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Experimental Hyperchaos in Coupled Chua’s Circuits

Tomasz Kapitaniak, Leon O. Chua, and Guo-Qun Zhong

Abstract—In this letter we report experimental observation of hyper-
chaotic attractors in open and closed chains of Chua’s circuits.

L. INTRODUCTION

In the last 20 years it has been shown that chaotic behavior is
typical for three dimensional systems [1]-[3]. In higher (at least four)
dimensional systems, besides chaotic attractors characterized by one
positive Lyapunov exponent, it is possible to find hyperchaotic attrac-
tors with two (or more) positive Lyapunov exponents. Hyperchaotic
attractors have been observed in a number of numerical studies
[4]-[8]. Laboratory experiments have also revealed the existence of
hyperchaos in hydrodynamic systems [20] and semiconductor device
[21].

II. HYPERCHAOTIC ATTRACTORS

In what follows we investigate the hyperchaotic attractors in a
chain of coupled identical Chua’s circuits, as shown in Fig. 1. The
state equations for the circuit of Fig. 1 are as follows
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Each Chua’s circuit [9], [10] contains three linear energy-storage
elements (an inductor and two capacitors), a linear resistor, and
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Fig. 1.

Five identical coupled Chua’s circuits forming a ring.

a single nonlinear resistor Ng, namely, Chua’s diode [10] with a
three-segment linear characteristic defined by

F(vR) = mova + 5(m = mo)llor + Byl ~ on — Byl] @)

where the slopes in the inner and outer regions are mo and mi,
respectively, and B, denotes the breakpoints. Each Chua’s circuit
is coupled to the next one in such a way that the difference between
the signals vg; " and vgé :

dt) = K (v - o) N©)

is introduced into each ith circuit as a negative feedback current.
K > 0 is the stiffness of the perturbation, which we consider as a
control parameter. In our experiments we took C; = 10 nF, B, = 1
V, Cz = 99.34 nF, m; = —0.76 mS, mo = —0.41 mS, L = 18.46
mH, R = 1.64 KQ, i.e., we assume that each Chua’s circuit operates
on the chaotic double-scroll Chua’s attractor [10], [11].

System (1) is a 15-dimensional dynamical system and its behavior
is characterized by 15 Lyapunov exponents. Due to our assumption
that each Chua’s circuit operates on the chaotic double-scroll Chua’s
attractor, system (1) can have from one to five positive Lyapunov
exponents depending on the value of coupling stiffness K;. For
experimental observation of hyperchaotic attractors we exploit some
results from chaos synchronization theory [12]-[18]. When both
Chua’s circuits are operating in a chaotic regime, it is possible to
achieve synchronization [8], [18] using the above coupling. It was
shown by de Sousa et al. [14] that the boundary of the possible
synchronization (according to the definition by Pecora and Carroll
[12]) and nonsynchronization is strictly connected to the transition
from chaotic to hyperchaotic behavior. This result can be generalized
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Fig. 2. Experimental two-dimensional projections of hyperchaotic attractors: K _5 = 0.01; (a) v(cll) versus vgl) , Horizontal axis is v(clg , 1 V/div; Vertical
axis is "(c?l)’ 1 Vidiv, (b) U(C12>, versus lrgg, Horizontal axis is v(CIQ), 200 mV/div; Vertical axis is v(gg, 200 mV/div, (c) v(le versus vgz), Horizontal
axis is vl), 1 V/div; Vertical axis is vC), 200 mVi/div.

to the following conjecture: If in a 3N-dimensional chain of Chua’s  A;5 = —3.88. Hyperchaotic attractors with five positive, three zero

circuits (1) no two circuits synchronize with each other, then system
(1) has a hyperchaotic attractor with N positive Lyapunov exponents.
This property suggests that we observe the system behavior of vﬁf%
versus vg)l, where i # j,i,j = 1,2,...,5, plots. If two of the
Chua’s circuits ¢ and j synchronize with each other, the plot vgi
versus vgz will be a straight line. On the other hand, if all such plots
exhibit complicated structures, we have a hyperchaotic attractor with
five positive Lyapunov exponents.

In Fig. 2(a)~(c) we have shown some two-dimensional projections
of the attractor of system (1) for the case where no two Chua’s
circuits synchronize with each other. Our experimental results are
in good agreement with the numerical simulations of (1), as can be
seen in Fig. 3 (a)-(c) where we have presented the simulated results
corresponding to Fig. 2(a)—(c) plots obtained using the software
INSITE [19]. Calculation of Lyapunov exponents showed that the
attractors of Figs. 2 and 3 are characterized by five positive Lyapunov
exponents: A7 = 0.44, \s = 0.43, X3 0.43, A4 0.41,
/\5 = 041, /\(; = 0, )\7 = 0, As = 0, )\9 = —0.1, )\10 = —0.1,
A —3.60, A2 —3.69, A3 —=3.73, A4 -3.79,

and seven negative Lyapunov exponents are robust in system (1) and
we can observe them for K; < 0.016.

Hyperchaotic attractors can also be observed in the case of an open
chain of unidirectionally coupled Chua’s circuits (i.e., Ks = 0 in
(1)), as shown in Fig. 4. In this case, we also observed hyperchaotic
attractors with five positive Lyapunov exponents for K;_4 < 0.21.
For example, for Ki_4 = 0.01 we have an attractor with the
following Lyapunov exponents: A; = 0.43, A\, = 0.42, A3 = 0.41,
/\4 = 041, /\5 = 040, As = 0, /\7 = 0, )\8 = 0, )\9 = 0,
A0 =0, Ai; = —3.80, Ad12 = —3.82, A13 = —3.82, A14 = —3.83,
/\15 - -384

The difference in the numbers of zero and negative Lyapunov
exponents in the spectrum of hyperchaotic attractors associated with
the open and closed chains, respectively, of Chua’s circuits suggests
different topological structures of these attractors. Unfortunately, due
to the high-dimensionality of our system we are unable to observe
these differences on two-dimensional projections of the attractor: in
both cases these projections are similar and indistinguishable. As an
example compare Fig. 5 with Fig. 2(a).
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Fig. 3. Numerical two-dimensional projections of hyperchaotic attractors: K _5 = 0.01; (a) v(cll) versus v(cal) , (b) v(c}; versus vg‘; ©) v&’ versus vg‘;?
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Fig. 4. Five identical unidirectionally coupled Chua’s circuits.
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