two.” Similarly, the pattern of large

Phil. Trans. R. Soc. Lond. A (1995)
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and small peaks in the ‘period-four’ waveform repeats apprOXImately once every four
cycles of the period-one signal.

In contrast to these periodic time waveforms, Vi (t) and V,(t) for the chaotic at-
tractors ((d) and (f)) are quite irregular and do not appear to repeat themselves in
any observation period of finite length. Although they are produced by a third-order
deterministic dynamical system, the patterns of large and small peaks look ‘random.’

(¢) Broadband power spectrum

Every periodic signal may be decomposed into a Fourier series—a weighted sum of
sinusoids at integer multiples of a fundamental frequency (Oppenheim et al. 1983).
Thus, a periodic signal appears in the frequency domain as a set of spikes at the fun-
damental frequency and its harmonics. The amplitudes of these spikes correspond to
the coefficients in the Fourier series expansion. The Fourier transform is an exten-
sion of these ideas to aperiodic signals; one considers the distribution of the signal’s
power over a continuum of frequencies rather than on a discrete set of harmonics
(Oppenheim et al. 1983).

The distribution of power in a signal X (¢) is most commonly quantified by means
of the power density spectrum, often simply called the power spectrum. The simplest
estimator of the power spectrum is the periodogram (Oppenheim et al. 1983) which,
given N uniformly spaced samples X (m/fs), m = 0,1,...,N — 1 of X(t), yields
N/2 + 1 numbers P(nfs/N), n=0,1,...,N/2, where f is the sampling frequency.

If one considers the signal X (t) as being composed of sinusoidal components at
discrete frequencies, then P(nfs/N) is an estimate of the power in the component at
frequency nfs/N. By Parseval’s theorem, the sum of the power in each of these com-
ponents equals the mean squared amplitude of the N samples of X (¢) (Oppenheim
et al. 1983).

If X(t) is periodic, then its power will be concentrated in a DC component, a
fundamental frequency component, and uniformly spaced harmonics. In practice,
the discrete nature of the sampling process causes power to ‘leak’ between adjacent
frequency components; this leakage may be reduced by ‘windowing’ the measured
data before calculating the periodogram (Oppenheim et al. 1983).

We remarked earlier that the period-one time waveform corresponding to the at-
tractor in figure 6b, is almost sinusoidal; we expect, therefore, that most of its power
should be concentrated at the fundamental frequency. The power spectrum of the
period-one waveform V(t) shown in figure 8a consists of a sharp spike at approxi-
mately 2.8 kHz and higher harmonic components which are over 30 dB less than the
fundamental.

Because the period-two waveform repeats roughly once every 0.7 ms, this periodic
signal has a fundamental frequency component at approximately 1.4 kHz (see fig-
ure 8b). Notice, however, that most of the power in the signal is concentrated close
to 2.8 kHz. The period-four waveform shown in figure 7¢ has a fundamental frequency
of approximately 0.7 kHz (see figure 8c).

The spiral Chua chaotic attractor is qualitatively different from these periodic
signals. The aperiodic nature of its time-domain waveforms is reflected in the broad-
band noise-like power spectrum (figure 8d). No longer is the power of the signal
concentrated in a small number of frequency components; rather, it is distributed
over a broad range of frequencies. This broadband structure of the power spectrum
persists even if the spectral resolution is increased by sampling at a higher frequency

s
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Figure 9. Sensitive dependence on initial conditions. Two simulated time waveforms Vi (t) from
Chua’s oscillator starting from initial conditions which differ by less that 0.01% in the V2 coor-
dinate. Note that the trajectories diverge within 5 ms because the solid one crosses to D; before
the dashed one. Horizontal axis: ¢ (ms); vertical axis: Vi (V). Compare with figure 4d.

The chaotic time waveform due to motion on the double-scroll Chua chaotic at-
tractor also possesses a broad noise-like power spectrum, as shown in figure 4c.

(d) Sensitive dependence on initial conditions

Consider once more the spiral Chua attractor shown in figure 3a. A trajectory
originating in the lower affine region labelled D_; spirals away from the equilibrium
point until it crosses the separating plane U_; and enters the middle region, where it
is comes under the influence of the Dy dynamics. In the case illustrated, the dynamics
of the middle region turn the trajectory back into D_;.

In the double-scroll Chua attractor (figure 4), more complicated dynamics are
possible. The complex eigenplane E°(0) separates trajectories entering from an outer
region into those which are returned directly to that region and those which transfer
across Dy. In this case, two trajectories starting from distinct but almost identical
initial states in D_; will remain ‘close together’ until they reach the separating plane
U_, (Vi = —F in this example). Imagine that the trajectories are still ‘close’ at the
knife-edge presented by E°(0) at U_1, but that one trajectory crosses into Dy slightly
above E°(0) and the other slightly below FE°(0). The former trajectory returns to
D_ 4, while the latter crosses over to D;; their ‘closeness’ is lost.

The time-domain waveforms Vi (t) for two such trajectories are shown in figure 9a.
These are solutions of Chua’s oscillator with the same parameters as in figure 3; the
initial conditions are (I3, V5, V1) = (1.810 mA, 222.014 mV, —2.286 V) [solid line| and
(I3, V2, V1) = (1.810 mA, 222.000 mV, —2.286 V) [dashed line|. Although the initial
conditions differ by less than 0.01% in just one component (V3), the trajectories
diverge and become uncorrelated within 5 ms (Kennedy 1993).

Because chaotic systems are deterministic, two trajectories which start from iden-
tical initial states will follow precisely the same paths through the state space. In
practice, it is impossible to construct two systems with identical parameters, let alone
to start them from identical initial states. However, recent work by Pecora & Carroll
(1990) and others has shown that it is possible to synchronize two chaotic systems so
that their trajectories remain close (Ogorzalek 1993; Hasler 1994). These ideas are
now being exploited in secure communication systems where information modulated
onto a ‘random’ chaotic carrier can be demodulated using a synchronized receiver
(Dedieu et al. 1993; Hasler, this volume).

(e) Poincaré sections and Poincaré maps

Thus far, we have considered autonomous continuous-time electronic circuits in
the time and frequency domains. Further insight into the steady-state behaviour of
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Figure 10. A transverse Poincaré section ¥ through the flow of a dynamical system induces a
discrete Poincaré map from a neighbourhood U of the point of intersection Xq to 3.

a circuit may be gained by means of a geometrical technique due to Poincaré. The
idea is to take a cross-section through the limit set in state space and to consider
the discrete-time dynamical system induced by intersections of trajectories with this
section. In this way, a correspondence can be derived between the original continuous-
time system and a discrete-time system of lower dimension.

A Poincaré section of an n-dimensional autonomous continuous-time dynamical
‘system is an (n — 1)-dimensional hyperplane ¥ in the state space which is intersected
transversally (nowhere tangentially) by trajectories of the system (Guckenheimer &
Holmes 1983).

Let " be a closed trajectory of the flow of a continuous vector field F', and let
X be a point of intersection of I' with X. If T is the period of I" and X € ¥ is
sufficiently close to Xq, then the trajectory ¢,(X) through X will return to ¥ after
a time 7(X) ~ T and intersect the hyperplane at a point ¢,x)(X), as shown in
figure 10.

This construction implicitly defines a function (called a Poincaré map or first
return map) G : U — ¥

where U is a small region of X close to Xq.

If trajectories of the continuous-time dynamical system are non-crossing, there is
a one-to-one correspondence between a trajectory of (2.1) and a sequence of iterates
of the discrete-time system,

Xpi1 = G(X), (5.1)

defined by the Poincaré map. Indeed, X = ¢, (Xo), where {t, k € N} are the times
of intersection of ¢;(Xg) with 3.

In the case of a three-dimensional autonomous continuous-time system, the cutting
plane ¥ is two-dimensional. For example, in Chua’s oscillator, we can define a cutting
plane by I3 = Is. The flow of the circuit takes a point (Vi(tx), Va(tx), Is) to the
point (Vi (txy1), Va(tes1), Is). Thus, we have a two-dimensional Poincaré map from
(Vi(t), Va(ty)) € ¥ to (Viltgir), Va(tesr) € 2.

Since the construction of the Poincaré map preserves the one-to-one relationship
between the three-dimensional flow and the two-dimensional discrete map, the map
itself cannot be one-dimensional. However, because of very strong dissipation in the
circuit (for this set of parameters) in the direction of E"(P_), the Poincaré section
is almost one-dimensional. In fact, repeated stretching and folding of the flow pro-
duces a multi-layered fractal structure (Kennedy 1994b) with dimension only slightly
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Figure 11. (a) Experimental Poincaré section for Chua’s oscillator. Horizontal axis: Va(t)
(200 mV/div); vertical axis: Vi (¢) (1 V/div). The points of intersection of the trajectory as I3
decreases through Is; ~ 1.37 mA are highlighted. (b) Approximate one-dimensional map derived
from (a). Horizontal axis: Va(ty) (1 V/div); vertical axis: Va(tx+1) (1 V/div).

greater that unity. Thus, we can form an approzimate one-dimensional Poincaré map
from V5 (tx) to Va(tri1). We can visualize the underlying shape of this map by plotting
successive iterates of Va(tr11) versus Va(¢;), as shown in figure 11b.

The stretching and folding mechanism for chaos generation in this system can be
inferred by comparing figures 11la and 3a. Figure 11a shows highlighted negative-
going intersections of the trajectory ¢¢(Xy) with I3 = Iy, while figure 3a shows the
points of intersection of the trajectory when I3 increases through Ix.. The bundle of
trajectories in figure 11a (which looks like a line segment) is stretched apart by the
flow, folded over on itself like a horseshoe (figure 3b), and flattened once more onto
the plane E°(P_). Recurrent stretching and folding of the flow in this way produces
chaos.

For small values of V5(t;), the trajectory lies close to the plane E(P_), where it
follows a logarithmic spiral about P_. This manifests itself in the approximate one-
dimensional map as an almost linear region with slope greater than unity. Beyond
the value of V5(t;) which corresponds to the position of the fold in the cross-section
(figure 3b), the trajectory is reinjected from Dy into D_; progressively closer to P_ as
Va(tx) increases. The resulting approximate one-dimensional map has a characteristic
unimodal or one-hump shape.

Note that the approximate one-dimensional map is not invertible: two different
values of V,(tx) can yield the same value of Va(ty,1). It is no coincidence that the
underlying one-dimensional map is non-invertible when the attractor is chaotic. In-
deed, a discrete-time system described by an invertible one-dimensional map cannot
exhibit chaos (Ott 1993).

A consequence of Sharkovsky’s theorem (Sharkovsky 1964) is that if G is a uni-
modal map and X1 = G(X}) has a period-three orbit, then it has an orbit of every
period (Collet & Eckmann 1980). Thus, if the approximate one-dimensional Poincaré
map has a period-three orbit (see figure 12¢) then it also possesses orbits of all other
periods (although none of these may be attracting) (Li & Yorke 1975). This fact
can be exploited to produce periodic behaviour of arbitrary period by stabilizing the
appropriate unstable periodic orbit (Ott et al. 1990: Ogorzatek 1994. 1995).
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Figure 12. Experimental approximate one-dimensional maps for V2(t) from Chua’s oscillator.
Compare with figure 6a—f. (a) A period-one limit cycle appears as a fixed point of the approxi-
mate Poincaré map, Vayq1 = Vai; (b) period-two limit cycle, Vayro = Vai; (¢) period-four limit
cycle, Vapiq = Vay; (d) chaotic attractor with Mobius band-like structure, steady-state iterates
of the approximate one-dimensional map lie on a unimodal curve; (e) period-three limit cycle,
Varysz = Vag; (f) spiral Chua chaotic attractor, iterates of the approximate one-dimensional
map suggest the underlying unimodal shape. Horizontal axis: Va(tx) (1 V/div); vertical axis:
Va(tk+1) (1 V/div).

6. Concluding remarks

In this work, we have discussed the nature of chaotic steady-state behaviour and
have described how it manifests itself in autonomous electronic circuits. In our discus-
sions of state space, time- and frequency-domain measurement techniques for char-
acterizing steady-state behaviour, we have concentrated exclusively on the Chua’s
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Figure 13. Practical implementation of Chua’s circuit using two op amps and six resistors to
realize the Chua diode (Kennedy 1992). Component values are listed in table 1. Ry = 12.5 Q is
the parasitic DC series resistance of the TOKO inductor.

circuit paradigm (Madan 1993). Experimental chaos has of course been reported in
many autonomous electronic circuits other than those introduced by Chua. Circuits
known to exhibit chaos include the continuous-time systems studied by Arnéodo et
al. (1984), Dmitriev & Kislov (1984), Freire et al. (1984), Ogorzatek (1989), Nishio
et al. (1990), and Kennedy (1994b), the hysterestic chaotic circuits studied by New-
comb (1983) and Saito (1985, this volume), and the discrete-time circuits developed
by Rodriguez-Vazquez et al. (1987).

Appendix A. Practical realization of Chua’s oscillator

Figure 13 shows a practical implementation of Chua’s oscillator using a dual op
amp and six resistors to implement the Chua diode Np (Kennedy 1992).

The op amp sub-circuit consisting of Ay, Ay and R;—Rg functions as a nonlinear
resistor Np with driving-point characteristic as shown in figure 5b. Using two 9V
batteries to power the op amps gives VT = 9V and V~ = —9 V. From measurements
of the saturation levels of the AD712 outputs, Eg,, ~ 8.3V, giving E ~ 1V. With
Ry = R3 and Rs = Rg, the nonlinear characteristic is defined by G, = —1/R; —
1/]{4 = —50/66 InS7 Gb = 1/R3 — 1/R4 = —9/22 IHS, and FF = RlEsat/(Rl + Rg) ~
1V (Kennedy 1992).

Op amps A3 and A, are connected as optional unity-gain buffers. Their outputs
are Vi and Vs, respectively. Op amp A5 and resistor R; together constitute a current-
to-voltage converter: V3 = I3 R5. If it is not required to measure I3, node 7 should be
shorted to node 0.

Appendix B. Electronic realization of a variable capacitor

A variable capacitor may be implemented by using the op amp circuit shown in
figure 14. Op amp A is configured as a unity-gain buffer. It applies a voltage of
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Table 1. Component list for Chua’s oscillator with buffered outputs shown in figure 13

element description value tolerance

Ay op amp (1/2 AD712, TL082, or equivalent)
As op amp (1/2 AD712, TL082, or equivalent)
As op amp (1/4 AD713, TLO084, or equivalent)
Ay op amp (1/4 AD713, TL084, or equivalent)
As op amp (1/4 AD713, TL084, or equivalent)

(oh capacitor 10 nF +5%
Cy capacitor 100 nF +5%
R multi-turn potentiometer 2 kQ

R 1/4 W resistor 3.3k +5%
R 1/4 W resistor 22 kQ +5%
Rs3 1/4 W resistor 22 kQ +5%
Ry 1/4 W resistor 2.2 kO +5%
Rs 1/4 W resistor 220 Q +5%
Rs 1/4 W resistor 220 Q +5%
R 1/4 W resistor 1kQ +5%
L inductor (TOKO type 10RB or equivalent) 18 mH  + 10%

ViRy/(Rs + Ry) to the bottom end of capacitor Cs. If Rg and Ry are sufficiently
large, then the current into the capacitor is given by

Ry )dV]

L~G (Rg Y Ry) dt’

and the effective capacitance between the terminals is C3Rg/(Rg + Ry).

If Cy is fixed, and Rg and Ry are the resistances above and below the tap on a
potentiometer, then the effective capacitance can be varied between 0 and Cj by
moving the position of the tap. The potentiometer must be chosen so that it has
negligible loading effect on the rest of the circuit. For the set of parameters used in
this paper, suitable choices for C5 and (Rg + Ryg) are 15 nF and 500 k€2, respectively.

Appendix C. Poincaré section and approximate one-dimensional map

Figure 15 shows the circuitry used to generate the Poincaré sections and approxi-
mate one-dimensional maps shown in figures 6 and 12.

The cutting plane ¥ is defined by the reference voltage Vs, and may be moved
by adjusting the position of the tap on potentiometer R;o. The logic output of the
comparator CMP is toggled when the selected input V;(#) crosses through the chosen
reference level. If switch Sy is open, the exclusive-OR gate converts negative-going
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Figure 14. Practical implementation of variable capacitor for Chua’s oscillator.

Viees Vi

3/

Vi) Vi)

Figure 15. Circuitry to highlight a Poincaré section in Chua’s oscillator and to display the
corresponding approximate one-dimensional map. Component values are listed in table 2.

transitions of V;(¢) through Vs into positive-going edges. If Sy is closed. a negative-
going input produces a positive-going edge at the output of this gate.

A positive-going edge from the output of the exclusive-OR gate triggers monostable
MS1 at time t;. The time-constant of MS1 is chosen so that it produces a “high” pulse
P, of width 6t ~ 4 ps. The falling edge of this pulse triggers the second monostable
(MS2), which produces a non-overlapping ‘high’ pulse P, also of width 6t.

An approximate one-dimensional map may be obtained by selecting V;(t) with
switch Ss. At time ¢, timing pulse P; clocks the previously stored sample V;(t,_1)
of V;(t) into sample-and-hold circuit SHX. Pulse P, then performs two functions.
It provides a blanking signal V for the Z-modulation input of an oscilloscope (via
the inverter 1) to highlight the point X (¢;) € ¥. It simultaneously clocks the new
sample Vj(ty) into sample-and-hold SHY.

The approximate one-dimensional map of V; may be viewed by connecting the
outputs of SHX and SHY to the X- and Y-inputs. respectively. of an oscilloscope in
X-Y mode.

A complete list of components is given in table 2. The analogue power rails (V.
and V) are £9 V: the logic supply Ve is 5 V. We reconmnend that bypass capacitors
of at least 0.1 pF cach should be connected between the power supplies and ground.
as close to each of the integrated circuits as possible.
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Table 2. Component list for Poincaré section and approximate one-dimensional map circuitry

element description value tolerance

CMP comparator (LM311)

XOR  exclusive-OR gate (1/4 74HC86 or equivalent)

MS1 monostable (1/2 T4AHCT123 or equivalent)

MS2 monostable (1/2 T4AHCT123 or equivalent)

SHY sample and hold (LF398)

SHX sample and hold (LF398)
Cy capacitor 10 nF +10%
Cs capacitor 10 nF +10%
Cs capacitor (polystyrene) 1 nF +10%
Cr capacitor (polystyrene) 1nF +10%
Cs capacitor 1 nF +10%
Rio multi-turn potentiometer 10 kQ2

Ri1 1/4 W resistor 1k +5%
R 1/4 W resistor 10 k2 +5%
Ris3 1/4 W resistor 1k +5%
Ria 1/4 W resistor 1k +5%
Ris 1/4 W resistor 51 Q +5%
Rie 1/4 W resistor 10 k2 +5%
Ri7 1/4 W resistor 1k +5%
D, diode (1N4148 or equivalent)
Q1 NPN transistor (2N2222 or equivalent)
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