4.4

ELSEVIE

Microelectronics Journal 33 (2002) 479-486

Microelectronics
Journal

www.elsevier.com/locate/mejo

Nonautonomous pulse-driven chaotic oscillator based on
Chua’s circuit

A.S. Elwakil™

Department of Electrical and Computer Engineering, Faculty of Engineering, University of Sharjah, P.O. Box 27272 Sharjah, United Arab Emirates

Received 30 May 2001; revised 22 October 2001; accepted 9 November 2001

Abstract

A novel nonautonomous chaotic oscillator based on the passive structure of Chua’s circuit is proposed. Unlike most of the available
members of this class of chaotic oscillators, the proposed circuit is driven by a periodic bipolar pulse-train rather than by sinusoidal
excitation. This results in equilibrium points which have fixed positions in space. The circuit employs self feedback via a single comparator,
which is the only nonlinear device involved. The output of this comparator is a chaotic bipolar pulse-train. A mathematical model which
captures the behavior of the circuit is derived and experimental results are presented. Also, a version of the circuit with a practical realization
of the driving pulse generator is considered and a variant structure with an alternatively excited node is discussed. © 2002 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

Nonautonomous chaotic oscillators form a class of
circuits which produce chaos while being driven (excited)
by an external time-varying source. While there are many
known autonomous chaotic oscillators (see Ref. [1] and the
references therein), very few nonautonomous chaotic oscil-
lators have been introduced in the literature [2—4] following
some classical systems, which have been studied in detail
[5-7]. The reason for such limited number might be the lack
of any evidence that the statistical features (eigenvalues,
Lyapunov exponents, etc.) of the chaos produced by nonau-
tonomous oscillators possesses any unique property which
is not possessed by the chaos produced from autonomous
oscillators. Moreover, the performance of nonautonomous
oscillators is greatly affected by the quality of the utilized
driving force generator.

It can be seen from Refs. [2-7] that a sinusoidal
excitation method has always been adopted in those non-
autonomous oscillators which have been reported. This
automatically implies that the equilibrium points of these
driven systems are time varying. The amplitude and frequency
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of the sinusoid both contribute to the chaotic dynamics. In
Ref. [8], the effect of sinusoidal excitation on Chua’s circuit
was studied. To the best of our knowledge, a nonautono-
mous chaotic oscillator where the driving force is a pulse-
train, rather than a sinusoid, has not yet been proposed.
Therefore, in this work we aim to present such an oscillator
based on the third-order passive structure of Chua’s circuit.

Since a bipolar pulse-train switches between two fixed
amplitude levels, the corresponding equilibrium points of
the circuit remain fixed in space and not time varying. In
place of the classical Chua’s diode nonlinear resistor [9], we
utilize a single comparator as the only nonlinear device in
the circuit. Note that a comparator has a nonlinear V-V,
characteristic whereas Chua’s diode has a nonlinear V,—I;
characteristic. Therefore, self-feedback is employed from
the comparator’s output to the excited node.

One main advantage of the proposed chaotic oscillator is
its suitability for interfacing with digital circuitry. The driv-
ing force can well be a periodic digital clock; the output of
the comparator is a chaotic pulse-train compatible with the
input levels to a following digital system.

In Section 2, a mathematical model capturing the
dynamics of the proposed circuit is derived and its chaotic
nature experimentally verified. In Section 3, we replace the
driving pulse-train with a practical circuit realization in
order to clarify the higher-dimensional nature of the circuit.
Finally, in Section 4, a variant structure with excitation
applied to an alternative node is discussed.
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Fig. 1. Proposed pulse-driven nonautonomous chaotic oscillator: (a) circuit
structure with excitation across C,; (b) practical realization of the pulse-
train generator; (c) alternative structure with excitation across C;.

2. Proposed nonautonomous chaotic oscillator

Consider the circuit shown in Fig. 1(a) where the passive
structure of Chua’s circuit, composed of the LC, tank reso-
nator, and the RC; low-pass filter section, can be clearly
recognized. The output of a comparator, which is controlled
via the voltage across Cj, is fed back to the excited node via
resistor Rg. The driving force Vp is a pulse-train coupled via
Rs to the same node. The output levels of both Vp and the
comparator are bipolar and equal to * V¢, where =V are
the bias supplies for the comparator chip. The circuit in

Fig. 1 is therefore described by:

LjL =Vo (la)
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where Vy and Vp are the output voltages of the comparator
and the driving pulse-train, expressed respectively as:

Vee V=0

Vn = Ve sgn(Vey) = (2a)
- VCC VCI < O

and

Vp = Ve sgn(sin(wpt)) (2b)

Here, wp is the frequency of oscillation of the pulse-train.

By introducing the following dimensionless variable:
X = VCI/VCC’ Y= ch/Vcc, Z = RIL/VC(Zs T= (l)pt, € =
C,/Cy, a; = Lwp/R, ay = RC,wp, Bg = R/Rg, and By =
R/R; the previous set of equations transform into:
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Note that all the parameters (a, as, B, Bs) in the previous
state transition matrix are constants which are independent
of the state of the comparator output or the driving force.
The only parameter in Eq. (3) which depends on these two
outputs is a, which is a switching constant given by:

{&+&Hﬂ X=0
a= (4a)
—Br + BsP(1) X <O
and
1 sint =0
P(7) = sgn(sin7) = { (4b)
-1 sint<0

Since a does not appear in the state transition matrix, it has
no effect on the dynamics of the system at the equilibrium
points. It is clear that this switching constant will only affect
the position in space of the equilibrium points of the system,
which are given by: (xy, Y, 20) = (0,0, a). Using Eq. (4a)
and (4b), it is seen that there are in general four equilibrium
points; two located in the positive X half-space equal to
(0,0,8f = Bs) and two located in the negative X half-
space equal to (0,0, — Bg = Bs). In the special case where
Br = Bs = B, two of these points coincide with the origin.
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Fig. 2. Y-Z projection of the chaotic attractor obtained via numerical

(®) (Br, Bs) = (2,3) and (¢) (B, Bs) = (3,2).

Effectively, the system has three equilibrium points in this
case; the origin and (0,0, = 23).

Numerical simulations of the previous model were
performed using a Runge—Kautta algorithm with 0.001 step
size and taking a; = 0.05, o, =50, Bg = Bs =3, 7= 0.1¢
and €, = 0.2. In Fig. 2(a), the observed Y-Z projection
of the chaotic attractor is shown. Note that the three
equilibrium points in this case are the origin and

integration of Eq. (3) (a; = 0.05, apy =50, €, =0.2) : (a) (B, Bs) = (3,3);

(0,0, £ 6), which are clearly visible in the plot. In Fig.
2(b) and (c), the same projection is shown for the two
cases: (Bg, Bs) = (2,3) and (3,2), respectively. The equili-
brium points in both cases are (0,0, = 1) and (0,0, = 5).
Note that the condition Bg > B¢ implies that the two equili-
brium points in the region X >0 (X <0) also lie in the
region Z > 0 (Z < 0) while the condition B < B¢ implies
alternating equilibrium points, i.e. when X switches from the
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Fig. 3. Experimental V-V, observations (X axis:20 mV/div, Y axis:
100 mV/div) (a) period-1 orbit (b) period-2 orbit (c) chaotic trajectory
(d) sample chaotic pulse output waveform of the comparator (X axis:
250 ps/div, Y axis: 1 V/div).

positive to the negative half-space, Z will switch in the
opposite direction.

An experimental setup of Fig. 1(a) was constructed taking
L=1mH, C; = 10nF, C, = 100 nF, R = 5 k) and using
a general purpose TLO82 op amp as the comparator. We
have chosen to fix Rr at 1 k() and use a variable 5 k()
resistor for Rg in order to tune the circuit dynamics. Noting
that the resonant frequency of the LC, tank is approximately
16 kHz, the frequency of the driving pulse generator was
scanned over the range of 1-20 kHz. The comparator was
biased from =5 V supplies and the pulse generator output
was also fixed to 5 V.

We have observed chaos in the range of frequencies 4—
18 kHz. In Fig. 3(a), the period-one orbit observed at 5 kHz
with Rg = 1.528 k() is shown. The period-two orbit in
Fig. 3(b) is born at Ry = 1.568 k() whereas the chaotic
trajectory in Fig. 3(c) corresponds to Ry = 1.636 k(). All
projections represent the Vi;—V, (X—Y) phase plane since it
is particularly difficult to measure the current in the inductor

¥>100myu= Rr2omus= XY auy>1.00mU ¥>100mU=  X>10m
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Fig. 4. Experimental observations at 15 kHz driving force frequency (X
axis: 20 mV/div, Y axis: 100 mV/div), (a) double-scroll-like attractor, and
(b) single-scroll attractor.

I, (2). In Fig. 3(d), a sample of the chaotic pulse-train
generated at the comparator’s output is shown. When the
frequency of the pulse generator is increased to 15 kHz with
Rg = 1.907 k) and R = 7.6 k(), we observe the double-
scroll-like attractor shown in Fig. 4(a). The single-scroll,
shown in Fig. 4(b), appears when Ry is increased to
1.952 k). It is worth noting that the chaotic pulse-train
generated at the comparator’s output can be used in place
of classical digital pseudo-random generators to feed a
following digital circuit.

3. Practical pulse-train generator

It is well-known that practical pulse generators belong to
the class of so-called relaxation oscillators, which involve
dynamic hysteresis. It has been shown in Ref. [10] that
hysteresis results from the interaction of a fundamentally
nonlinear N-shaped (S-shaped) driving point characteristic
with a parasitic capacitor (inductor). Therefore, relaxation
oscillators are second-order systems which can be modeled
accurately only when the underlying nonlinear characteris-
tic and a suitable parasitic energy storage element are
included [10,11]. In fact, any relaxation oscillator is a
limit case condition of another sinusoidal oscillator when
one of its energy storage elements becomes significantly
small (compared to the rest of such elements in the circuit)
such that it stimulates slow—fast dynamics, which are mani-
fested as hysteresis [1].

Now, consider replacing the pulse generator in Fig. 1(a)
by a possible practical realization, namely that shown in Fig.
1(b). One can then deduce that the exact order of the
proposed nonautonomous chaotic oscillator is five. The
circuit in Fig. 1(b) represents a novel relaxation oscillator
with the minimum number of components based on a
current feedback op amp (CFOA) [12,13]. The CFOA as
it is connected together with resistor Rp form a current-
controlled nonlinear resistor, the V,—I; characteristic
of which is plotted in Fig. 5(a), for two different values
of Rp. By placing a capacitor Cp in parallel with this
resistor, hysteresis is stimulated and the parasitic induc-
tor Ly is necessary to model accurately this dynamical
behavior. Thus, the following equations describe this
oscillator:

CoVep = —1p (52)

Lolg = Vep — W (5b)

where Vy is the voltage across the nonlinear resistor
modeled in piecewise-linear form as:

R\(ILO - Isat) - RPlsat ILO =
V=1 —Relyo Tl < I < Iy (6)

R\(ILO + Isat) + RP]sat ILO = _Isal
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Fig. 5. (a) Characteristic of the CFOA S-shaped nonlinear resistor, (b) waveforms of the W and V state variables from the relaxation oscillator model (ep =
0.01, Bp = 10).
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Fig. 6. Y-Z phase space projection from the fifth-order system equation Eq. (8) (a; = 0.003, a, = 3, Br = Bs = 3, €. = 0.2, p = 0.01, Bp = 10).

I, is the CFOA output saturation current and R' is the
value of the resistance in the outer segments of the
nonlinear characteristics (see Fig. 5(a)).

By introducing the variables: W = Vp/Vee, V=
Rplio/Vee = Vp, 7= 112CpRp, € = Lo/2CpRp, PBp =
R'/Rp and Vcc = Rpl,, the previous model transforms
into:

(5)-C o))

and
Bp,—Bp—1) V=1

(b,c) =13 (—1,0) -1<VvV<<l1 (7b)
(Bp.Bp + 1) V=-1

The time waveforms of the two state variables W and V
are shown together in Fig. 5(b). Here, we have set ep =
0.01 and Bp = 10.

By combining Egs. (3), (7a) and (7b), the following full
state-space representation of the nonautonomous chaotic

oscillator can be deduced:

-1 1

— — 0 0 0
GcX a @
v L —(+Be+p) —1 B
. a ay a ap
Z = 1
. 0 — 0 0 0
W (Xl
€PV 0 0 0 0 -2
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where b and c are as given by Eq. (7b) while a is equal to B¢
for X = 0 and equal to — B for X < 0.

The Y—Z projection of the chaotic attractor from the
above fifth-order system is shown in Fig. 6 for a; =
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Fig. 7. X—Y-Z subspace chaotic attractor observed from the model of the alternatively excited circuit in Fig. 1(c).

0.003, ap =3, Bg = Bs = 3,€. = 0.2, ep = 0.01 and Bp =
10. The calculated eigenvalues corresponding to Fig. 6 are:
(—1.675, + 2.042, + 97.958, — 1.162 £ j10.449) in the
region —1<V<1 and (—1.675, — 1.162 *j10.449,
+0.075 % j14.142) in the other two regions of V. A single
positive Lyapunov exponent equal to 0.205 was also calcu-
lated from the data corresponding to the Y time series.
Note that three of the eigenvalues, namely those with
negative real part remain unchanged. These eigenvalues
are the ones which can be calculated using Eq. (3). It is
thus clear that the state transition matrix of Eq. (3) is insuf-
ficient to fully describe the dynamics of the oscillator at the
equilibrium points. It is essential to expand the state-space
of a nonautonomous chaotic oscillator into an appropriate
higher-order dimension in order to accurately absorb the
effect of the periodic driving force, which cannot be
produced in practice by a zero-order system. Note that in
reality, all nonautonomous chaotic oscillators involve two
sources of nonlinearity, one responsible for folding the
trajectories and the other embedded within the driving
force and responsible for its stable limit cycle behavior.

4. Alternative configuration

The passive structure of Chua’s circuit is a two-node

structure. In Fig. 1(a), we have chosen to excite one of
these nodes, namely the one across C,. Here, we demon-
strate the possibility of exciting the alternative node, i.e. the
one across C;. The circuit structure in this case is shown in
Fig. 1(c) and is described by:

I —(d+B+Bs) O

eX 1 1 1 X a

vV |=| o oy o |lY]+]o
7 1

Zz 0 L 0 z 0
@

9

where a is as given by Eq. (4a) and (4b) with the switching
condition dependent on Y instead of X.

Numerical integration of the previous equation was
carried out after setting €, = 0.1, @; = 0.07, a, = 0.5 and
Br = Bs = 3. For clarity, the observed projection of the
chaotic attractor in the X—Y-Z subspace is shown in Fig. 7.
The four equilibrium points of the system in this subspace
are given by: (xg, g, 20) = (—a, 0, —a) which are also fixed
in space but are different from the ones offered by the
previous node excitation. Following a procedure similar to
that used to derive Eq. (8), Eq. (9) can be expanded into its
governing five-dimensional space. From this expanded
representation, the calculated eigenvalues corresponding
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to Fig. 7 are: (2.185,0.291 £ j1.135, — 0.5 £ j1.323) in the
region —1 <V <1 and (2.185,0.291 = j1.135,0.204,9.796)
in the other two regions of V. A single positive Lyapunov
exponent equal to 0.0089 was also calculated from the Y
time series. It is similarly noticed here that the eigenvalues
which can be calculated from Eq. (9) are the ones which
remain unchanged in the expanded model.

5. Conclusion

A pulse-driven nonautonomous chaotic oscillator config-
uration with equilibrium points fixed in space was proposed.
A basic advantage of this oscillator is its suitability for
interconnection with digital circuits. We have clarified
that the dynamics of this oscillator can accurately be modeled
in a five-dimensional space when the driving force is replaced
with its practical realization, essentially a second-order
relaxation oscillator. It is clear that the number of equili-
brium points in space are directly proportional to the sum of
the possible voltage output levels of both the comparator
and the driving pulse-train. Hence, if multi-level-logic is
adopted, the number of equilibrium points can be increased.
Excitation was investigated at the two nodes of the core
passive structure, which is that of Chua’s circuit.
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