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The problem of synchronizing two nonlinear systems (transmitter and receiver) is considered. A
simple design of an adaptive observer for estimating the unknown parameters of the transmitter
is proposed based on the design of quadratic Lyapunov function for the error system. The
results are illustrated by an example of signal transmission based on a pair of synchronizing
Chua circuits.

1. Introduction

In recent years a growing interest was observed
in the problem of synchronizing chaotic sys-
tems [Afraimovich et al., 1987; Pecora & Carroll,
1990; Cuomo et al., 1993; Blekhman et al.,
1995; Nijmeijer & Mareels, 1997; Pogromsky &
Nijmeijer, 1999]. It was motivated not only by sci-
entific interest in the problem, but also by practi-
cal applications in different fields [Blekhman, 1988;
Lindsey, 1972], particularly in telecommunications
[Kocarev et al., 1992; Cuomo et al., 1993; Dedieu
et al., 1993]. However most design methods were
suggested and justified under conditions that all the
system parameters are known and states are avail-
able for measurement. Also, some methods apply
only to low-dimensional systems.

Of practical interest is the problem of synchro-
nizing two or more systems when not only initial

state but also some parameters are not known to
the designer of the receiver. This more complicated
problem, which may correspond to the case where
parameter modulation is used for message trans-
mission, is referred to as adaptive synchronization
[Fradkov, 1994, 1995; Wu et al., 1996; Markov &
Fradkov, 1997]. Control theory opens new horizons
in the synchronization problem and allows to give
general framework for its study [Blekhman et al.,
1997].

This paper is devoted to design of an adap-
tive observer oriented to the synchronization for the
purpose of communications. A simple design of an
adaptive observer for estimating the unknown pa-
rameters of the transmitter is proposed based on the
design of the Lyapunov function for error system.
It provides necessary and sufficient conditions for
the existence of a quadratic Lyapunov function for
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the error system. The results are illustrated by an
example of information transmission via adaptive
synchronization with a pair of Chua circuits.

2. Problem Setting

We consider a transmitter described as ẋd = Axd + ϕ0(yd) +B
m∑
i=1

θiϕi(yd) ,

yd = Cxd

(1)

where xd ∈ Rn is the transmitter state vector,
yd ∈ Rl is the vector of outputs (transmitted sig-
nals), θ = col(θ1, . . . , θm) is the vector of trans-
mitter parameters (possibly representing a message,
which is either a piecewise constant or slowly time-
varying signal). It is assumed that the (piecewise)
smooth nonlinearities ϕi(·), i = 0, 1, . . . , m, matri-
ces A, C and vector B are known.

The receiver will be designed as another dy-
namical system which provides estimates θ̂i, i =
1, . . . , m of the transmitter parameters based on the
observations of the transmitted signal yd(t). The
problem is to design receiver equations

ż = F (z, yd) , (2)

θ̂ = h(z, yd) (3)

ensuring convergence

lim
t→∞

[θ̂(t)− θ] = 0 . (4)

where θ̂(t) = col(θ̂1(t), . . . , θ̂m(t)) is the vector of
parameter estimates.

The proposed receiver is a kind of adaptive ob-
server. Its simplest version for the case when A, B,
C are known consists of a copy of (1)

ẋ = Ax+ ϕ0(yd)

+B

[
m∑
i=1

θ̂iϕi(yd) + θ̂0G(yd − y)
]
,

y = Cx ,

(5)

˙̂
θi = ψi(yd, y) , i = 0, 1, . . . , m , (6)

where x ∈ Rn, yd ∈ Rl, θ0 ∈ R and G ∈ Rl is the
vector of weights and ψi(yd, y), i = 1, . . . , m are
suitably defined functions. The adaptation algo-
rithm (6) will be determined later. Thus the state

of receiver is z = [x, θ̂0, θ̂1, . . . , θ̂m], the right-hand
sides of (2) are determined from (5) and (6).

Since the structure of (5) is similar to (1), a
natural secondary goal might be

lim
t→∞

e(t) = 0 , (7)

where e(t) = x(t)− xd(t) is the observation error.
Although (7) is not necessary in order to pro-

vide (4), it may give a hint how to choose a
Lyapunov function for a proper design of an adap-
tation algorithm (6).

To solve the problem we write down the error
equation: ė = Ae+B

[
m∑
i=1

θ̃iϕi(yd) + θ̂0Gỹ

]
,

ỹ = Ce

(8)

where θ̃i = θ̂i − θi, i = 1, . . . , m are the param-
eter errors. The adaptation algorithm is provided
by standard gradient — or speed-gradient — tech-
niques as follows:

˙̂
θi = −γi(y − yd)ϕi(yd) , i = 1, . . . , m , (9)

˙̂
θ0 = −γ0(y − yd)2 , (10)

3. Main Result

In order to formulate the conditions required for a
successful applicability of the proposed scheme we
need some definitions and auxiliary results.

Definition 1 [Fradkov, 1990]. The system ẋ =
Ax +Bu, y = Cx with transfer matrix W (λ) =
C(λI −A)−1B, where u, y ∈ Rl and λ ∈ C is
called hyper-minimum-phase if it is minimum-phase
(i.e. the polynomial ϕ(λ) = det(λI−A) det W (λ) is
Hurwitz), and the matrix CB = limλ→∞ λW (λ) is
symmetric and positive definite.

Note that for l = 1 the system of order n is
hyper-minimum-phase if the numerator of its trans-
fer function is a Hurwitz polynomial of degree n−1
with positive coefficients.

Definition 2 [Yuan & Wonham, 1977]. A vector-
function f : [0, ∞) → Rm is called persistently
exciting (PE) on [0, ∞), if it is measurable and
bounded on [0, ∞) and there exist α > 0, T > 0
such that ∫ t+T

t
f(s)f(s)Tds ≥ αI (11)

for all t ≥ 0.
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Lemma 1 [Fradkov, 1976]. Let matrices A, B, C,
G of sizes n×n, n×m, l×n, m×l be given. Assume
rank(B) = m. Then there exist a positive definite
n × n matrix P = P T > 0 and a l ×m matrix θ∗
such that

PA∗ +AT∗ P < 0 , PB = C
T
GT , A∗ =A+Bθ∗GC

if and only if the system ẋ =Ax+Bu, y = GCx is
hyper-minimum-phase.

Lemma 1 establishes conditions of existence of
feedback u = θ∗y + v making the closed loop sys-
tem with input v and output Gy strictly passive. It
is closely related to the Kalman–Yakubovich lemma
and can be called a “Feedback Kalman–Yakubovich
lemma”, see [Andrievsky et al., 1996].

Lemma 2 [Yuan & Wonham, 1977]. Consider
vector-functions f, θ̃ : [0, ∞) → Rm. Assume that

θ̃(t) is continuously differentiable,
˙̃
θ(t) → 0 as t →

∞ and f is PE. Then θ̃(t)→ 0 as t→∞ provided
that θ̃(t)T f(t)→ 0 as t→∞.

Theorem 1. Assume that all the trajectories of
the transmitter (1) are bounded and the linear sys-
tems with the transfer function W (λ) = GC(λI −
A)−1B be hyper-minimum-phase. Then all the
trajectories of the receiver (5), (9) and (10) are
bounded and the relation (7) holds. If, in addi-
tion, the vector-function [ϕ1(yd), . . . , ϕm(yd)] sat-
isfies the PE condition, then also (4) holds.

Proof of Theorem 1. To prove the theorem con-
sider the Lyapunov function candidate

V (x, θ̂0, θ̂, t) =
1

2
eTPe+

1

2

m∑
i=0

‖θ̂i − θi‖2/γi

+ ‖θ̂0 − θ∗0‖2/γ0 (12)

where a matrix P = P T > 0 and a number θ∗0 are
to be determined. Calculation of V̇ gives that V̇ < 0
for e 6= 0 if and only if the following conditions are
valid: 

˙̂
θ0 = −γ0e

TPBGCe ,

˙̂
θi = −γieTPBϕi(yd) ,
eT (PA∗ +AT∗ P )e < 0 .

(13)

Using Lemma 1 we obtain that V̇ < 0 for e 6= 0
if and only if the adaptation algorithm has the
form (9) and (10), and the system ẋ = Ax +

Bu, y = Cx is hyper-minimum-phase. Therefore,
under the given conditions the function V (t) =

V (x(t), θ̂0(t), θ̂(t), t) is bounded. Since ϕi(yd(t)),

i = 1, . . . , m are bounded, the functions e(t), θ̂i(t)
are bounded too. Equations (13) imply that V̇ =
eT (PA∗ + AT∗ P )e ≤ −µ‖e(t)‖2 for some µ > 0.
Integration of the last inequality over the inter-
val [0, t] gives: V (t) − V (0) ≤ −µ

∫ t
0 ‖e(s)‖2ds.

Taking into consideration that V ≥ 0 we obtain:
V (0) ≥ µ

∫ t
0 ‖e(s)‖2ds. This yields the inequality∫ ∞

0
‖e(t)‖2dt <∞ . (14)

Since ϕi(yd), i = 1, . . . , m are bounded, ė(t) is also
bounded in view of (8). From (14) and Barbalat’s
lemma we obtain that the goal (7) is achieved.

To prove (4) we first note that
˙̃
θ(t) → 0 as

t → ∞ from (9) and (7). Differentiating (8), from

boundedness of functions e, θ̃, ϕd, ỹ, θ̂0 and their
time-derivatives we conclude that ë(t) is bounded.
Barbalat’s lemma then implies that ė(t) → 0 as
t → ∞. This and (9) yield θ̃(t)Tϕd(t) → 0 as
t → ∞. Hence (4) follows from the PE condition
and Lemma 2. �

Remark. Theorem 1 in fact gives necessary and suf-
ficient conditions for the existence of a Lyapunov
function of the form (12) with the properties{

V (x, θ̂0, θ̂, t) > 0 for e 6= 0 ,

V̇ (x, θ̂0, θ̂, t) < 0 for e 6= 0 .

}
(15)

It means that it is not possible to find another adap-
tation algorithm based on the Lyapunov function
(12) with the properties (15).

As an example we consider the problem of
synchronizing two Chua circuits with unknown pa-
rameters and incomplete measurements.

4. Signal Transmission and
Reconstruction

In recent years much attention has been devoted to
methods for secure communications utilizing chaos
[Kocarev et al., 1992; Cuomo et al., 1993; Dedieu
et al., 1993]. Various methods for transmitting
signals via chaotic synchronization were proposed
like chaotic signal masking [Kocarev et al., 1992;
Cuomo et al., 1993], chaotic binary communications
[Dedieu et al., 1993; Cuomo et al., 1993], etc.



2810 A. Fradkov et al.

A possible application of the synchronization
scheme proposed in Sec. 2 to chaotic binary com-
munications algorithms goes as follows and is based
on the dependence of the synchronization effect on
the matching of the corresponding parameters of
the systems. The transmitter and receiver have
identical structure as in the previous section. The
basic idea is to modulate this coefficient with an
information-bearing binary waveform and transmit
the chaotic signal. At the receiver side the coef-
ficient modulation will produce a synchronization
error between the received signal and the corre-
sponding transmitter reconstructed signal: If the
coefficients of transmitter and receiver are identi-
cal the signals will synchronize, otherwise synchro-
nization fails. Using the synchronization error the
modulation can be detected. Security of commu-
nications is possibly enhanced by a set of other
transmitter parameters.

Consider as an example of information trans-
mission where both transmitter and receiver sys-
tem are implemented as a Chua circuit, similarly
to [Dedieu et al., 1993]. The transmitter model in
dimensionless form is given as:

ẋd1 = p[xd2 − xd1 + f(xd1) + sf1(xd1)]

ẋd2 = xd1 − xd2 + xd3

ẋd3 = −qxd2

(16)

where f(z) = M0z + 0.5(M1 −M0)f1(z), f1(z) =
|z + 1| − |z − 1|, M0, M1, p, q are the transmit-
ter parameters, s = s(t) is the signal to be recon-
structed in the receiver. The parameters are obvi-
ously chosen in such a way that the Chua circuit
(16) exhibits chaotic dynamics for the signal s(t)
being within its range. Assume that the transmit-
ted signal is yd(t) = xd1(t), and the values of the
parameters p, q are known.

The parameters M0, M1 are assumed to be a
priori unknown which motivates the use of an adap-
tation for the receiver design. The receiver designed
according to the results of Sec. 2 is modeled as

ẋ1 = p[x2 − x1 + f(yd)

+ c1f1(yd) + c0(x1 − yd)] ,
ẋ2 = x1 − x2 + x3 ,

ẋ3 = −qx2 ,

(17)

where c0, c1 are the adjustable parameters. The
adaptation algorithm (9) and (10), takes the form

ċ0 = −γ0(yd − x1)
2 , (18)

ċ1 = −γ1(x1 − yd)f1(yd) ,

where γ0, γ1 are the adaptation gains.
First we examine the ability of the system (17)

and (18) to receive and to decode messages. To this
end we verify the conditions of Theorem 1 assuming
that s(t) = const. Clearly, if s(t) is a time-varying
binary signal, we can only expect that the results of
Theorem 1 can be used if the parameter estimation
is fast enough, at least much faster than the actual
parameter modulation. Writing the error equations
yields

ė1 = p[e2 − e1 + (c1 − s)f1(yd) + c0e1]

ė2 = e1 − e2 + e3

ė3 = −qe2 ,

(19)

where ei = xi−xdi , i = 1, 2, 3. The system (19) is,
obviously in Lur’e form (8), where

A =

−p p 0

1 −1 1

0 −q 0

, B =

1
0
0

, C = [1 0 0],

θ̂1 = c1, θ1 = s, θ0 = c0.
The transfer function of the linear part is

W (λ) =
λ2 + λ+ q

λ3 + (p+ 1)λ2 + qλ+ pq
(20)

We see that the order of the system is n = 3, while
the numerator polynomial is Hurwitz and has de-
gree 2 for all q > 0 and all real p. Therefore the
hyper-minimum-phase condition holds for q > 0
and any p, M0, M1. Thus, Theorem 1 yields the
boundedness of all receiver trajectories x(t) and
convergence of the observation error: e(t) → 0.
In particular, yd(t) − x1(t) → 0. Furthermore, to
be able to reconstruct the signal s(t) the receiver
should provide convergence c1(t) − s → 0 for con-
stant s. According to Theorem 1, this will be the
case if the PE condition (see Definition 2) holds,
which reads as∫ t0+T

t0

f2
1 (yd(t))dt ≥ α (21)

for some T > 0, α > 0 and all t0 ≥ 0. To verify
(21), we note that condition (21) basically means
that the trajectory of the transmitter xd(t) does not
converge to the plane xd1 = 0 when t→∞. This is
not the case, at least when the system (16) exhibits
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chaotic behavior. Indeed, in this case the value
xd1(t) leaves the interval (−1, 1) (where f1(z) is lin-
ear) infinitely many times, say at tk, k = 1, 2, . . . .
The time intervals ∆tk = tk+1 − tk between tk can
be overbounded by constant, if the trajectory does
not converge to the set xd1 = 0.

We may also evaluate a lower bound for α in
(21)

α0 = lim
T→∞

1

T

∫ T

0
f2

1 (xd1(t))dt . (22)

The value of α0 characterizes the parameter con-
vergence rate. It follows from the standard conver-
gence rate results (see e.g. [Sastry & Bodson, 1989])
that if α0 > 0, then the convergence c1(t)−s→ 0 is
exponential, with rate γ1α0, at least for sufficiently
small γ1 > 0. Ergodicity arguments suggest that

α0 ≥
x2
d1

µ
, (23)

where x2
d1

is the average value of x2
d1

(t) over the
attractor Ω, and µ = supx∈Ω |xd1(t)|.

5. Simulation Results

We carried out simulations for the above scheme.
Parameter values were selected as p = 9; q =
14.286; M0 = 5/7; M1 = −6/7. For these param-
eter values the system (16) possesses a chaotic at-
tractor (see Fig. 1), resembling that of the system
used in [Dedieu et al., 1993] (after some rescaling of
space and time variables).

Fig. 1. Attractor of the system (16).

The initial conditions for the transmitter were
taken as xd(0) = [0.3 0.3 0.3]. For the receiver
zero initial conditions were chosen for the state x0

as well as for the adjustable parameters c0(0), c1(0).
In order to eliminate the influence of initial condi-
tions no message was transmitted during the first
20 sec (“tuning” or “calibration” of the receiver),
i.e. s(t) ≡ 1 for 0 ≤ t ≤ 20 s. The time history of
observation errors (Fig. 2) and parameter estimates
(Fig. 3) during tuning show that all observation er-
rors and parameter estimation error c1(t)−s tend to
zero rapidly. The value c0(t) tends to some constant
value.

Fig. 2. Time history of observation errors during tuning.

Fig. 3. Time history of parameter estimates during tuning.
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After the tuning period the square wave
message

s(t) = s0 + s1 sign sin

(
2πt

T0

)
, (24)

where s0 = 1.005, s2 = 0.005 was sent. Simula-
tion results for T0 = 5.0 s, γ1 = 1.0 are shown in
Figs. 4 and 5. It is seen that the reconstructed sig-
nal y(t) coincides with the transmitted signal yd(t)
with very good accuracy (the error yd(t) − y(t) is
shown in Fig. 3, solid line). However both observa-
tion errors (Fig. 3) and estimation errors (Fig. 4) do
not decay completely during the interval when s(t)
is constant. Nevertheless, a reliable reconstruction
of the signal s(t) is very well possible. The accuracy

Fig. 4. Time history of observation errors for γ1 = 1.0.

Fig. 5. Time history of parameter estimates for γ1 = 1.0.

Fig. 6. Time history of observation errors for γ1 = 5.0.

Fig. 7. Time history of parameter estimates for γ1 = 5.0.

of estimation can be easily improved by increasing
the adaptation gain γ1, which is confirmed by sim-
ulation results for γ1 = 5.0 (Figs. 6 and 7). The
achievable information transmission rate depends
on the highest frequencies in the carrier spectrum.

6. Conclusion

The proposed adaptive observer-based synchroniza-
tion scheme demonstrates good signal and param-
eter reconstruction abilities. It allows to achieve
high information transmission rate. The results of
the paper demonstrate the fruitfulness of modern
nonlinear and adaptive control theory application
to synchronization problems.
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