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Predicting Chaos Through an Harmonic
Balance Technique: An Application
to the Time-Delayed Chua’s Circuit

Marco Gilli and Gian Mario Maggio

Abstract—The time-delayed Chua’s circuit (TDCC) can be considered
as a paradigm for studying chaos in circuits deseribed by difference-
differential equations. The dynamics of such circuits cannot be investi-
gated by means of the standard time-domain techniques developed for
finite dimensional systems. We show that through a spectral approach
the occurrence of periodic limit cycles and of chaotic attractors can be
easily predicted, without performing any simulations.

I. INTRODUCTION

In recent years much interest has been devoted to the study
of the dynamics of circuits described by nonlinear equations with
delay, which exhibit chaotic attractors; they have found interesting
applications in secure communications (see [1]). The study of the
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Fig. 1. The time-delayed Chua’s circuit.

dynamic behavior of such circuits is very difficult because, owing to
the presence of parasitics, they are governed by difference-differential
equations (see [2]).

The TDCC, shown in Fig. 1 and originally introduced in [3], can
be considered an efficient tool for investigating the complex dynamic
phenomena occurring in delayed systems. This circuit, in absence of
the capacitor, is described by a difference equation which exhibits a
chaotic behavior called period-adding phenomenon (see [3]). If the
capacitor is not neglected the circuit is governed by a difference-
differential equation of neutral type (see [2]): some partial results on
its dynamics, mainly obtained through simulation, are reported in [4].

Owing to the infinite dimension of the TDCC state space, standard
techniques suitable for finite-dimensional systems cannot be applied;
moreover the simulation in all the parameter space is rather time
consuming.

In [S5] it was already shown that the spectral technique developed
in [6] and [7] for nondelayed systems is particularly suitable for
delayed cellular neural networks.

In this brief we apply such a technique to the study of the
dynamics of the TDCC, which is described by a differential-difference
equation of neutral type, i.e., by an equation more complex than those
occurring in delayed cellular neural networks.

In particular we consider the double-scroll like attractor discovered
in [4], and we show that its existence can be easily predicted,
through the spectral technique, by simply solving a suitable set of
transcendental equations and without performing any simulations.

We remark that the above spectral technique is an effective method
for the investigation of the complex dynamics of delayed systems in
the whole of the parameter space; moreover it allows to study the
effects of the parasitics in circuits described by difference equations.

1. APPLICATION OF THE SPECTRAL TECHNIQUE TO THE TDCC

The TDCC, shown in Fig. 1, is derived from the classical Chua’s
circuit by substitution of the lumped LC resonator with an ideal
transmission line (TL) [3]. The dynamics of the TDCC can be
described by the following equation

do(r + 1) do(T)
dr

81+ 0 +0(1 = )= +5(r + 1) + ()
+ L4+ On@(r+ 1)+ (1= On(a()) =0 (1)

where 7 is the time normalized with respect to the TL delay
T; the tilde indicates functions of the normalized time, n(:) =
9(-)/G represents the nonlinear characteristic of the Chua’s diode,
normalized with respect to G; ( = ZG, 9 = C/GT, and Z is the
TL characteristic impedance; G and C' are the conductance and the
capacitor respectively, shown in Fig. 1.

According to [7], in our analysis we assume that the normalized
characteristic of the Chua’s diode can be approximated by a cubic
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Fig. 3. Plot of the distortion index as a function of .

function, i.e.,
n(y)=-zy+ gy’ @

where m and k are suitable constants, that will be fixed below.

In particular we concentrate on the set of parameters which gives
rise to the double-scroll like attractor discovered in [4], through
simulation. Such a set of parameters, in terms of the variables
introduced in (1) and (2) yields

0.7
¢= N
Note that, according to [7], the values of the parameters m and k
have been chosen in such a way that the circuit described by the
cubic characteristic (2) presents exactly the same equilibrium points
of the TDCC considered in {4], which is described by a piecewise
linear characteristic. Since in [4] a chaotic attractor has been found by
varying the TL delay T’ in the range [0.8, 1] here we expect to observe
chaos, by varying the normalized parameter ¢ in the corresponding
interval § € [0.155,0.195].

We will investigate the occurrence of chaos by applying the
harmonic balance (HB) technique developed in [7]: we remark that
this is the the only analytical tool available for predicting chaos in
such a system.

m=4/5, k=2/45, G=0.T.
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Fig. 4. Simulations of the TDCC: (a) & = 0.19: period-1 limit cycle. (b)
8 = 0.165: period-2 limit cycle. (¢) ¢ = 0.160 and (d) § = 0.158:
double-scroll like attractor. The horizontal and the vertical axis refer to
the normalized voltage © and to the voltage wave outcoming from the TL,
respectively.

The algorithm proposed in [7] is based on the following three
fundamental steps:

1) computation of the equilibrium points;

2) study of the existence of periodic solutions, called periodic

limit cycles (PLC) through the describing function technique;

3) evaluation of the distortion index.

Then chaos is predicted if both the following conditions are
satisfied:

C1: there is an interaction between a stable limit cycle and un

unstable equilibrium point;

C2: the distortion index lies in a suitable range, corresponding

to a medium filtering condition, i.e., to the occurrence of a
noisy limit cycle (see [7]).

The coordinates of the equilibrium points turn out to be o = 0 and
© = £1.5, whereas their stability depends on 4.

Moreover it is easily seen that the nonlinear delayed system
described by (1) admits of the Lur’e representation shown in Fig. 1
of [7]. In fact by taking the Laplace’s transform of both the sides of
(1) the transfer function of the linear part of the Lur’e system turns
out to be

(I4+Qe’+1-¢
[(1+ )85+ 1les+ (1 — (s +1

where it is worth noticing that the time delay is simply taken into
account by the exponential term.

The describing function method (second step of the algorithm) is
based upon considering the possible periodic solution (PLC)

(1) = yo(r) = A+ Bsin(woT) Ch)

L(s) =

3

and assuming that the nonlinearity output can be approximated in
the form

n(yo(7)) = No(A, B)A+ Ni(A, B)Bsin(woT). (&)}
The two real coefficients gains No and N, are given by formulas (2)
and (3), respectively, of [7].

Substituting (4) and (5) in (1) and equating the terms having
the same frequency components, according to the HB principle, the
following relations are obtained

1+ L(0)No(A,B) =0 ©6)
14 L(jwo)N1(A,B) =0 K¢
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which represent the existence conditions for the PLC. Since L(jwy) is
a complex number, (6) and (7) constitute three independent equations
that can be solved with respect to A, B and wo. Plots of A and B
versus # are shown in Fig. 2.

The third step for chaos prediction is the evaluation of the distortion
index A, defined in (7) of [7] and reported as a function of 4 in Fig. 3.

According to [7], chaos is expected in the parameter range such that
the two conditions C1 and C2 reported above, are fulfilled. Condition
C1 reduces to the inequality B > A; from Fig. 2 it is seen that
Cl1 is satisfied if # < 0.160. Condition C2 can be expressed as
6§~ < A < 8T, where 6~ is the upper bound corresponding to a
true prediction, whereas 67 is the lower bound corresponding to an
unreliable prediction (see p. 155 of [7]). By assuming 6~ = 0.03
and 67 = 0.1, the corresponding # interval becomes approximately
0.157 < 8 < 0.175. Then by intersecting the two conditions, we
expect chaos in the range 0.157 < 8 < 0.160. The time simulation
of the circuit, shown in Fig. 4, confirms the prediction; in fact it is
seen from Fig. 4 that at § = 0.19 the system exhibits a period-1 limit
cycle; then a period doubling bifurcation occurs for § = 0.165 and
eventually a double-scroll like attractor is observed for § = 0.158
and 6 = 0.160.

III. CONCLUSION

We have shown that the complex dynamics of the time-delayed
Chua’s circuit can be investigated through the spectral approach
developed in [7], based upon the describing function technique and
on the evaluation of the distortion index. In particular we have
concentrated on a set of parameters which gives rise to a double-scroll
like attractor and we have shown that its existence and characteristics
can be easily predicted, via the spectral technique, without resorting
to simulation. We remark that by following the same approach the
dynamic behavior of the TDCC can be investigated in the whole of
the parameter space. Moreover the above spectral technique allows
to study the effects of the parasitics in those circuits described
by difference equations, which have found applications in secure
communications (see [1]).
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Experimental Poincaré Maps from the
Twist-and-Flip Circuit

Guo-Qun Zhong, Leon O. Chua, and Ray Brown

Abstract—In this letter, we present a physical implementation of the
twist-and-flip circuit containing a nonlinear gyrator. Many phase portraits
and their associated Poincaré maps are observed experimentally from this
circuit and presented in this paper.

I. INTRODUCTION

Fractals are one of many manifestations of complicated chaotic
dynamics. The fractal phenomenon can occur not only in autonomous
systems typical of Chua’s circuit [1]-[3], but also in nonautonomous
systems driven by time-varying signals and therefore described by a
nonautonomous system of ordinary differential equations

x = f(x,1) M

where x is a vector in an n-dimensional Euclidean space R”.

The twist-and-flip circuit offers one of the simplest paradigms for
nonautonomous chaos. Indeed, the state equations associated with the
twist-and-flip circuit are the only known nonautonomous system of
ordinary differential equations whose Poincaré map can be derived
in an explicit analytic form. Based on this property of the circuit an
in-depth mathematical analysis of the twist-and-flip map has been
carried out exhaustively and rigorously [4], [S]. The various fractals
corresponding to several classes of nonlinear gyration conductance
functions g(v1,v2) from this map have been generated numerically
[6].

In this letter we describe a physical implementation of the swist-
and-flip circuit with a simple nonlinear gyration conductance function
g(v1,v2), driven by a square-wave voltage source. A variety of phase
portraits and the corresponding Poincaré maps observed experimen-
tally from this setup will be presented.

II. PHYSICAL IMPLEMENTATION OF THE TWIST-AND-FLIP CIRCUIT

The twist-and-flip circuit contains simply two linear capacitors Cy
and Cs, a voltage source s(t), and a nonlinear gyrator, as shown in
Fig. 1(a). The voltage source s(¢) for driving the circuit is a square
wave of amplitude a and angular frequency w (or period P = 2Z), as
shown in Fig. 1(b). The gyrator, which is the only nonlinear element
in the circuit, is described by the equations

il = g(’L)1,U2)’UQ }

(v1,v2)v1

03]

2 =

where g(vi,v2) is the associated gyration conductance [7]. In this
letter we assume that

g(vi,v2) >0, for —oco < v1,vp < 0.
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