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Derivative Control of the Steady State in
Chua’s Circuit Driven in the Chaotic Region

Gregg A.i Johnston and Earle R. Hunt

Abstract—We experimentally demonstrate that Chua’s circuit,
operating in the double-scroll chaotic regime, may be brought to
either of the two unstable, stationary state fixed points by means
of derivative control.

HE CONTROL of dynamical chaos has been demon-

strated in a number of vastly different physical systems
including electronic circuits [1], lasers [2], rabbit hearts [3],
and chemical systems [4]. The elimination of unstable behavior
in such systems is generally advantageous, as the system
under study is transformed from a state of unpredictability
into one of the absolute regularity. Most work in the field
of controlling chaos has concentrated on the stabilization of
periodic orbits embedded in the chaotic attractor which can
be achieved by means of feedback methods following from
the Ott-Grebogi-Yorke (OGY) technique [5]. However, in a
number of chaotic systems there exists at least one solution,
which is nonoscillatory. In many such cases, this steady state
is the most practical operation mode, and the onset of chaotic
or periodic oscillations is a hinderance to the system. A
practical example is a laser, as in [6], which has a steady state
output intensity for a limited range of pump excitation power
followed by the onset of regimes of oscillations and chaos as
input power is increased. The applicability of such a system
is limited by the range of its steady state operation, hence the
extension of this range is the goal of recent research effects.

The occasional proportional feedback (OPF) method [1],
a fast analog modification of the OGY technique, has been
successful in stabilizing periodic orbits in a number of systems
including Chua’s circuit [7]. It was found that, in addition to
unstable periodic orbits, the steady states in Chua’s circuit may
be stabilized as well with periodically applied corrections [8].
These steady states can be tracked through the chaotic regime
by constant adjustment of control parameters as the system
is moved through its otherwise fully chaotic range. Thus the
OPF method was demonstrated as a means of dramatically
increasing the regime of non-oscillatory operation.

In a recent article Bielawski et al. [9] suggest that many
systems which have an unstable steady state destabilizing by
a Hopf bifurcation, as does Chua’s circuit, may not be readily
controlled with feedback proportional to the signal alone. They
suggest and demonstrate the use of continuous feedback which
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Fig. 1. Simple diagram of Chua’s circuit, with chaotic variable VR, and the
differentiating circuit. The feedback signal, which is proportional to the time
derivative of Vg, continuously modulates the negative resistance value of the
Chua diode.

is proportional to the derivative of the chaotic signal. They
successfully use the method in controlling the steady state of
a optical-fiber laser where the light intensity is the chaotic
variable.

To further demonstrate the effectiveness of this method,
we apply the same derivative method to Chua’s circuit. The
system parameter which is varied in the circuit is the negative
resistance of the nonlinear Chua diode. We use a simple opera-
tional amplifier differentiator circuit to generate the continuous
feedback signal which is proportional to the time derivative
of the voltage across the negative resistance, Vg, as shown in
Fig. 1. The control parameter Ry (negative resistance) may be
varied using the circuit shown in ref. [7] and can be effectively
expressed as

Ry (t) = Rno + B(dVr/dt)

where Ry, determines the regime of the uncontrolled os-
cillations. The second term on the right can be considered
the damping or drag, which can”suppress oscillations with
appropriate choice of (3. This constant is determined by the
reaction of the variable resistance to a given voltage and the
electronic components of the differentiator.

In the given example, RN, is set so that the system oscillates
chaotically in the double-scroll strange attractor regime with
no feedback applied. In Fig. 2 prior to ¢ = 0, the chaotic signal
measured across the Chua diode oscillates chaotically about
two unstable foci which are the unstable steady state fixed
points. At £ = 0 a switch connecting the derivative feedback
with the variable negative resistance is closed and the system
quickly settles on the desired unstable fixed point. Reversing
the polarity of the feedback has the result of stabilizing the
other unstable focus which lies in the negative Vg region.
The time required to bring the oscillations down to the noise
level is determined by the magnitude of the constant 3. If
B is reduced below some critical value, which depends on
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Fig. 2. The chaotic voltage Vi is shown before and after control is initiated
at ¢t = 0 as captured on a digital storage oscilloscope. It is interesting to note
that the damping is effectively negative about the lower focus and kicks the
system towards the other fixed point about which the damping is positive.

the system parameters, the fixed point is not reached and
the system settles into some oscillatory behavior. In addition,
B need not be adjusted in order to track the steady state
through the range of oscillations Chua’s circuit once the state
is stabilized.

It should be emphasized that the system is in the chaotic
regime when the derivative feedback is applied. This is unlike
the control of the steady state using the OPF method, in which
case the system is tracked into that region from the stable
region.

The success of the two seemingly different procedures
suggests a possible connection. One clue is the peculiar result
of the OPF method that the frequency at which the feedback
pulses (the synchronizing frequency) are applied must be at
least roughly 10% higher (or lower) than the frequency of the
stable limit cycle. This result motivated the following analysis
of the OPF method.

With a sinusoidal input signal it can be shown by Fourier
analysis that the correction signal generated by the OPF
circuit has a component that is proportional to the derivative
of the input. Specifically, this component is proportional to
Sin?(wT, ) +Sin*((1/2) fwTs) where w is the frequency of the
input, T} is the reciprocal of the synchronizing frequency, and
f is the width of the correction pulse as a fraction of T. If
we attribute control of the steady state to this component, we
find excellent agreement with experimental results.

We consider here a few special cases. Experimentally, we
find a total lack of control when the frequency of our correction
pulses is set very near to the frequency of the oscillations,
ie.,, wI; = 2x. Clearly from the results of our analysis,
the derivative component approaches zero in this case. A
second case to consider is one which results in easy control
of the steady state, for example wT, = 4w /3. The derivative
component can be maximized with adjustment of the pulse
width f. We find experimentally that f = 3/4 gives robust
control and note that this value also gives the maximum value
for the derivative component.

From this, we conclude that the steady state control reported
in [6], [8] can be attributed to the derivative component that

arises in the OPF method. The fact that a derivative component
arises allows one to consider the feedback as a damping term
as in the case of normal derivative control.

We have shown the derivative control of the steady state
in Chua’s circuit to be and effective way of suppressing
oscillations in a chaotic regime. The emphasized difference
between this method and the OPF method is that control
can be initiated in any regime with the derivative method,
while the OPF method involves tracking the fixed point
from stable regime to unstable regime. Last, we attribute
the control of the steady state by the OPF method to the
component of the feedback signal which is proportional to
the derivative of the input. We confirm that this component
is large when steady state control is realized in experiment
and quite small when control can not be initiated. In a
practical application, OPF control could be used in a system
with substantial noise levels such that taking the derivative
could introduce even more noise. Hence both derivative and
OPF control methods offer an effective way to stabilize the
steady state fixed points in a chaotic attractor and could
be interchanged in situations where one proves to be more
advantageous.

REFERENCES

[1] E.R. Hunt, “Stabilizing high period orbits in a chaotic system: the diode
resonator,” Phys. Rev. Lett., vol. 67, pp. 1953-1955, 1991.

[2] R. Roy, T. W. Murphy, Jr., T. D. Maier, Z. Gills, and E. R. Hunt,
“Dynamical control of a chaotic laser: experimental stabilization of a
globally coupled system,” Phys. Rev. Lett., vol. 68, pp. 1259-1262, 1992.

[3] A. Garfinkel, M. L. Spano, W. L. Ditto, and J. N. Weiss, “Controlling
cardiac chaos,” Sci., vol. 257, p. 1230, 1992.

[4] P. Parmananda, P. Sherard, R. W. Rollins, and H. D. Dewald, “Con-
trol of chaos in an electrochemical cell,” Phys. Rev. E, vol. 47, pp.
3003-3005, 1992. :

[5] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev.

Lett., vol. 64, pp. 1196-1199, 1991.

Z. Gills, C. Iwata, R. Roy, L. B. Swartz, and I. Triandaf, “Tracking

unstable steady states: Extending the stability regime of a multimode

laser system,” Phys. Rev. Lett., vol. 69, pp. 3169-3172, 1992.

G. A. Johnson, T. E. Tigner, and E. R. Hunt, “Controlling chaos in

Chua’s circuit,” J. Circuits Syst. Comput., vol. 3, pp. 109-117, 1993.

[8] G. A. Johnson and E. R. Hunt, “Maintaining stability in Chua’s circuit
driven into regions of oscillation and chaos,” J. Circuits Syst. Comput.,
vol. 3, pp. 119-123, 1993.

[9] S.Bielawski, M. Bouazaoui, D. Derozier, and P. Glorieux, “Stabilization
and characterization of unstable steady states in a laser,” Phys. Rev. A,
vol. 47, pp. 3276-3279, 1993.

=2

[7

Gregg A. Johnston received the B.A. degree from
Gustavus Adolphus College, St. Peter, MN, in 1990.
Currently, he is working toward the Ph.D. degree in
physics at Ohio University, Athens, OH.

His research interests include nonlinear circuits
and systems with a concentration on the application
of feedback techniques used in controlling chaos.



JOHNSON AND HUNT: STEADY STATE IN CHUA'S CIRCUIT

Earle R. Hunt received the B.A. and Ph.D. degrees
in physics from Rutgers University in 1958 and
1962, respectively.

During the period 1962-1967, he was a post-
doctoral research assistant and assistant professor
at Duke University. He joined Ohio University in
1967, where he is now a Professor in the Physics
Department. He has held visiting professorships
at Cornell and Northwestern Universities and at
the University of Florida. His research interests
have included condensed matter physics, nuclear
magnetic resonance, low-temperature physics, scanning tunneling microscopy
electronics, and chaos.

Dr. Hunt is a member of APS and AAAS.

835



