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IV. CONCLUSION

The various models associated with the Chua’s circuit have been
recently found helpful in demonstrating and explaining the various
facets of chaos [3]. Attempts are made in the literature to discover
new members of the large family of Chua’s circuits and to find their
close relatives [8], [9]. An example for such a recently discovered
relative is described in [10], where a nonautonomous related circuit
is discussed. (The latter circuit can also be regarded as a relative of
the RL diode circuit). The present communication deals with the well
known Colpitts oscillator, which is shown to be topologically similar
to Chua’s circuit. It is also shown here that when the nonlinearity of
the active device in the Colpitts oscillator is modified to be purely
odd, then the circuit exhibits chaotic phenomena closely related to
those exhibited by the classical [3] Chua’s circuit. Hence, yet another
relative of Chua’s circuit has been discovered.

A reviewer has pointed out that recent works of Chua et al. [8],
[9] have established mathematically the exactly detailed relationship
between Chua’s oscillator and relatively many other 3-D systems.
The works prove that such 3-D systems are topologically conjugate
to Chua’s oscillator (or in circuit terms, they are equivalent to
Chua’s oscillator [11]). A Chua’s oscillator is obtained by adding
a resistor in series with the inductor in Chua’s circuit [11]. The
classical Chua’s oscillator [11] is, therefore, conjugate to the circuit
in Fig. 1(b). Hence, by demonstrating that there exists a robust
relationship between the Colpitts oscillator in Fig. 1(a) and the Chua’s
oscillator [11], one can show that the two systems of Fig. 1 are not
simply loose relatives, but they are even strongly related and can be
regarded as being conjugate one to the other. Reference [9], which is
strongly related to [8], cites an example due to Arneodo et al. [12] of
a 3-D system that is strictly proved in [9] as being conjugate to the
Chua’s oscillator. It is interesting that the latter example ((10) in [9])
is in fact the same equation as the one that represents the presently
discussed Colpitts oscillator (3). Hence, we can conclude that the two
member systems of Fig. 1 are not merely related, but they are even
conjugate one to the other. Therefore, due to the helpful remarks of
the reviewer, we are assured that the answer to the question posed in
the title of the present communication is strongly yes.
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On the Relationship Between the Chaotic
Colpitts Oscillator and Chua’s Oscillator

Michael Peter Kennedy

Abstract— In this letter, we show that the two-region third-order
piecewise-linear dynamics of the chaotic Colpitts oscillator may be
mapped to a Chua’s oscillator with an asymmetric nonlinearity.

1. INTRODUCTION

It has recently been shown that the dynamics of a chaotic Colpitts
oscillator (shown in Fig. 1(a)) can be captured by a third-order
autonomous circuit model containing just one nonlinear element—-a
two-segment piecewise-linear resistor (Fig. 1(b)), [1].

The circuit is described by a system of three autonomous state
equations

Ve
Cl th =IL—IC
VBE Vee + Ve
TBE _ _YEETVBE _p g
Cs 7 Ror t—1Is
I .
Ld_Lt =Vee - Ve + Ve — ILRL.

We model the transistor as a two-segment piecewise-linear voltage-
controlled resistor Nr and a linear current-controlled current source.

Thus
1,=10 if Vee <Vrw
B= Zﬂ-%lﬂ if Ve > Vry
Ic =8rlB

where Vry is the threshold voltage (= 0.75 V), Ron is the small-
signal on-resistance of the base-emitter junction, and (Br is the
forward current gain of the device.

Fig. 2 shows a chaotic attractor in this two-region piecewise-linear
oscillator.
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Fig. 1. (a) BJT Colpitts oscillator and (b) its equivalent circuit.

In this letter, we address the question: what is the connection be-
tween this two-region third-order piecewise-linear dynamical system
and Chua’s oscillator [2] (shown in Fig. 3)? We will show that the
chaotic Colpitts oscillator may be mapped to a Chua’s oscillator with
the same eigenvalue pattern if the Chua diode [3] is allowed to have
an asymmetric driving-point characteristic.

II. CHUA'S OSCILLATOR

Chua et al. have shown that almost every continuous third-
order odd-symmetric three-region piecewise-linear vector field F’
may be mapped onto a Chua’s oscillator (whose vector field F is
topologically conjugate to F') by means of the following algorithm
(2}

1) Calculate the eigenvalues (u},u5,u3) and (v, vh,vs) asso-
ciated with the linear and affine regions, respectively, of the
vector field F' of the circuit or system whose attractor is to
be reproduced (up to linear conjugacy) by Chua’s oscillator.

2) Find a set of circuit parameters {C1,C2, L, R, Ry, Ga, Gs, E}
so that the resulting eigenvalues y; and v; for Chua’s oscillator
satisfy p; = p; and v; = v}, j = 1,2,3.

III. PIECEWISE-LINEAR STRUCTURE OF
THE CHAOTIC COLPITTS OSCILLATOR

Cutoff region (Ve < Vru):

In the cutoff region, the chaotic Colpitts oscillator shown in
Fig. 1(b) is described by

dVep _ 1
a "

dVee 1 Ver — 1 I Vee
dt ~  ReeC: BE C, L ReeCo
dl 1 1 Vi
e Ve + Ve - oI + =S
dt L L L L

The equilibrium point in this region is given by

Ve Vee - Vee
Vee | = -VeEe
I 0

If =Vee > Vru, then this equilibrium point lies outside the cutoff
region and is called a virtual equilibrium point of the system [4]; in
fact, it lies in the forward active region.

Two-region piscewise-linear Colpitts osoillator

1.000
e.350 [
C ]
-23.300 |— -
xt23 N ]
~1.250 _—‘ —-:
-2.900 L N L. i 1 ) l - 1 L [ 1 1 1 L 1
1.000 2.250 3.3500 4.730 6.000
»x[1]
Fig. 2. INSITE simulation of the piecewise-linear BIT Colpitts oscillator

model. Model parameters are: Voo =5V, Rp, =350, L =985 uH, C; =
54 nF, C2=54 nF, REg =400 §, and Vg g = -5 V. The BIT is specified by
three parameters: Vry = 0.75 V, Ron = 1009, and Bz = 200. Horizontal
axis: x[1] = Ve (V); vertical axis: x[2] = Vgg (V).

Fig. 3. Chua’s oscillator consists of a linear inductor L with series resistance
Ry, a linear resistor R, two linear capacitors C; and C3, and a nonlinear
resistor Ng.

Forward active region (Vg > Vru):

In the BJT’s forward active region of operation, the circuit is
described by

dVer 3r 1 BrVrH
= —-— —1 B o~
dt RonCh Vez + Ch L RonC}
dVeg 1 1 1
=- Veg — =1
dt (RE}-;Cz + RONCZ) BE Co L
_ Vee Vru
RppCy;  RonCh
I, 1, 1 Ry Vee
F——EVCE+LVBE LIL+ I
This region has an equilibrium point defined by
Vee
VBe | =
I

- —VggRon+(1+8F)REEV- BrRL(VEE+VS
Vee + —YeeRon (R’ Br)REEVTH + 8r L( £p TH)
—VEERONHHI-BF)REEVTH

R
_ Br(Vep+Vry)
Rl

where ' = Ron + (1 + 3r)Rge. This equilibrium point lies in
the forward active region.

Thus, the chaotic Colpitts oscillator [1] has a true equilibrium point
in its forward active region and a virtual equilibrium point associated
with the cutoff region, also lying in the forward active region.

Chua’s oscillator always possesses an equilibrium point at the
origin (in the so-called Dy region) because the driving-point charac-
teristic of its nonlinear resistor goes through the origin. In addition, it
has a symmetrically-placed pair of true or virtual equilibrium points
associated with the outer regions [4].
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Therefore, we identify the forward active region with the Dy region
of Chua’s oscillator and the cutoff region with the outer regions (D -
and D;) and attempt to map the dynamics of the chaotic Colpitts
oscillator to Chua’s oscillator by following the algorithm presented
in [2].

IV. FrROM EIGENVALUES TO CIRCUIT PARAMETERS

Step 1:

Let {p1,p2,P3, 91,92, g3 } be the equivalent eigenvalue parameters
defined by

v

pro= i+ e+
P = papy+ paps + paph
pa = pipaps
(0}
@ = ntrtu
g2 = Vivh+ vhvh + vhuy
@ = v

where (u, pb, 5) and (v1, v, v3) denote the eigenvalues associated
with the vector fields in the Do and D; regions, respectively.
The eigenvalues of the forward active region are the roots of the
characteristic polynomial
Go | Rp\,2 G.RL 1 1 G,
23 22 4L 2 — A =2
+(cg+ L) +( ¢, T 16 Y1 )M T e
where G, = 1/Rpe+1/Ron and G, = 1/Ree+(1+3r)/Rox.
We label these roots g}, p5, and 5.
The eigenvalues of the cutoff region in the Colpitts oscillator are
defined as the roots of the characteristic polynomial
Gy Rp\,: GyR;, 1 1 G}
N4 +=)A — ]2
+(C2 tI ) * ( c. Ta * ch) t1c.c
where Gy = G} = 1/Rpr. We label these eigenvalues vi, v3, and
7
vs.

Step 2:
Define
. _ P3—493 — P2742
k= p3+(p1—q1)(p1 PI_QI)
— _(pazas _ (p2—22 _ P22
b= - (B - (328 (o - 2amn)
— _(p2za2) _ k
ks = Pi—q1 =3
ki = —k1k3+k2(ﬁ).
Step 3:
The corresponding normalized circuit parameters are given by
¢ =1
C o= -
3
L = -&
kg
R = -k
1):2k2 . 2)
Ry = _k;k4
— _ pP2—4 k
Go = -m+(B=8)+R
—_ P2—42 k
Go = m+(p1—q1)+7€_§1

This equation is a corrected version of (23) in [2].

Step 4:

The breakpoints £ F of the piecewise-linear Chua diode can be
chosen arbitrarily since the choice of E does not affect either the
eigenvalues or the dynamics; it simply scales the circuit voltages.

Chua’s osoillavor

71.@3

.
4
.
-

33.52

TT T[T 177
i
T

°.90 T T

{1}

-35.52

T T prTrTT
Il
T

| IR
@.188

1 o1 1 I 11 - b L1 1
-9.188 9. 000
(2}

-71.03
-9.376

L4
uLlllllJlllllllLlJ
~
*

Fig. 4. Periodic attractor in Chua’s oscillator with parameters given by (3)
and E = 1 V. Horizontal axis: x [2] = V2 (V); vertical axis: x[1] = V7 (V).

Step 5:

Finally, one may transform the time and current scales by means
of frequency and impedance scaling factors ks and kz

Cl — ﬁc&
Cy — kzlkf Cs
L - %L

R — kzR
Ro — kzRo
Go — £=Ga
Gy — EGb'

V. SIMULATION RESULTS

Throughout the following discussion, we consider a single set of
model parameters Voo =5V, Ry =35Q, L =985 pH, C1 =54
nF, C2=54 nF, Rpe =400 Q, and Vg = -5 V. The BIT is specified
by three parameters: Vo = 0.75 V, Ron = 10082, and 3r = 200.

The eigenvalues in the forward active and cutoff regions are (to
ten significant figures)

py = —2042294.350
b = 727741.4596 + j1703284.985
ph = T27741.4596 — j1703284.985

vy = —22674.29324
vy = —189475.9761 + j589887.5958
vy = —189475.9761 — j589887.5958.

With &y = 0.01 and kz = 102, the corresponding parameters for
Chua’s oscillator (to ten significant figures) are

¢, = 100.0000000pF

C, = 39.23427816nF

L = 6.747352901mH

R = 8.253831974kQ . 3)
R = 3.139471850%

G. = —120.9243651uS

Gy = -121.1095502u8

Fig. 4 shows the attractor of Chua’s oscillator for this parameter
set with £ = 1 V. This periodic attractor, which lies in all three
regions of the state space, is qualitatively different from the original
chaotic Colpitts attractor, which was confined to just two regions.
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Gb

Fig. 5. Three-segment piecewise-linear driving-point characteristic of the
asymmetric Chua diode. The inner and outer regions have slopes G, and
Gy, respectively. The breakpoints are at —E~ and Et.

The problem may be removed by breaking the symmetry of the
nonlinearity to ensure that the trajectory is confined to the inner
and just one of outer regions. In particular, we can move the left
breakpoint to the right so that the steady-state trajectory never
enters the D region. The modified Chua diode nonlinearity, defined
explicitly by

Ir = f(Vgr)

(Ga — Gb) (E+ - E”) +GyVr

1 _
+5(Ga— Gb)(|VR +E7 |- |Vk - E+|)
is shown in Fig. 5. A piecewise-linear voltage-controlled nonlinear re-
sistor of this type may be implemented using the synthesis procedure
described in [5]. We refer to Chua’s oscillator with an asymmetric
nonlinearity as an asymmetric Chua’s oscillator.

With E~ = 0.02 V and Et = 1V, the resulting attractor in the

asymmetric Chua’s oscillator is confined to the D_; and Dy regions
and is chaotic (see Fig. 6).

N =

VI. CONCLUDING REMARKS

The dynamics of the continuous two-region piecewise-linear Col-
pitts oscillator may be mapped onto an equivalent asymmetric Chua’s
oscillator by choosing the breakpoints of the asymmetric Chua diode

Asymmetric Chua’s oscillator

TI T T [T TP T [ VI v oToImT

-19.23
=-7.6 4.6 16.9

%x[2) (1E-3)

Fig. 6. Chaotic attractor in the asymmetric Chua’s oscillator with parameters
given by (3), E~ =0.02 V, and E* =1 V. Horizontal axis: x[2] = V5
(V); vertical axis: x[1] = Vi (V).

such that the resulting attractor is confined to two regions of the state
space. The dynamics of the circuits are equivalent in the sense that
the vector field of the Colpitts oscillator is linearly conjugate to that
of the asymmetric Chua’s oscillator.
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