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ABSTRACT

A new method is given, which converts a chaotic motion in
Chua’s circuit to a periodic motion. A tunnel mechanism is
used to perform this conversion.

INTRODUCTION

In a chaotic attractor, an infinite number of unstable
periodic orbits are typically embedded. Ott, Grebogi, and
Yorke [1] introduced the method to stabilize the already
existing periodic orbits in a chaotic attractor. Recently, A.
Dabrwski et al. [2] modified their method, and applied it to
Chua’s circuit. Their method requires small time-dependent
perturbations in an accessible system parameter, but does
not know the dynamics of the systems.

In this paper, a new method is given, which converts a
chaotic motion of the system to a periodic motion. A tunnel
mechanism is used to control the system. Our method has
some disadvantages, that is, we requires some additional
circuits and a previous knowledge of the system dynamics.
However, the experimental results for Chua’s circuit and the
forced negative resistance oscillator show the availability of
our method.

CONTROLLING CHAOS VIA TUNNELS

Our basic idea of the control mechanism is based on the
concept of tunnels related to duck cycles. We shall first
give the definition of a duck cycle and a tunnel. They are
certain singular solutions of slow-fast systems, which are
studied in the theory of relaxation oscillations [3]. The duck
cycles were first found for the van der Pol equation:
€(d*/dt®) + (x>1)(dx/dt) + x=a, and their form resembled
that of a flying duck. They are periodic trajectories which
at first move along the attracting part of the slow curve and
then move to the repelling part and continue along it ( See
Figure 1 ). It is well-known that duck cycles generate
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tunnel solutions around themselves. A tunnel is a bundle of
trajectories that at the beginning are at an appreciable
distance from one another, and then become infinitely close
( a funnel ) and deviate considerably from one another ( a
shower ). See Figure 2. At this tunnel section, trajectories
are asymptotically stable.

Tunnels are the useful tool that makes the chaotic orbit
periodic. The basic idea of our control mechanism is
written as follows: First, project the chaotic trajectories
onto the two dimensional plane. Then, the system can be
regarded as a two dimensional system. Next, find the cross
section transversal to a bundle of trajectories in a chaotic
attractor. Create the tunnel there. When the trajectory
passes through the tunnel, the Lyapunov exponent of the two
dimensional system decreases at this section. By adjusting
the length of tunnel, we can make the Lyapunov exponents
of the target orbit negative "in average”. If the chaotic
attractor does not turn to be a stable periodic trajectory,
then make the tunnel section much longer or find another
cross section. By this repeated operations, most of chaotic
motions are usually converted to a stable periodic orbit on
the two dimensional plane--for the returned trajectories enter
the same entry point and leave the same exit point of the
tunnel, and their Lyapunov exponent decreases. However,
there is the case where we fail to convert. This is due to
the following reason: For stable orbits we can expect
Lyapunov exponents less than or equal to zero but the
converse is not necessarily true. Then we are obliged to
abandon the control.

CHUA'’S CIRCUIT

Chua’s circuit shown in Figure 3 is a simple oscillator
which exhibits a variety of bifurcation and chaotic
phenomena [4]. The circuit equations are given by
C\(dvy/dt)=(v,-v,)/R-f(v)),
Cy(dv,/dt)=(v,~v,)/R +1i,

L(di/dt) =-v,-ri, m



where v,, v,, and i are the voltage across C,, the voltage
across C,, and the current through L, respectively. The
resistance r is added to the ideal Chua’s circuit in order to
account for the small inductance resistance in the physical
circuit. The characteristic of the nonlinear resistor is given
by
f(v,)=G,v, +0.5(G,-Gy[ | v; +B,|-| v,-B, | 1.

For our experiment, we used the following parameters:

C,=10.1nF, C,=101nF, L=20.8mH, R=14201},

1=63.8Q, G,=-0.865mS, G,=-0.519mS, B,=1.85V. (3)
The experimental circuit possesses the double scroll attractor
shown in Figure 4.
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TUNNELS IN CHUA’S CIRCUIT

In the first step of our control, we must project the
trajectory on the two dimensional space. Let us consider
the circuit in Figure 5. Three elements, that is, a diode D,
a capacitor C,, and a resistor R, are added to the Chua’s
circuit. These additional elements do not have a great effect
to Chua’s circuit, since C, is sufficiently small. ( C;= 8pF,
R,=20~200k{}: Note that a dicde D and a capacitor C, are
included in a 4066B IC chip ) Figure 6 shows the
trajectories projected on the two dimensional (v,,v;)-plane.

In the next step, we find the cross section on the (v,,v;)-
plane. Glancing over Figure 6, we can easily find it. ( Note
that the attractor shape is changeable by adjusting R, if
necessary. )

In the third step, we create the tunnel. The mechanism of
tunnels ( funnels and shower ) is realized by the circuit in

Figure 7. Its circuit behavior is explained as follows: The -

switch S closes at the moment the trajectory intersects the
cross section M={(v,,v;)|v,=e,,v;=¢,} ( e are the control
parameters ). Then the capacitor C, will be charged
instantaneously. That is, the voltage v, across the C; will
hold the value e,. Thus, the trajectories become infinitely
close to the line v;=e,. (It forms a funnel. ) After that,
the switch is open again, and the trajectory deviate. (It
forms a shower. ) The length of the tunnel is decided by
the switching time T of 4098B chip. ( The period T is
given by T=0.5R,C,. ) Furthermore, the position of the
tunnel is changeable according to the value e,.

In the fouth step, we adjust the length and the position of a
tunnel so that the chaotic motions are converted to a
periodic orbit. The converted trajectory is shown in Figure
8.

Consequently, our control procedure can be described as
follows: If a chaotic circuit is given, then find two
independent terminals, and connect the control circuit with
them. Next, find the cross section on the (v,,v;)-plane, and
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create a tunnel there ( v, indicates the terminal voltage
connected to the LF356 ). Adjust the length and the
position of a tunnel such that the chaotic motions are
converted to a periodic orbit. Then, various kinds of
periodic orbits may appear according to the position and
length of tunnels. Note that our aim is not the classification
of the converted orbits--we will discuss it elsewhere.

EXPERIMENTAL RESULTS FOR CHUA’S
CIRCUIT

Applying our method to Chua’s circuit, we succeeded to
convert the chaotic attractor to various types of periodic
orbits:

{P, | i=(1,2,....6)and j=(1, 2, ..., 10)}. (4
The symbol P; indicates the periodic trajectory which circles
the upper plane with i times and the lower j times on the
(v;,vy)-plane. Some of them are shown in Figure 9.

APPLICATION TO THE FORCED NEGATIVE
RESISTANCE OSCILLATOR

We also applied our method to the negative resistance
oscillator in Figure 10 [5]. The circuit equations are given
by

Ldi/dt=-Ri-v-Ecos2xft,

Cdv/dt=-f(v) +1i, o)
where f(v)=k,v+0.5(k,-k,)[| v+B,|-| v-B,|]. The equation
(6) has a chaotic attractor under the following parameters:

L=79.7mH, C=21.3nF, R=1.41k{l, E=0.66V,

f=2.40kHz, k,=-1.8mS, k,=-0.25mS, B,=1.6V.  (6)
This chaotic attractor was converted to various kinds of
periodic orbits by the same control circuit ( see Figure 11
). These results show the availability of our method.

CONCLUSION

The method to convert a chaotic motion to a periodic motion
was proposed. We are now applying our method various
kinds of circuits. We will report it elsewhere.
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Figure 4 Double scroll attractor in Chua’s circuit.
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Figure 2 A funnel, a shower, and a tunnel.
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Figure 9 Converted Periodic orbits.
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Figure 11 Control circuit.

Figure 10 Forced negative resistance oscillator.



