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Investigation of Chaos in Large Arrays
of Chua’s Circuits via a Spectral Technique

Marco Gilli, Member, IEEE

Abstract—A spectral technique is proposed for studying and
predicting chaos in a one-dimensional array of Chua’s circuits.
By use of a suitable double transform, the network is reduced to
a scalar Lur’e system to which the describing function technique
is applied for discovering the existence and the characteristics
of periodic waves. Finally, by the computation of the distortion
index, an approximate tool is given for detecting the occurrence
of chaos.

I. INTRODUCTION

N RECENT years much interest has been devoted to the

study of the dynamics of networks composed of elementary
cells that exhibit a chaotic behavior (see [1], [3], [4], and
[71-{10]).

In particular in [3] and [4], a classification of the dynamic
phenomena occurring in arrays of chaotic oscillators has been
established. In the electrical engineering community, many
researchers concentrated on the study of large arrays made
of Chua’s circuits (that is, a simple and robust example of
chaotic oscillator [5], [6]); it has been shown that such arrays
may model the propagation failure phenomenon [8] and may
have application in image processing [9], [10].

One of the most interesting behaviors which can be observed
in a one-dimensional array of Chua’s circuits is the spatio-
temporal chaos [7]. Due to the high dimension of such
networks, only a few analytical tools are available for their
study [2].

In this paper we investigate the dynamic behavior of a chain
of Chua’s circuits by use of a spectral technique which rep-
resents the extension of the technique introduced by Genesio
and Tesi in [11] to systems that have both time and space
dependence.

The method is based on the fact that all the cells are
identical, and therefore, by introducing a suitable double
transform, the network can be reduced to a scalar Lur’e system
(see Fig. 2). By analyzing such a system, the existence of
equilibrium points and their stability is investigated; then by
use of an extension of the describing function technique (see
[11]), the existence of periodic waves can be predicted. Finally
by computing the distortion index, an approximate tool is
developed for detecting the occurrence of chaos. The accuracy
of the proposed technique has been confirmed by means of
time simulation.
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Fig. 1. The fundamental cell of the chain.
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Fig. 2. Chain of Chua’s circuits as a Lur’e system.

We remark that the advantage of the method is that it allows
the prediction of chaos by means of simple algebraic compu-
tations and without performing any simulations (which, for
large arrays of nonlinear circuits, are rather time consuming);
moreover the method is not only applicable to arrays of Chua’s
circuits but to any network composed by identical elementary
cells.

II. CHAIN INTERCONNECTIONS OF CHUA’S CIRCUITS

We consider the structure obtained by interconnecting a
large number of classical Chua’s circuits [5]: each cell of the
chain (shown in Fig. 1), composed by two capacitors C; and
Cs, an inductor L, a conductance G, and a Chua’s diode ([5])
is coupled to the other cells by means of a conductance G.

To simplify the analysis, we assume that the chain is made
by infinitely many cells; we will show by means of the
simulation that if the number of cells is large enough (greater
than 20), then an infinite array of Chua’s circuits represents a
good approximation of a finite one.

The dynamics of the kth cell of Fig. 1 after the scaling
transformation 7 = tG/C> and wi = yx/G can be described
by the following set of equations

d.’ltk
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We assume, according to [12], that the nonlinearity of the
Chua’s diode can be approximated by

k
n(vy) = —gvk + Zob )

By use of (1) and (2), it is verified that the origin is an
equilibrium point of the system for each value of . Moreover
if the cells are not coupled (i.e., v = 0) and m/G > 1, the
kth Chua’s circuit exhibits two other equilibria located at

amen= (075 (G 1) =5 (5 1))

If the cells are coupled and m/G > 1+ v, each circuit of the
chain presents two equilibria whose coordinates Zx = 0 and

Ty = i\/%(g ~(1+7)) ©)

do not depend on the other cells, whereas the coordinate wy,
does.

We fix the parameters of (2) to the values m = 4/5,
k = 2/45, G = 7/10, which ensure that the kth cell of the
chain, if not coupled, has three equilibria located at v, = —1.5,
T = 0, T = 1.5 (see [12]). In the next section, the time
variable 7 appearing in (1) will be denoted again with {.

I11. THE SPECTRAL METHOD

For studying the above dynamical system we propose a
spectral technique based on the introduction of the double
transform F(s,z) of functions fi(t) discrete in space and
continuous in time

k=c0 00
F(s,2) = Z z_k/ Jr(t) exp(—st)dt. 4)
k=—oc -
By applying the double transform defined above to the set
of (1), the following relations are obtained
SX(S, Z) = —(1 + 'Y)X(Sv Z) + W(37 Z)
+ (1 + 927 YV (s,2)
sW(s,z) = =X (s, z)
sV (s,2z) = a(l +v2)X(s,2)
—a(l+v)V(s,z) — aN(s, 2). Q)
From (5) the double transform of wvy(t), V(s,z), can be

expressed as a function of the double Fourier transform of
n(vk), N(s,2)

V(S,Z) = —L(s,z)N(s,z) ©
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with (7) (shown at the bottom of the page). Note that for
+ = 0 (i.e., no coupling) the transfer function L(s, z) coincides
exactly with that reported in [12, formula (12)].

Therefore the dynamical system (1) can be represented in
the Lur’e form shown in Fig. 2, where the linear part is the
transfer function L(s, z) computed above, the nonlinear one is
the function n(-) described in (2), and the output is the voltage
vi(t) across the capacitor C, of the kth cell.

We will show that by use of the Lur’e scheme of Fig. 2
the existence and the stability of equilibrium points, peri-
odic waves (i.e., spatio-temporal limit cycles) and even the
occurrence of chaos can be investigated.

For what concerns the equilibrium points we have already
pointed out that their coordinate 7, depends only on the
nonlinearity of each cell and not on the state of the others;
therefore 7 may be also computed as a solution of the Lur’e
system, constant both in time and in space, i.e., by setting
s = 0 and z = 1. By doing this, one obtains from Fig. 2:

n(@x)L(0,1) + g = 0. (8)

It is worth noting that besides the origin, the solutions of the
above equation are exactly those reported in (3).

As far as the stability is concerned we concentrate on
equilibrium points, whose coordinates Ty, are given by (3);
their stability can be studied by computing the zeros of the
following equation

dn(vg)
d’l)k

L(s,1)+1=0. ©)

V=T

In particular, for each v < m /G —1, it is possible to determine
in the plane of the parameters (c, 3) the Hopf-curve, i.e., the
curve where (9) has one negative and two purely imaginary
roots; such a curve delimits the region of stability of the
equilibrium points; its expression results to be (10) (shown
at the bottom of the page).

For studying the occurrence of limit cycles and of chaotic
attractors, we propose a spectral method which extends the
technique developed in [11] to systems which have both
temporal and spatial dependence. Such a method is based on
the prediction of the existence of a symmetric periodic wave
by means of a suitable extension of the describing function
technique and then on the evaluation of the distortion index
which provides, according to [11], an approximate tool for
determining whether chaos occurs.

a(s? +s(1+7) +6)

L(s,2) =

S+ s2(L+ a)(1+7) +s[8 + 207 — ay(z + 27 )] + f(1 +7)

(M

ﬂ:

_a(2m/G - 3(1+ 7)1 +1)[(2m/G = 3(1 + 7))o+ (1 +7)(1 + o]

(10)
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Fig. 3. Lur’e system, linearized via the describing function technique.

The extension of the describing function technique to spatio-
temporal system consists of the following two steps:

* The state vi(t) is approximated by a periodic wave in
the following way:

’Uko(t) = Asin (wot + k’l]o) (11)

where A is the amplitude and wq and 7 represent the
temporal and the spatial frequency, respectively.

* According to [13], the nonlinear block is replaced by a
simple constant gain h, having the same input (11), which
minimizes the mean squared value of the error between
the output from the nonlinearity and that from the gain
itself. Note that h represents the proportionality factor
between the input and the output obtained by substituting
vko(t) in (2) and by neglecting higher order harmonics.

By means of the above two steps, the nonlinear system of

Fig. 2 is reduced to the linear one of Fig. 3 that is completely
described by its dispersion equation in the spectral domain

(S,Z)

D(s,z) =1+ hL(s,z) = 0. (12)

From the above equation, the gain A and the temporal and
the spatial frequency of the periodic wave may be predicted
analytically; then by using (2) the approximate amplitude A
can be derived as well.

In fact, so that the system of Fig. 3 has a solution without
excitation, it is required that the dispersion equation, solved
with respect to z, admits of a double root (see [14, p. 41)]);
moreover in order that the system supports the periodic wave
(11) such a double root must occur at s = jwg and z =
exp(jno).-

It is easily derived that the above constraint may be imposed
without finding explicitly the roots of (12), but simply by
solving the following set of three equations in the three
unknowns h, wg, 7o

Im[D(jwo, exp(jno))] = 0 13)
Re[D(jwo, exp(jno))] = 0 (14)
dD(jwo, exp(jno)) —o (15)

dno

After a little algebra it is derived that (15) yields 9 = 0,
which physically means that the cells oscillate in phase.

The temporal frequency wq is derived by (13) (note that
there are two positive values of w satisfying (13), but only
one of them is compatible with a value of A, giving rise to a
real value of A and to a stable limit cycle, according to the

Loeb criterion [13])

wo =
1+a)(14+7)? 1+a)(14+7)?]?
5! a)é 7) +\/[( )é ”) J — B(1+7)2.
(16)
Finally by (14) the variable gain A turns out to be
h= ! a7

~ Re[L(jwo, )]

Now to determine the approximate amplitude of the periodic
wave A, let us compute explicitly the output of the nonlinear
block of the Lur’e system n[uv(t)], when the input is (11).
We obtain

m

3k .
nloko(t)] = [—EA + EAB] sin (wot + k7o)

k .
- EAB sin 3(wot + kmno).

By neglecting both spatial and temporal higher order har-
monics, n[vko(t)] can be approximated by

(18)

3k .
nfuko(t)] ~ [—%A + EAS] sin (wot + ko)

and therefore the variable gain h, as a function of A is
expressed by

19)

(20)

By combining (17) and (20), the amplitude A of the periodic
wave comes out to be

4G [m 1
IAI=\/§;[E‘WJ'

This completes the prediction of the characteristic parame-
ters of the periodic wave (11).

The principal limitation of the above procedure derives from
the fact that the higher order harmonics have been neglected:;
to evaluate such an approximation we compute the distortion
index, defined, according to [11], as

_ [[9k(®) — vio(®)]l2
lvko(t)ll2

where 7 (t) represents the output of the open Lur’e system
of Fig. 2 when the input is vko(t) and || || is the L, norm
over the period 27 /wyq.

After some algebraic manipulations the explicit espression
of A comes out to be

_ kA?|L(3jwo, 1)|
~ 4G|L(jwo,1)|

A small value of the distortion index indicates a low-pass
filtering both in time and in space: in this case the existence of
the predicted periodic wave is reliable. In [11], it is shown that
for time-dependent systems there is an interval of values of the
distortion index (medium filtering condition), corresponding
to the existence of noisy limit cycles, which represents a

@D

(22)

(23)
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Fig. 4. Hopf curve (dashed) and distortion curve A = 0.03 (solid); the
parameters « and 3 are represented on the horizontal and vertical axis,
respectively, (a) v = 0.05, (b) v = 0.1.
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Fig. 5. Time-domain simulation for o« = 5, 3 = 8 and v = 0.1 of (a)
vg (1), () vio(t), () v11(t), and (d) v12(t) versus t.

strong indication of chaos. We will show that the distortion
index plays a similar role also for the system under analysis,
in particular if it crosses a threshold value (corresponding
to A = 0.03), a noisy periodic wave occurs, that can be
interpreted as the occurrence of spatio-temporal chaos.

We have reported in the plane (., 3) the Hopf curve given
by (10) and the distortion curve corresponding to A = 0.03,
for two values of the coupling parameter v = 0.05 and
~v = 0.1 (see Fig. 4(a) and (b)). We expect that chaos occurs
in the region within the two curves where there are no stable
equilibria and the predicted periodic wave is noisy, owing to
the fact that A > 0.03. To verify such a conjecture we have
simulated a chain of Chua’s circuits composed by 22 cells
for § = 8 and different values of « lying inside and outside
the above region. The results of the simulations, that have

805
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Fig. 6. Time-domain simulation of vi2(t) fora = 6, B = 8; (a) v = 0.05,
) v = 0.1

been performed by using the routine DO2CAF from the NAG
library, are the following:

e For ¥ = 0.1 and a = 5, i.e., for a point which is
close but to the left of the Hopf curve, the system, as
expected, converges toward an equilibrium point [whose
coordinates are given by (3)] after a rather long transient
(see Fig. 5).

e For v = 0.1 and @« = 6 and for v = 0.05 and o = 6,
i.e., for points lying within the two curves (see Fig. 4(a)
and (b)), chaos actually occurs (see Fig. 6); note that the
simulations of Fig. 6 are shown till ¢ = 200 but we have
verified that for large values of ¢ the system does not
converge toward a periodic attractor.

 Forvy = 0.1 and o = 7.6, i.e., for a point lying to the right
of the distortion curve, the system exhibits as expected
a periodic wave whose characteristics are exactly those
predicted by the describing function technique developed
above. In particular, it is seen from Fig. 7 that the cells in
the middle of the chain, even if they start from different
initial conditions, in the steady state oscillate in phase,
as predicted by n9 = 0. Moreover the temporal period
(approximately 2.4), is very close to that predicted by
(16), i.e., 27 /wy = 2.38; the amplitude of the oscillations
of Fig. 7 is approximately 4.75, whereas from (21) we
have A = 4.62, that represents a good prediction.

Extensive simulations of the system, for different values of
a and 3, have confirmed that in the region between the Hopf
and the distortion curve we have a high probability to observe
chaos. We would like to point out, however, that our method is
approximate and therefore in a very few cases it might fail in
the chaos prediction, especially if the parameters a and 3 are
very close to the Hopf or to the distortion curve. Nevertheless
all the simulations have shown that by fixing 4 and moving
o between the above two curves, chaos is encountered. It
turns out that the spectral method we have proposed provides
a simple tool for predicting chaos, which is of importance
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Fig. 7. Time-domain simulation for @ = 7.6, 3 = 8 and v = 0.1 of (a)

vo (1), (b) v1o(t), (c) v11(t), and (d) v12(t) versus t.

because only a few analytical tools are available for studying
the dynamics of high-dimensional systems.

IV. CONCLUSIONS

We have proposed a spectral technique for predicting chaos
in a one-dimensional array of Chua’s circuits; such a technique
represents the extension of the method proposed by Genesio
and Tesi in [11] to systems that have both time and space
dependence.

By use of a suitable double Laplace transform, we have
represented the network as a scalar Lur’e system in the spectral
domain; then by analyzing such a system and by means of a
suitable extension of the describing function technique, we
have developed an approximate and simple tool for detecting
chaos.

In particular for each value of the coupling parameter
between the cells we have divided the space of the parameters
a and 3 of the Chua’s circuit into three regions, approximately
corresponding to those where the system converges toward
an equilibrium point, a periodic wave, or a chaotic attractor,

respectively. The accuracy of the method has been confirmed
by means of the time simulation of the system.
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