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In this paper we describe a technique for proving that a particular system is chaotic in the
topological sense, i.e. that it has positive topological entropy. This technique combines existence
results based on the fixed point index theory and computer-assisted computations, necessary
to verify the assumptions of the existence theorem. First we present an existence theorem for
periodic points of maps, which could be appropriately homotoped with the deformed horseshoe
map. As an example we consider Chua’s circuit. We prove the existence of infinitely many
periodic points of Poincaré map associated with Chua’s Circuit. We also show how to use this
result to prove that the topological entropy of the Poincaré map and also of the continuous

system is positive.

1. Imtroduction

Chaotic behavior is observed in laboratory experi-
ments and simulations of many nonlinear systems.
They are believed to be chaotic, but there is still a
lack of rigorous mathematical proofs of existence of
chaos in particular systems. In this paper we de-
scribe a general method for proving the existence of
chaos in dynamical systems. This technique can be
used to prove the existence of an infinite number of
periodic orbits for a given system and also to show
that its topological entropy is positive. For systems
with these two properties there exist trajectories
with very complicated behavior.

Recently Zgliczynski [1996] proved the exis-
tence of an infinite number of periodic orbits for
maps which could be appropriately homotoped with
the horseshoe map. Here we present a modification
of this theorem for maps with a deformed horse-
shoe embedded. This approach is different from the
approach via Shilnikov’s theorem (compare [Chua
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et al., 1986]), where one can prove the existence of
a homoclinic orbit and a horseshoe embedded in its
neighborhood. From that, one can conclude the ex-
istence of infinitely many periodic orbits, but only
for some unknown parameter values within a cer-
tain range. There is however no general method
to prove the existence of a horseshoe and an infi-
nite number of periodic orbits for given values of
parameters. Our method has the advantage that
it allows to prove the existence of infinitely many
periodic orbits and positivity of topological entropy
for fixed values of parameters.

In Sec. 2 we introduce the notion of the fixed
point index, horseshoe map and present main math-
ematical results. In Sec. 3 we describe an appli-
cation of the theorems from Sec. 2 for Chua’s cir-
cuit. We prove rigorously, using interval arithmetic,
that a deformed horseshoe is embedded within the
Poincaré map and that there exist infinitely many
periodic orbits for Chua’s circuit, In Sec. 4 we show
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how to prove that the topological entropy of the
system is positive. In Sec. 5 we compare theoretical
results obtained for Chua’s circuit with simulation
results. We find several other periodic orbits, show-
ing that the behavior of Chua’s circuit is even more
complicated than the behavior of a deformed horse-
shoe map. In conclusions we discuss the limitations
and possible generalizations of this technique.

2. Infinite Number of Periodic
Orbits

The existence theorem is based on the results of
Zgliczytiski [1996]. The general method is to con-
struct an appropriate homotopy connecting the con-
sidered map with the (deformed) horseshoe map.
This allows one to prove the existence of at least
as many periodic orbits as for the horseshoe map.
Let us first describe the notion of the fixed point in-
dex and introduce the definition of the (deformed)
horseshoe map.

2.1. Fized point index

The fixed point index theory we use was developed
by Dold [1980]. By R and Z we denote sets of real
and integer numbers respectively. If U is a subset
of R® we use the notation U, U and intU for the
boundary, closure and the interior of U respectively.

Let G denote the class of pairs (f, U) such that
f:V = R"is a continuous map, U is an open and
bounded set such that U ¢ V C R™ and f has no
fixed points on AU, i.e. Fixf N U = @ where

Fixf £ {x € V: f(x) = x}. (1)

Usually the fixed point index is introduced using
algebraic topology (compare [Dold, 1980; Granas,
1972]). We will give an axiomatic definition of the
fixed point index.

Definition 1. The fized point indez is an integer
valued function I: G +— Z satisfying the following
axioms:

(1) if W is an open set such that Fixf N U C W C
U, then I(f, U) = I(f, W),

(2) if f is constant then I(f, U) = 11if f(U) €e U
and I(f,U)=01if f(U) ¢ U,

(3) if U is a union of a finite number of open sets
Ui, i =1,..., m, such that U; NU; NFixf = §
for i # 7, then I(f, U) = Yz, I(f, Us),

(4) if f:V = R™, f: V' = R™ are continuous maps
and (f, U), (f', U') belong to the class G (i.e.
Fixf NoU = 0, Fixf' N oU' = 0), then I(f x
fl, UxU") = I(f, U)I(f', U"), where fx f':V x
V.f — Rﬂ—}‘m,

(5) if F:V x [0, 1] = R" is a homotopy,! U C V
and FixF; N OU = § for every t € [0, 1] then
I(FO: U) =I(Fls U)‘

For the proof of existence of function I satisfying
the above axioms, see [Granas, 1972] or [Dold,
1980]. For a not necessarily open set N such that
N C V C R" by index I(f, N), we will denote the
fixed point index of f with respect to the interior
of N, ie. I(f, N) £ I(f, intN).

Let us recall the property of the fixed point
index, which states the existence of a fixed point, if
the fixed point index is non-zero.

Remark 1. Let f:V +— R™ be a continuous map,
U — an open bounded set such that U ¢ V C R".
Let us assume that Fixf NoU = 0. If I(f, U) # 0
then Fixf NU # 0,

Proof. This is a simple conclusion from part 3 of
Definition 1. W

The fixed point index for a linear map can
be easily computed (compare [Dold, 1980]). Let
f:R™ — R" be a linear map. The set Fixf is com-
pact if and only if +1 is not an eigenvalue of f.
In such a case 0 € R” is the only fixed point of f
and the fixed point index of f with respect to an
arbitrary neighborhood U of 0 is equal to

I(f,U0) =(-1)", (2)

where 7 is a number of real eigenvalues A of f such
that A > 1.

2.2. Horseshoe map

Let N[] = [-—*1, 1] X [—1, —0.5], Nl = [—1, 1] X
[0.5, 1]. Let P = [-1, 1] X R be the smallest vertical
stripe containing Ny and N;. Let M_ = [-1, 1] x
(=00, =1), Mp = [-1,1] x (-0.5,0.5), My =
[-1, 1] x (1, 00). M_, My and M, are subsets of

'If X, Y are topological spaces and [0,1] denotes the unit
interval, then a continuous map F : X x [0, 1] — Y is called
a homotopy (of X into Y). For every t € [0, 1] the map
Fy: X =Y, Fi(z) & F(z, t) is continuous.
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Fig. 1. Sets No, N1, M—, Mg and M.

P lying below, between and above Ny, N;. Let
Nyp, Nou be the lower and upper horizontal edges
and Ny, Nor be the left and right vertical edges
of Ny, a.nd-similarly Nip, My, N1, Nip be the
lower, upper, left and right edges of N; (i.e. Ngp =
[-1,1] % [-1, =1], Nop = [~1, =1] x [~1, —0.5],
etc). Sets defined above are shown in Fig. 1.

The horseshoe map (Smale’s horseshoe) is a
map linear on Ny and N; defined by:

1 1 3
(- 345(v+3))
df for (.T, y) € N{) )
hs(w: y) =9 1 1 3 (3)
. for (13, y) € Nl
h(N) h(N,)
Fig. 2.

Images of rectangles Ny and N; under h are
shown in Fig. 2(a). From the definition of A, it
is clear that images of horizontal edges of rectan-
gles Ny and N; lie above N; or below Np. Signs of
the coefficients determine positions of that images
in the following way: If the coefficient in the first
equation is 45, then hy(Nop) C M-, hy(Noy) C
My, if this coefficient is —5, then hs(Nop) C My,
hs(Noy) C M_. Similarly the sign in the second
equation changes positions of sets hs(Nip) and
hs(Ny1y) with respect to the sets Ny and N;.

Using the linearity of the horseshoe map it is
possible to give the number of periodic points with
a given period and to compute corresponding fixed
point indices. Let us choose a natural number n,
and a sequence (ag,..., an—1) With elements from
the set {0, 1}. As the horseshoe is linear on Ny, Ny
and each of the images hs(No), hs(IV1) covers sets
Ny, Ny vertically, then it is clear that there exists
a periodic point x of h, with period n (A?(x) = x)
such that its trajectory follows sequence (ay,...,
an-1) (ie. hi(x) € Ny, fori =0,1,...,n—1. The
Jacobian of A7} at x is equal to

0.25" 0
J=( . im)' (4)

+1 is not an eigenvalue of J. Hence there exists a
neighborhood U of point x, which does not contain
" or fixed points of A7. From Eq. (2) the fixed
t index of the pair (™, U) is non-zero. Because
rent sequences (ag,..., an—1) lead to different
fixed points of AT and there are 2" such sequences
for given n, we conclude that there exist 2™ different
fixed points of the map AZ.

hy(No)

hy(N,)

Sets Ny, N; and their images under (a) horseshoe map, (b) deformed horseshoe map.
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2.3. Deformed horseshoe map

The deformed horseshoe map hg is a map linear on
Ny and Nj. For (x, y) € Ny the definition of hy is
the same as the definition of the original horseshoe
map, but for (z, y) € N; the stretching action is

weaker:
¢ (1 1 3
(=2 (1+7))
af for (z, y) € N,
hd(I= y) = 3 1 1 3 3 (5)
(z“a* 2 (y‘z) ‘z)
{ for (z, y) € N; .

Images of Ny and N; under hyg are shown in
Fig. 2(b).

From the definition of the deformed Smale’s
horseshoe it follows that if x € Ny then hg(x) € Nj.
Hence there are no periodic points of hg correspond-
ing to sequences containing subsequence (1,1).

Like in the case of the original Smale’s horse-
shoe one can show that for every periodic point of
the deformed horseshoe map the fixed point index
of A} is different from zero. An interesting property
of the deformed horseshoe map is that the original
horseshoe map hg is embedded in the second itera-
tion of hg.

2.4. Theorems on existence of
infinitely many periodic
orbits

Let f: NoUN; +— R? be a continuous map. The fol-
lowing theorem [Zgliczynski, 1996] states the
existence of infinitely many periodic orbits for
maps which could be appropriately homotoped with
horseshoe map.

Theorem 1. If f(Ny), f(IN1) C intP, horizontal
edges of Ny, N1 are mapped by f outside of NgUN;y
(in such a way that one of the sets f(Nop), f(Nov)
15 enclosed in My, while the second one 15 enclosed
in M_, and similarly for horizontal edges of Ny)
then for any finile sequence ag, aj,..., Gn—1 €
{0, 1}™ there exists a point x satisfying

fix)€N,, fori=0,...,n—1and f*(x)=x.

The next theorem considers maps with de-
formed horseshoe embedded. From the set of n-
element sequences with elements from the set {0, 1}

let us choose sequences which do not contain the
subsequence (1,1):

T = {(‘10; sy an—}) € '[0: l}n: (aja Q(54+1)mod n)
72(1,1)f01'0§j<n}. (6)

From the definition of the deformed horseshoe map
it follows that if x € N; then hgy(x) ¢ N;. Hence
there are no periodic points of k4 corresponding to
sequences containing the subsequence (1,1). Thus
we have to weaken the proposition of Theorem 2.

Theorem 2. If f(Np), f(N1) C intP, horizontal
edges of Ng, N1 are mapped by f in such a way
that one of the sets f(Nop), f(Nou) is enclosed in
M., while the second one is enclosed in M_, one of
the sets f(Nip), f(Niv) is enclosed in M_, while
the second one is enclosed in My U Ny U My then
for any finite sequence a = (ag, @1,..., Gn-1) € Ty
there exists a point X satisfying

fi(x)eN,, fori=0,...,n—1and f*(x)=x.
(7)

Proof. As the proof is similar to the proof of The-
orem 1 (given in details by Zgliczyriski [1996]), we
will present only a sketch of it. Let hy denote the
deformed horseshoe map. Let F be a continuous
homotopy connecting f with hg:

Fa(x) L F(\, x) = (1= V) f(x) + Aha(x).

It is obvious that Fy = f and Fy = hy. The ho-
motopy F' is constructed in such a way that the as-
sumptions of the theorem are fulfilled for every func-
tion F (A € [0, 1]). Let us choose a natural number
n and a finite sequence a = (ag, a1,..., @n-1) € Th.
Let

df - —(n—
N} E Ny nFT (NG ) N0 (N, ). (8)

It is clear that there exists a fixed point x of A}
satisfying h%(x) € No, fori =0,1,...,n—1.

The proof that for the sequence a there exists
x satisfying (7) consists of several steps.

First we prove that there are no fixed points
of the map F™ on the boundary of the set N
From that one can conclude that the fixed point
index I(Fy™!, N?) of the map F{™' with respect
to N} is well defined (compare Definition 1).

From homotopy invariance of the fixed point
index (Definition 1, axiom 5) we obtain

I(f™, NQ) = I(F§, NY) = I(F, N}) = I(h}, N?).
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Because the fixed point index of k] with respect to
N} is different from 0 we conclude that I(f", N?)
is also different from zero, and hence (Remark 1)
there exists a point x satisfying (7). ®

The above theorem was formulated for special
positions of sets Ny and N; on the real plane. But
one can easily apply this theorem for different po-
sitions changing coordinates appropriately.

In order to use Theorem 2 to prove the exis-
tence of infinitely many periodic orbits, one has to
show that images of sets Np, N1 and their hori-
zontal edges are included in certain subsets of the
stripe P. When we use a computer to perform
this task one of the most important issues is the
computation time. The most time-consuming is
checking the first assumption of Theorem 2 (namely
f(No), f(N1) C P). If f is one-to-one, then it is
possible to weaken the first assumption using the
following intuitively clear lemma:

Lemma 1. Let f be one-to-one, Ny, Ni, P be de-
fined as above. If f(8Ny), f(ONy) C P then also
f(No), f(N1) C P.

Proof. This is an immediate conclusion from
Jordan’s theorem [Dold, 1980]. W

As the condition f(8Ng) C P can be checked much
more quickly than the condition f(Ng) C P (8No
is one-dimensional, while Np is two-dimensional),
computation time can be considerably reduced.

3. Infinitely Many Periodic Orbits
for Chua’s Circuit

We have applied the method presented in the pre-
vious section to the Poincaré map generated by
the Chua’s circuit [Chua 1993]. Chua’s circuit is
described by the following state equation:

Cld: = G(y —5‘3) -“‘g(.’ﬂ),
Coy =Gz —y)+ 2,
L2=—y—Rgz,

(9a)

where g(-) has a three-segment piecewise-linear
characteristic
g(z) = Gz +0.5(Ge — Gp)(|z+ 1| — |z —1}). (9b)

We have used the following parameter values:
C, =1, Cy = 9.3515, L = 0.06913, R = 0.33065,

y

Fig. 3. The double-scroll attractor — computer simulation.

G, = —3.4429, G, = —2.1849, Ry = 0.00036. For
this set of parameters the double-scroll chaotic at-
tractor was observed [Chua 1992]. A typical trajec-
tory of the Chua’s circuit is shown in Fig. 3.

In our calculations we use the piecewise lin-
earity of the Chua’s system. The state space R®
can be divided into three open regions Uy = {x =
(:c} y, 2)T € Rz > 1}, Up = {x = (=, 9, z)T

. |z| < 1} separated by planes Vo = {x € R?

z = *1}. The state equation can be rewritten as:

Ax x ely
x={Bx-p) if zcU;,
B(x+ p) zelU_

where A, B are matrices with real coefficients. In
the regions Up, U;, U~ the solution of the state
equation can be written in the form: x(t) = eA‘
x(t) = eBi(x — p) + p, x(t) = eBi(x +p) -
respectively.

In order to use Theorem 2 we define a two-
dimensional discrete map arising from the con-
tinuous three-dimensional flow. This is a general
method which reduces many problems concerning
dynamical systems with continuous time to the cor-
responding problem for dynamical systems with dis-
crete time. This method goes back to Poincaré. He
proposed to consider the return map which arises on
a transversal surface of codimension 1. In the case
of piecewise-linear systems it is natural to choose
as a transversal plane one of the planes separating
linear regions. Let us choose a transversal section
¥ = V,.. The Poincaré map P : ¥ — X is defined
by:

P(x) =

Ps(x) =

Fr(x)(X) (10)
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where ¢(x) is a trajectory of the system (9) based
at x, 7(x) is the time needed for the trajectory ¢:(x)
to return to X. In general the Poincaré map defined
on the whole plane need not be continuous. For
Chua’s system it is not. We will however find two
sets Np and Ny (for the definitions see below) such
that P restricted to these sets is continuous. In
order to prove this we will use the following result:
If ¥ is transversal to the vector field at x and P(x)
then the existence of a continuous Poincaré map in
the neighborhood of x is ensured [Guckenheimer &
Holmes, 1983]. Next we will prove the existence of
infinitely many periodic points of the map P within
the set NgU N;. Periodic points of P correspond to
periodic solutions of Eq. (9).

On the transversal plane 3 we choose eight
points

Ay = (—0.1950, —2.6942956550) ,

Ay = (—0.1761, —2.2243882059),

Ag = (—0.2376, —2.9659317744),

Ay = (—0.2410, —3.2489461290) ,

As = (—0.3181, —4.1785885539) ,

Ag = (—0.3315, —4.0981421985),

A7 = (—0.3597, —4.4381670543) ,

Ag = (—0.3472, —4.5294652668) .
lying on two parallel lines: z = (y-1.253 —0.0105) -
9.623, z = (y-1.253—0.03565)-9.623. Let Ny be the
quadrangle A; A2 A3 A4, and Ny be the quadrangle
Az AgA7As. The “hom’zﬁztﬁd” sides m and N;
M&ﬁned a.sh= A]_Ag, N]_D = A3A4, N(}U =
AsAe, NOD = A7A3 (COIIIP&I‘G Flg. 4)

-4.5

A
M.

0.4 -0.35 0.3 -0.25 0.2 -0.15

Fig. 4. Sets Np, N1, M_, My and M. on transversal plane.

We have proved that for the Poincaré map asso-
ciated with the Chua’s circuit and for quadrangles
Ny and N defined above, the assumptions of Theo-
rem 2 are fulfilled. Details are given in the following
sections.

3.1. Interval arithmetic

To use the existence theorems given in Sec. 2 one
has to check in every particular case whether the
images of edges of sets Ny, N; are included in ap-
propriate subsets of the stripe P. To prove this
one can use the computer. The considered set is
covered by rectangles. Then the image of each one
of these rectangles is computed and the condition
of whether this image lies appropriately with re-
spect to sets Ny, Ny is checked. In order to take
into account computational errors, we have used
interval arithmetic [Alefeld & Herzberger, 1983].
Interval arithmetic is a method of computing in-
tervals containing the true values. A result of a
single operation is an interval containing all pos-
sible results. For example, the sum of two inter-
vals is an interval containing all possible results
of addition, namely [a, b] + [¢, d] 2 {& = x1 +
zy : 21 € [a, b], 2 € [¢, d]}. During computations
we used procedures for interval arithmetic called
BIAS (Basic Interval Arithmetic Subroutines) pre-
pared by Olaf Kniippel from Technical University
Hamburg-Harburg. We used gnu C++ compiler on
Sun SPARC workstation.

In order to check the results we have prepared
another package for interval computations. It has
been implemented using Borland Pascal and run on
PC-486.

To use interval computations for proving math-
ematical theorems we must make several assump-
tions. First we assume that all basic interval opera-
tions are implemented properly, i.e. for all intervals

[a, 0], [c, d|

[a, blofc, d] 2 {x=z10x9: 21 € [a, b], z2€]c, d]}.
(1)

where ¢ is any of the following operators: +, —, -, /.
Usually during preparation of a package for inter-
val computations, one assumes that all digits com-
puted by computer are accurate. The easiest way to
compute for example result of multiplication of two
intervals [a, b] and [c, d] is to multiply ends of the
intervals a-c, a-d, b-¢c, b-d, choose the smallest inter-
val containing all of these four numbers and modify
ends of this interval to take into account computer
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errors made during multiplication. There are more
sophisticated methods requiring only two multipli-
cations. Once we have four basic interval operations
we can construct procedures for more complicated
functions. During computations we have used func-
tions sin, cos, exp. We also assumed that they are
implemented properly, i.e. for every interval [a, b]

fun([a, b]) 2 {fun(z):z € [e, ]}, (12)

where fun is any of the functions sin, cos, exp. This
assumption can easily be checked (if we first prove
that basic operators are implemented properly) be-
cause functions sin, cos, exp are implemented using
operators +, —, -, / (usually one uses a truncation
of a Taylor series and takes account of errors caused
by omitting components of greater order).

3.2. Existence of an infinite
number of periodic orbits

In computer simulations, we have integrated
Egs. (9) using a fourth-order Runge—Kutta method
with time step 0.1. We have observed the deformed
horseshoe embedded in the Poincaré map. In Fig. 5
one can see two quadrangles Ny, N; and their im-
ages under the Poincaré map. The picture is simi-
lar to the deformed horseshoe from Fig. 2(b). The
next step is to mathematically prove this observa-
tion. Using interval computations we were able to
prove the following theorem:

Theorem 3. For all parameter values in a suf-
ficiently small neighborhood of (Ci, Ca, L, R, Ga,

s [poey P

i - ; ; i
0.4 -0.35 -0.3 -0.25 -0.2 -0.15

Fig. 5. Sets Ng, N1 and their images under the Poincaré
map — computer simulations.

Gy, Ro) = (1, 9.3515, 0.06913, 0.33065, —3.4429,
—2.1849, 0.00036)

(1) There exists a continuous Poincaré map defined
on Ny U N,

(2) Images P(Nor), P(Nor), P(N11), P(Nig) of
“vertical” edges of quadrangles Ny, Ni lie inside
stripe P,

(3) Images of “horizontal” edges of No, Ny fulfill
the following conditions: P(Ngp) C My,
P(Nwy) € M_, P(N1p) C M_, P(Nyy) C M.

Proof. The main problem of computer calculations
in our case is the computation of the image of a
rectangle under Poincaré map. We have developed
a procedure carrying out this task. A detailed de-
scription of this procedure is given in the appendix.
Once this procedure was ready we were able to
check the three assumptions.

(1) In the first step we proved that there exists
continuous Poincaré map defined on Ny U Nj.
The set Ny was covered by 574 890 rectangles.
The set IN; was covered by 451 rectangles. We
computed images of these rectangles under the
Poincaré map, proving in this way the existence
of a continuous Poincaré map.

(2) Vertical edges N1z, Nig were covered by 1501
and 1000 rectangles respectively. Ny, Nog were
covered by 7631 and 7969 rectangles. We proved
that images of all of these rectangles lie in the
stripe P.

(3) Horizontal edges Niy, Nip were covered by
1500 and 298 rectangles respectively. Npy, Nop
were covered by 2986 and 30 000 rectangles. We
proved that f(Nig), f(Nip), f(Nov), f(Nop)
are enclosed within the sets Piyy, Pip, Pov, Pop
shown in Fig. 6.

The greater numbers in the case of Ny are
caused by stronger repelling action for trajectories
starting in Vg, especially in the neighborhood of
Nop. In this region the unstable eigenvalue of the
Jacobian was estimated to be greater than 30 in
absolute value, while in the region N; both eigen-
values are stable (smaller than 1 in absolute value).

|

Using Theorems 2, 3 and Lemma 1, we obtain
the following theorem:

Theorem 4. For all parameter values in a suf-
ficiently small neighborhood of (Cy, Cs, L, R, G,
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A

-4.5 :
e ,
0.4 -0.35 -0.3 -0.25 0.2 -0.15

Fig. 6. Images of “horizontal” edges of Ny and N; under
Poincaré map, Ny = m, Nip = A3_A4-, Nov = m,
Nop = A7ds, P(Nw) C P, P(Nip) C Pip, P(Nov) C
Poy, P(Nop) C Pop.

Gy, Ry) = (1, 9.3515, 0.06913, 0.33065, —3.4429,
—2.1849, 0.00036) the Poincaré map P has an infi-
nite number of periodic points, strictly speaking for
every finite sequence a = (ag, @1,..., @n-1) € Tp
there exists x such that

Pi(x)eN,, fori=0,...,n—1 and P"(x)=x.
(13)

Proof. From the first part of Theorem 3 it follows
that Poincaré map is continuous on NgUNj. As the
left-hand side of the state equation (9) fulfills the
global Lipschitz condition, Chua’s system has the
property of uniqueness of solutions. It follows that
the Poincaré map is one-to-one. From the second
and third part of Theorem 3, it follows that images
of edges of sets Ny and /N7 under P are enclosed in
the interior of the stripe P. Hence from Lemma 1,
P(Ny) C P and P(N;) C P.

From the third part of Theorem 3 it is clear
that the images of “horizontal” edges of quadrangles
Ny, IV lie inside the stripe P outside Ny, N;. In
particular, the following conditions hold: P(Nyp) C
My, P(NOU) C M, P(NlD) C M-, P(NIU) -
Mp.

Thus the assumptions of Theorem 2 are fulfilled
and the proof is completed. MW

4. Topological Entropy

To each discrete dynamical system (X, ¢) it is pos-
sible to assign a number h(p) known as the entropy

of the map ¢. Dynamical systems which behave in
a non-complex way have zero topological entropy.
On the other hand, chaotic systems possess posi-
tive topological entropy. In some papers, a chaotic
system is by definition a system with positive topo-
logical entropy. Hence, it is very important to be
able to find or estimate the topological entropy of
the system. In this section we prove that topolog-
ical entropy of the Poincaré map is positive. Later
we will also show that the topological entropy of the
continuous system defined by Eqgs. (9) is positive.

4.1. Topological entropy of the
Poincaré map

In this section we will estimate from below the topo-
logical entropy of the Poincaré map. The notion
of topological entropy was introduced by Adler,
Konheim and McAndrew [1965]. Let us first re-
call this definition. Let (X, g) be a compact metric
space and « be an open covering of X : a = {4;},
X C Ui A;, A; — open.

Definition 2. Ifa = {4;}}, and § = {B;}7; are
open coverings of X, then
avp={ANB;,i=1,...,n,j=1,..., m}

is called product of coverings o and f3.

Definition 3. For open covering o of space X, let
N{(a) be a number of sets in subcovering with min-
imum cardinality; subcovering § of covering o is
called minimum, if every other subcovering of «

has not less elements than 5. Topological entropy
of covering o is defined as

Hy =log N(a).

Let ¢ : X — X be a continuous map.

Definition 4. The limit
S 1 -1 —n-+1
hp, @) = lim —Hy(a Ve~ (a) V- Ve~ (a))

is called the topological entropy of @ with respect to
the covering a. The number h(yp), defined by

h(p) = sup h(e, a)

is called the topological entropy of ¢. Supremum is
taken over all open coverings a.

Topological entropy h(yp) of a discrete dynami-
cal system (X, @) characterizes “mixing” of points
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of X by the map ¢. One of important properties
of topological entropy is its invariance on topologi-
cal conjugacy, 1.e. if systems (X, ¢) and (Y, ¥) are
topologically conjugate,? then h(p) = h(9).

Definition 4 is not convenient for computations.
For estimation of topological entropy we will use the
equivalent definition based on the notion of (n, ¢)-
separated sets.

Definition 5. A set E C X is called (n,¢)-
separated if for every two different points =z,
y € E, there exists 0 < j < n such that o(¢’(z),
9'(y)) > e.

Bowen [1971] proved the following theorem.

Theorem 5.

h(yp) = linalim sup % log sn(€), (14)
where
sn(e) = max{card E: E is (n, €)-separated }.

We will use the above formula to estimate the
topological entropy of P. Let T}, be defined in (6).
Let us denote the cardinality of T,, by P,. First we
will give two lemmas concerning P,.

Lemma 2. The formula for P, reads:
P =1,
Py =3, (15)

Pp,=PFPn 1+ Py n=>3.

Proof. The proof involves some basic combinatorial
operations. W

The next lemma gives a nonrecurrence formula
for P,.

Lemma 3.
P, =20+ 27, (16)
where 21 = (1 +v5)/2, 22 = (1 —V/5)/2.

Proof. This lemma can be easily proved with the
generating function method. M

?Discrete dynamical systems (X, ¢) and (Y, ) are topologi-
cally conjugate if there exists a homeomorphism h : X — Y
such that hop =1 o h.

Remark 2. P, is the number of fixed points of
map hj.

Now we can compute the lower bound of topo-
logical entropy of the map P.

Theorem 6. Let P be a Poincaré map defined in
(10). Then for all parameter values in a sufficiently
small neighborhood of (C1, Cs, L, R, Ga, G4, Rg) =
(1, 9.3515, 0.06913, 0.33065, —3.4429, -—2.1849,

0.00036)
h(P) > log ~ +2‘/3 .

(17)

Proof. Let us choose § < infxengyen; {d(x, ¥)}.
Let us choose a positive integer n, and a positive
real € < 6. For every sequence a € T, we choose x,
satisfying (7). From Theorem 2 it follows that such
X, exists. Let us define

E,= '[Xcr,}aeTﬂ .

We will show that the set E, is (n, ¢)-separated.
Let us choose two different points x,, xp. If se-
quences a, b € T,, are different then there exists 0 <
1 < n such that a; # b;. From (13) it follows that
Pi(x,) € N,, and P'(x;) € Np,. Because e < 6 <
infyeng,yen {d(X, ¥)} then d(P*(xa), P'(x})) > €
and E, is (n, ¢)-separated. The cardinality of E,
is P,. Hence s,(g) > Py.

h(P) = lim lim sup — log sp(e) > lim sup ~ 1 log Py,

e—0 n—oo T—00
1
nanc}o - log P, = llm log {/ 27 + 23

+\/_

=logz = log

Because (1 ++/5)/2 > 1, we obtain the following
corollary.

Corollary 1. For all parameter values in a suf-
ficiently small neighborhood of (Ci, Cs, L, R, Ga,
Gy, Ro) (1, 9.3515, 0.06913, 0.33065, —3.4429,
—2.1849, 0.00036) the Poincaré map P is chaotic
in the sense that it has positive topological entropy.

There are other possibilities to estimate topo-
logical entropy using the number of periodic or-:

bits. The most famous result is Bowen's theorem
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concerning axiom A diffeomorphisms.® Topological
entropy of an axiom A diffeomorphism is equal to

h(p) = lim 280"

3
n—00 n

-where C(¢") denotes the number of fixed points of
" [Szlenk, 1984]. Unfortunately we cannot use this
theorem in our case due to very restrictive assump-
tions. It is possible to show that for the Poincaré
map P the decomposition into stable and unstable
directions on Ny U V7 does not exist.

The next possibility is to compute the topologi-
cal entropy of the subshift of finite type on two sym-
bols using its transition matrix, Let ¢: X9 — X be
a full shift defined on a space of infinite sequences
with elements from the set {0, 1}. Let ¥4 be a
subset of X9 composed of sequences which does not
contain subsequence (1,1). X, is invariant under
shift . The subshift of finite type o|X4 correspond-
ing to the deformed horseshoe map has a transition
matrix equal to

Topological entropy of a subshift of finite type
with transition matrix A equals to the logarithm
of an eigenvalue A\; of A such that A; > |A;| for all
eigenvalues of A [Robinson]. From that we obtain
h(o|24) = (1 + v/5)/2. In order to use this result
to estimate the topological entropy of the Poincaré
map, one has to prove that there exists a
semiconjugacy® between P restricted to some in-
variant set D C Ny U N; and o|Zg, i.e. there ex-
ists a continuous surjection ¢g: D +— 3}; such that
goP|D = gog. After proving that P|D and o|%, are
semiconjugate, the topological entropy h(P) can be
estimated from below in the following way: h(P) >
h(P|D) > h(o|%4) [Robinson, 1995]. This is an-
other proof of Theorem 6.

3We say that diffeomorphism ¢ defined on manifold M is an
ariom A diffeomorphism if the set of nonwandering points
(i) is hiperbolic and periodic points of  are dense in Q().
A set E is called hiperbolic if at every point z € E there
exists a decomposition into stable and unstable directions
and this decomposition is continuous. A point z is called
nonwandering if for every neighborhood U of z and for every
n > 0 there exists m > n such that ¢™({U)NU # 0.

*We say that maps f: X — X and ¢:Y — Y are semicon-
jugate if there exist a continuous surjection k: X — Y such
that ko f = g o k. For semiconjugate maps f, g we have the
following inequality h(f) > h(g).

4.2. Topological entropy of the flow

First we will introduce the definition of the topo-
logical entropy for continuous systems [Cornfeld
et al., 1982].

Definition 6. A dynamical system on X is the
triplet (X, T, ), where T = R (a continuous dy-
namical system or a flow) or T = Z (a discrete dy-
namical system or a cascade) and 7 is a continuous
map from the product space X x T into the space
X satisfying the following axioms: =(z,0) = =z,
m(m(z, t1), t2) = w(x, t; + t2) for every x € X and
t1, 9 €T.

An important class of continuous dynamical
systems are systems generated by autonomous
ordinary differential equations & = F(z) pos-
sessing the property of uniqueness of solutions
[Guckenheimer & Holmes, 1983]. Chua’s circuit is
an example of such a system.

The notion of topological entropy can be ex-
tended to continuous systems. Let (X, R, 7) be a
continuous dynamical system.

Definition 7. Topological entropy of a flow (X,
R, 7) is a topological entropy of the map m;

h(m) € h(m), (18)

where 7y: X +— X is defined as my(x) A w(z, t).

The following theorem [Cornfeld et al., 1982]
states that this definition is natural.

Theorem 7. Let (X, R, 7) be a continuous dynam-
ical system. Then h(m) = |t| - h(my).

Existence of infinitely many periodic orbits of
P|Ny U N; (or in other words positive entropy of
the Poincaré map P) can be used to prove that the
topological entropy of the flow is positive.

Theorem 8. For all parameter values in a suf-
ficiently small neighborhood of (Ci, Ca, L, R, G,
Gs, Ro) = (1,9.3515, 0.06913, 0.33065, —3.4429,
—2.1849, 0.00036) the topological entropy of the flow
w generated by Egs. (9) is positive

h(m) > 0.

Proof. Let us choose open neighborhoods Nj, N}
of sets Ny and Np in the transversal plane ¥ in such
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a way that NyN N{ =0 and ¥ is transversal to the
flow on the set Ny U Nj. It is possible because ¥ is
transversal to the flow on Vy and N7 and the vector
field is continuous.

Let us choose a real number T with T > 7(x)
for every x € Ny U Ny, where 7(x) is the time after
which the trajectory based at x returns to the plane
%. Such finite 7" exists because P is defined on the
compact set Ny U Nj.

Let Ng(é) denote the intersection of the neigh-
borhood of the set Ny with radius 6 and region U,.:
No(8) = {x:d(x, y) < 6 for some y € No} N U,
Similarly we define N;(8). There exists § such that
trajectories starting from points belonging to
No(36) intersect X first at the point belonging to
N§ and such that trajectories starting from points
belonging to N;(36) intersect ¥ first at the point
belonging to Ni. The existence of such positive 6
follows from transversality of the flow to the plane

¥ on the set Ny U Ny.

Let us denote by M the set of points belong-
ing to trajectories starting from Ny U N; until they
return to the plane ¥

M = {x:x = 7(y, t) for some
y € NgUN; and t € [0, 7(y)]} -

Let us choose ¢ such that d(x, 7v(x,t)) < & for
every x € M. The existence of ¢ > 0 follows
from compactness of M. Let N be a natural num-
ber greater than T'/t. Let E, be as in (4.1), with
the set of fixed points of P™ indexed by sequences
a € T,. We will show that E, is (Nn, §)-separated
with respect to the map m: R® — R3 defined by
mt(x) = w(x, t), i.e. for any two different points
Xa, Xp € E,, there exists 0 < j < nNN such that
d(“(xa: jt): 1T(mfn Jt)) > 6.

Suppose that sequences a and b are different
and that for x,, x5 € E,, the condition

d(7(Xa, Jt), 7(x5, jt)) < 6

holds for every natural j € {0, Nn — 1}. We will
show that sequences a and b are equal.

Let i € {0, n} be the smallest integer number
with a; # b;. Assume that a; = 0. Becasue 7; moves
points not more than 6, then before the intersection
of the trajectory with the set Ny, a discrete trajec-
tory must fall into the set No(26)\Ny(6). Hence
there exists p € {0, Nn — 1} such that n(x,, pt) €
No(26)\Np(6). From the assumption about the

points x,, x; we have m(xy, pt) € Ny(38). But a
trajectory starting from Ny(36) must intersect 2
and the intersection point belongs to Ny, and what
follows symbol b; for x; is equal to a;. For the case
a; = 1 the proof is similar.

This is a contradiction and hence E,, is (Nn, 6)-
separated. It follows that sy,(6) > card Ej,. Thus

h(p:) = lim lim sup — 1 log s, (6)

§—0 mn—o0

> lim limsup — N log snn(6)

§—0 mn—00

. 1 1 .. 1
> nh_.r;(:}o mlog cardE,, = ﬁ’}ir{}o Elog P,

1. 1+5

=Nl

From Theorem 7 we obtain the estimation of the
topological entropy of the flow:

1 14-\/3>0

—1
Nt 87 3

h(r) = h(m) = Th(m) >

The proof presented above has the advantage that
no advanced results are involved. But the above
theorem can also be proved in another way using
the relationship between topological and measure-
theoretic entropies.

Topological entropy of a continuous map f is
the supremum of measure-theoretic entropies over
measures ergodic with respect to f. This result was
conjectured by Adler et al. [1965] and proved by
Goodwyn, Dinaburg and Goodman. Let g be an
invariant probability measure of a continuous time
dynamical system and let ¢ be the probability mea-
sure on the transversal plane ¥ invariant under the
Poincaré map P and corresponding to g. Let h(p)
denote the measure-theoretic entropy of the flow
with respect to o and h(c) denote the measure-
theoretic entropy of P with respect to . Then we
have the following Abramov’s formula (compare for
example [Eckmann & Ruelle, 1985]):

h(e) = }(T)? ;

where (7). is the average time between two cross-
ings of the section ¥, computed with respect to the
probability measure o. As the topological entropy
of P is positive, there exists a measure o on ¥ such
that k(o) > 0. In our case, the return time on

(19)
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Ny U Ny is bounded, hence the average return time
is finite and h(p) is also greater than zero. And
what follows the topological entropy of the flow is
positive as it not less than any measure-theoretic
entropy.

5. Periodic Orbits — Simulation
Results

Now we address the problem how the number of
all periodic orbits of the Poincaré map P is re-
lated to the number of periodic orbits, existence of
which was proved before. Results presented in this
section are obtained from numerical experiments,
hence they are not proved rigorously.

In Sec. 3 we proved (compare Theorem 4) that
for every sequence a = (ag, a1,-.., Gn—1) € Ty
there exists a periodic point x of P trajectory of
which follows this sequence. The number C(n) of
fixed points of P™ existence of which is guaranteed
by Theorem 4 grows with n according to Egs. (15)
and (16). Let us denote by O(n) the number of
different period-n orbits, composed of these fixed
points. O(n) is much smaller than C(n) as several
fixed points of P™ correspond to the same periodic
orbit and there are some fixed points of P™ with pe-
riod smaller than n. In Table 1 we summarize the
values of O(n) and C(n) for n smaller than 11. For
example, for n = 2 there is only one period-2 orbit
of P corresponding to the sequence (0,1) and there
are three fixed points of P? with sequences (0,0),
(0,1) and (1,0).

In order to find other periodic orbits, we used
a heurestic identification procedure based on time
series obtained by numerical integration of the sys-
tem. The trajectory of the Poincaré map consist-
ing of 200000 points was saved. For this task the
Runge-Kutta integration algorithm with time step
0.1 was used. For the identification of periodic or-
bits we used the method introduced by Lathrop
& Kostelich [1989] and its modifications (compare
Ogorzalek & Galias [1993]). In Fig. 7, on the left
side we show some of the periodic orbits found. On
the right side we present corresponding periodic or-
bits of the continuous system. We use the following
notation: by ymn we denote periodic orbit with m
and n scrolls around the points Py and P_ respec-
tively, where P, and P_ are symmetric equilibria
of the Chua’s system. The existence of the orbits
(a), (b) and (c) is guaranteed by Theorem 4. These
are all of the periodic orbits with period less than
four, which exist according to Theorem 4 (compare

Table 1. O(n) — the number of different
periodic orbits of period n, C(n) — the
number of fixed points of P".

n  O(n) C(n) Sequences
1 1 1 (0)
2 1 3 (0,1)
3 1 4 (0,0,1)
4 1 7 (0,0,0,1)
5 2 11 (0,0,0,0,1)
(0,1,0,0,1)
6 2 18 (0,0,0,0,0,1)
(0,1,0,0,0,1)
7 4 29 (0,0,0,0,0,0,1)
(0,1,0,0,0,0,1)
(0,0,1,0,0,0,1)
(0,0,1,0,1,0,1)
8 5 47 (0,0,0,0,0,0,0,1)
(0,1,0,0,0,0,0,1)
(0,0,1,0,0,0,0,1)
(0,1,0,1,0,0,0,1)
(0,1,0,0,1,0,0,1)
9 8 76

10 11 123

Table 1). Apart from these orbits we have found
many other periodic orbits. Some of them are
shown in Figs. 7(d)-7(h). These orbits are not fully
enclosed in the set Ny U Ny, so Theorem 4 does not
say anything about them. All of these orbits have
period 2. Orbits (d), (e) are enclosed within the
right part of the attractor, and have three and four
scrolls around P,.. Note that also orbit (c) has three
scrolls around P, but orbits (c) and (d) are differ-
ent, the first one is period-3 orbit and is enclosed
in Ny U N7 while the second is period-2 orbit lying
outside of NgUN;. The last three orbits (f), (g) and
(h) visit both sides of the attractor. Apart from the
periodic orbits shown we have found several other
periodic orbits. There are many low period orbits
of P with corresponding orbits of continuous sys-
tems with many scrolls in the second part of the
double-scroll attractor.

The double scroll attractor is composed of two
parts symmetric with respect to the origin. Trajec-
tories starting from NoU Nj return to the transver-
sal plane ¥ without entering the second part of the
attractor. Hence it is not possible to explain the
whole dynamics of the double scroll attractor by
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investigation of the Poincaré map on the set Ny U
Nj. Deformed horseshoe maps embedded within
the Poincaré map were also observed for parame-
ter values for which the Réssler-type attractor ex-
ists (although we did not prove this fact rigorously).
Moreover we have also found periodic orbits
[compare Figs. 7(d) and 7(e)] which always stayed

in one part of the attractor (so they belong to one
Rossler-type attractor), whose existence does not
follow from Theorem 4. This is an indication that
the Poincaré map of the Rossler-type attractor has
more complex dynamics than the deformed horse-
shoe map. The double-scroll attractor is born
by the collision of two symmetric Rossler-type
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Periodic orbits of the Poincaré map and corresponding periodic orbits of the continuous system, by ym,» we denote

periodic orbit with m scrolls around P} and n scrolls around P_, (a) fixed point with the sequence (0) — vy o periodic orbit of
the continuous system, (b) periodic orbit with the sequence (0, 1) — 2,0 periodic orbit of the continuous system, (c) periodic
orbit with the sequence (0,0,1) — 3,0 periodic orbit, (d) period-2 orbit lying outside of Ny U N1 — 3,0 periodic orbit.
Some of the period-2 orbits of the Poincaré map and corresponding periodic orbits of the continuous system, (e) 74,0, {f) 72,2
symmetric orbit, (g) vs,3 symmetric orbit, (b} 3,3 unsymmetric orbit.
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attractors, and hence its dynamics is much  NyUUN;. Trajectories which enter the second region

more complex than the one on the Rossler-type
attractor.

From the above considerations it follows that
the dynamics of the Poincaré map is much more
complicated that the one of the deformed horse-
shoe. The topological entropy of the Poincaré map
is then probably greater than the estimation ob-
tained with periodic orbits of the deformed horse-
shoe map [compare Eq. (17)]. There are some re-
gions in the ¥ plane with much greater numbers
of periodic orbits for given n than in the region

sometimes stay in this region for a long time before
coming back to the transversal plane increasing the
topological entropy of P.

We made a simulation in order to compare how
sets Ny and N, are related to the chaotic trajectory
obtained in computer simulations. The results are
shown in Fig. 8. Chaotic trajectory intersects both
of the sets Ny and N, creating very complicated
sequence of symbols. This is another confirmation
that the behavior of Chua’s circuit observed in ex-
periments is complex.
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6. Conclusions

The technique for proving the existence of infinitely
many periodic orbits for maps with deformed horse-
shoe embedded was presented. This technique is
based on the construction of an appropriate ho-
motopy between the considered map and the de-
formed horseshoe map, for which dynamical behav-
jor is much better known. It provides a strong
description of the dynamics of the considered sys-
tem (its dynamics is at least as complicated as for
the deformed horseshoe map). This technique was
successfully applied to Chua’s circuit. Using inter-
val arithmetic we carried out a computer-assisted
proof of the existence of infinitely many periodic
orbits for Chua’s circuit. This result was then used
to estimate from below the topological entropy of
the system. We proved that it is positive. Finally
we proved that the topological entropy of the flow
generated by equations describing Chua’s circuit is
positive.

An alternative method is based on Shilnikov’s
theorem [Tresser, 1984]. When using this theorem,
the only thing one has to prove is the existence of
homoclinic orbits and some relations between eigen-
values of the system af the homoclinic point. Then
from Shilnikov’s theorem it follows that there ex-
ists a Smale’s horseshoe and an infinite number of
periodic orbits in the neighborhood of this homo-
clinic orbit. The problem is that usually we are
not able to prove the existence of homoclinic or-
bits for a given set of parameters. Usually we can
only find an interval containing a point for which
there exists a homoclinic orbit. In the paper [Chua

et al., 1986], the existence of homoclinic orbit for
Chua’s system was proved for some unknown pa-
rameter values. In contrast with methods based on
the Shilnikov’s theorem, by using the method pre-
sented in this paper one can show the existence of
infinitely many periodic orbits and the semiconju-
gacy with a shift of finite type for a given set of
parameters. Another advantage of this method is
that it can be applied practically without any mod-
ifications for different (not piecewise-linear) types
of nonlinearities. In fact it can be used for any
differential equations, for which the numerical in-
tegration gives a Poincaré map similar to that of
the deformed horseshoe. In that case however, one
has to take into account errors caused by numerical
integration [Galias & Zgliczynski, 1996]. It is also
possible to generalize the method for the case of
greater number of quadrangles and for different de-
formations of the horseshoe map [Zgliczynski, 1996].

The methods for proving the existence of horse-
shoe maps or positivity of topological entropy are
sometimes understood as methods for proving
chaos. But most often the system is called chaotic
(there are many definitions in the literature) if there
exists a chaotic attractor for that system (for the
definition of chaotic attractor, see for example
[Guckenheimer & Holmes, 1983]). The method pre-
sented in this paper and also methods based on
Shilnikov’s theorem are not able to prove the ex-
istence of a chaotic attractor. The existence on
an infinite number of periodic orbits and positivity
of topological entropy are conditions weaker than
the existence of a chaotic attractor. It is possible
that we do not observe chaotic trajectories although
topological entropy is positive because trajectories
are repelled from the region with positive entropy.
Hence this type of proof of existence of chaos should
be considered as incomplete.
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Appendix
Details of Computer Calculations

Now we will describe in detail a procedure for the
computation of an image of a rectangle under the
Poincaré map. An input value is a rectangle, an im-
age of which we want to obtain. The procedure finds
a rectangle containing an image of an input rectan-
gle. All computational errors are taken into account
and cause an increase of the output rectangle. In or-
der to avoid misunderstanding we will denote inter-
vals (and also vectors and matrices of intervals) by
adding a “hat” ~ over them. If £ is an interval then
by inf(#) and sup(&) we will denote the lower and
upper end of Z. To simplify notation, a rectangle
[y1, y2] X [#1, 22] contained in the transversal plane
¥ will be denoted by % = (1, [y1, 2], [21, 22])7 -

First we have to calculate several values necessary for further computations.

(1) Initialization of matrices Ag, A; and vectors Vg, V1.

~1/(RCy) — Ga/C1  1/(RCY)
Ag = 1/(RCy) ~1/(RCy)
0 ~1/L
~1/(RCy) — Gy/C1 1/(RCY)
A= 1/(&6’2) —1/(RC'2)
0 -1/L

0 0
1/C; |, %= (0) )
_RD/fJ 0

_fo/L

(A.1la)

0 (Gu— G/
1/02 ) ‘}1 0 ) (A‘lb)
0

where, for example, R is an interval containing true value of R. o
(2) Computation of coefficients of characteristic equations of matrices Ag, Aj.
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(3) Computation of roots of characteristic equa-
tions. Each of the matrices Ag, fl; possesses
one real and two complex eigenvalues. Let us
assume that the characteristic equation is of the
form

A+ agA? +agd+a; =0. (A.2)

Computation of roots consists of two steps.
First we find the real root by the modified bi-
section method and then we find complex roots
using the real root previously found.

¢ Computation of the real root \. Let us denote
FOA) = X3 4+ a3A? + g + dg

where A is a real number, and d; are inter-
vals containing appropriate coefficients of the
characteristic equation (A.2). f()) is an in-
terval because it is a result of computations on
intervals. The interval A = [\1, Ag] containing
the real root can be found by the procedure
presented below. The real number &g, defines
accuracy of computations (for smaller g, the
length of the interval containing X is smaller
and the computation time is longer).

begin
{ﬁndmg /\1 such that f(A;) C (—o0,0)}
A=
while sup(f(/\l)) > 0do Ap = 2% Ag;
{finding A2 such that f(X2) C (0,00)}
Ay =1 .
while inf(f(A2)) <0 do Az =2 % Ag;
{Searching for maximum A; such that

f()\l) C (—OO, 0)}
Amin = A13
/\max = )\2;

while (Amax — Amin) > €0 do begin
Arned = (AAma.x + /\min)/ 2;
if (sup(f(Amed)) < 0)
then Amin = Amed
else Amax = Amed;
end;
AL = Amin;
{Searching for minimum Az such that
f(A2) € (0,00)}
Amin = AL
Amax = /\2;
while (Amax — Amin) > €0 do begin
Amed = A()\max + ’\min)/Q;
if (inf(f(Amea)) > 0)
then Apnax = Amed

else /\min = /\med;

end;

i\2 = Amax;

A= [A1, Aal;
end;

¢ Computation of the complex roots & & i
= —(az+A\)/2,

b= \/—(a,a +A)2 + 4(az + Aag + 1).
(A.3)

(4) Computation of inverse matrices Ay*, AT
(A1) ; = (1) M, ;/ det A.

(5) Computatlon of the fixed points: pg = Ay ¥,
p1= A] V1.
(6) Computation of eigenvectors of Ag, A, Let A

be a matrix with eigenvalues A\ a+if. We
are searching for column eigenvectors X;, X2, X3
fulfilling the following matrix equation:

) Ao o0
AR Ry %3) = (X1 %2 %3) [ 0 & —p
0 B &

The eigenvector X; satisfies A%, = )%, while
eigenvectors X; and X3 satisfy the following set
of equations: A%y = GXy + fX3, Aky=— ,5’:22 +-
&%3. The eigenvectors can be found in the fol-
lowing way:

e computation of the eigenvector X; from the
equation Ax; = AX;.

e computation of the eigenvector X3 from the
equation (A — a'I)2xz — %%y

e computation of X3 : ﬁ(fk — &I) " ky,

e creation of the matrix E = (% %3 %3).

(7) Computation of inverse matrices By !, B

Computation of ehi

Matrix A with eigenvalues N\, & = if can be ex-

pressed as
OA ~
—ﬁ) E-1 (A.4)
&

>

I

=
~

(==l
TRy ©
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where E is a matrix of eigenvectors. Hence

) e 0 0
eM=E| 0 eMcosff —eitsin ff | E7L.
0 efgin ff e cos B

(A.5)

Computation of an image of a point
after time ¢

In the linear regions, the state equation has the form
x = A;(x — p;). Hence the image of a rectangle X
after time ¢ can be computed using the following
formula:

p(x, D) =M —p)+pi. (A6)
The above formula is true under the assumption

that the trajectory stays in one of the linear regions
Uy, U for the time ¢.

Computation of the return time

Computation of the return time is the most com-
plicated and time-consuming part of the procedure
for the evaluation of P. It will be described for the
case of a trajectory starting and returning to V, af-
ter passing through the region U,. The procedure
in the second case (passing through Up) is similar.
Let us assume that x is a rectangle enclosed in the
plane V;. The procedure for the computation of
the return time consists of several steps.

(1) Find t; such that the part of the trajectory
(%, (0, t1]) is enclosed in Uy. Computation
of ¢(X, [0, ¢1]) cannot give the required results.
Because interval arithmetic takes into account
computer error, then the set ¢(%, [0, {1]) com-
puted using Eq. (A.6) will have a nonempty in-
tersection with Uy. Hence we have to use an-
other method of checking if ¢(x, (0, t1]) C Us.
First we compute ¥ = @(X&, [0, ¢1]) and then we
check if ¥ belongs to the regions where the first
state variable z increases. In order to do that,
one can compute z = A.lj‘f + ¥v; and check if
points from the set Z have the first coordinate
positive (27e; > 0, where e; = (1, 0, 0)T). This
can be done by the procedure below.

begin
choose t; > 0;
repeat

t1 =11/2;
z= A1y +9;
until (inf(z7e;) > 0);
end;

(2) Find maximum t; such that ¢(%, (0, ¢2]) is en-
closed in Uy. First we choose A; and we set the
initial values tmin = t1 and tmax = &1 + A If
(X, [tmin, tmax]) C Uy then we increase g, to
the value of t.x. In the opposite case we de-
crease A and repeat checking of the condition.
The procedure is continued while A; is greater
than some positive number £;.

begin
choose A > 0;
tmin = 113

while A; > ¢1 do begin
tmax = tmin + At;
y= tﬁ(i, [frnim tmax]);
if (inf(§7e;) > 1) then begin

Ag =1.5% At;
tmin = tmax;
end
else Ay = A¢/1.5;
end;
t2 = tmin;

end;

In this procedure it is checked for the subsequent
intervals [tmin, tmax)s if @(X, [tmin, tmax]) C Ux.
timin 18 increased only when this condition is ful-
filled. As subsequent intervals [tin, tmax| cover
the interval [ti, ¢;] we conclude that (X,
[t1, ta]) C Uy

(3) Computation of minimum ¢3 > ¢3 such that
@(X, t3) is enclosed in Up. This procedure is
composed of two parts. In the first one we look
for any t3 > to fulfilling this condition, while in
the second one the value of #3 is minimized.

begin
choose A; > 0;
ts = to;
repeat
Af, =15% Ag;
t3 =tz + Ay
y= (f)()'\{, t3);
until (sup(yTe;) < 1);
{minimization of ¢3}
tmin = 12;

tmax = £3;
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while (tmax — tmin < €2) do begin
tmed = (trnin + tmax)/Z;
if (sup(37e;) < 1)
then tnax = tmed
else tmin = tmed;

end;

t3 = tmax;

end;

(4) As @(x%, (0, t2]) is enclosed in Uy and ¢(X, t3)
is enclosed in Uy the set (X, [t2, t3]) contains
the image of the set X under the Poincaré map.
Hence the return time belongs to the interval
t= [tz, t3].

(5) In order to check the continuity of the Poincaré
map one has to check the following condition.
If the state variable x decreases on the set ¢(X,
[ta, t3]) (i-e. the vector field has nonzero compo-
nent in the direction of z axis) then the plane
x =1 is transversal to the flow on P(X). In this
case the Poincaré map is continuous on X.

Computation of an image of the set
under Poincaré map

When the procedure for return time is ready, the
computation of the Poincaré map is easy. Let us

assume that X is a rectangle enclosed in the plane
Vi = {(z,y,2)¥ : 2 = 1}. Let us also assume
that this interval is enclosed in the part of V. with
negative component of vector field in the direction
of the = axis. The full Poincaré map P can be
decomposed into two halfmaps P;, Ps. The first
map corresponds to passing through Up, while the
second one corresponds to passing through U,.
First we find the return time Zy = [toumin, t0max]
of trajectories starting from X to the plane z = 1.
The image of X under the first halfmap can be found
using the following formula:

Pi(%) == ¢(x, f) = eD(% — o) +po. (A7)

P, (X) is a rectangle containing the image of % under
P;. Then we find the return time ¢; = [t min, t1max)
of trajectories starting from f’l(ic) to the plane V,
after passing through Uy and we compute the image
of x under full Poincaré map

P (%) = Py(P (%)) = ¢(P1(%), t1)

=MD (%) — p1) + 1.
(A.8)





